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In Weißbach et al.’s reply [1] to Raugei’s comments [2] on their original 

paper [3], the former persist in attempting to defend their flawed claims, 

and describe Raugei’s efforts to add methodological clarity as 

“allegations” based on “sophisms”, and even coin the phrase “fuel feedstock 

deception (FFD) method”.  

Under careful scrutiny, though, their attitude appears to stem from a lack 

of understanding of (1) the inherently different viewpoints of Life Cycle 

Assessment (LCA) vs. Net Energy Analysis (NEA), and (2) the widely-accepted 

rationale for the definition of Primary Energy Sources (PES). We shall 

therefore make a further attempt here to carefully identify the origin of 

these misunderstandings, as well as to explain why the arguments put forth 

by Weißbach et al. in their reply are (still) wrong and a potential source 

of confusion. We shall then also address the points that they make in 

support of their “buffered” EROI calculations. 

 

1. EROI and CED 

As Weißbach et al. correctly state in their reply piece [1], for EROI 

caluculations, “the thermal energy content of an energy carrier, the “fuel 

feedstock”, is in fact not part of the energy invested EI”. This is 

undisputed, as is the definition of EROI as the ratio of the usable energy 

ER returned during a system’s lifetime to all the invested energy EI needed 

to make this energy usable [3]. Such definitions are firmly rooted in the 

viewpoint offered by the discipline of Net Energy Analysis (NEA), which, as 

the name implies, is concerned with how much net (i.e. surplus) energy is 

left over of the gross energy extracted (and processed and delivered) from 

a Primary Energy Source (or a mix of PES), after the energy required to 

sustain the extraction, processing and delivery processes has been 

subtracted [4]. 



Where the authors are wrong, though, is in claiming that the energy 

investment EI is the same thing as the Cumulative Energy Demand (CED, 

sometimes also referred to as ‘embodied energy’). The latter is among the 

most commonly employed energy performance metrics in Life Cycle Assessment 

(LCA), and responds to a different, yet arguably complementary, logic.  

While NEA seeks to understand how effective is a system at exploiting 

societal uses of energy to upgrade environmental stocks and flows into 

societally useful forms, in contrast, LCA seeks to understand the full 

environmental impacts of a product or production process. Accordingly, the 

CED of an energy system describes the total primary energy that must be 

extracted from the environment in order to deliver a given product or 

support a given process. This is done by summing the energy inputs to each 

of processing stage in the production chain (or more accurately network). 

This method of calculating CED is well defined within the computational 

structure of LCA as outlined in Heijungs and Suh [5] and used by every LCA 

software tool on the market. 

Using the example outlined by the authors [1]   of a network of processes 

producing coal, electricity and aluminium, we can define this network using 

the LCA methodology as: 

 

 

(1) 

 

Where A represents the technology matrix and B the interventions matrix. 

Columns represent processes: coal extraction, electricity production, oil 

production (the ‘other energy’ that the authors discuss in their example), 

and aluminium production. Rows represent ‘products’, both within the 

economy (coal, electricity, oil and aluminium) and between the economy and 

environment (waste heat, coal from the earth and oil from the earth). Note 

that the A matrix is in mixed units. Positive values represent outputs from 

a process and negative values represent inputs. In order to represent the 

authors network, we have had to assume that both the coal and oil 

extraction processes are 100% efficient and require no energy inputs. We’ll 

ignore that physical impossibility in order to work through the example. 

The vector of environmental inventories, g, from our network, due to some 

final demand vector, f, is given by: 

 
(2) 

So, for a final demand of 1 kg of aluminium from our network (a final 

demand of fT1kg Al = [0, 0, 0, 1]) the associated environmental inventory 

would be, gT1kg Al = [202.5, -200, -2.5] from which the CED may be easily 

found by summing the energy extractions (coal and oil) from the environment 

to give CED1kg Al = 202.5 MJ. 

Making the same calculation for a final demand of 20 kWh of electricity, 

fT20kWh elec = [0, 20, 0, 0] gives gT20kWh elec = [130.5, -200, -2.5] and a 

corresponding CED20kWh elec = 202.5 MJ. This should not be surprising, since 

we are assuming that the only energy inputs to the aluminium production 

process come from electricity; therefore, CED20kWh elec must equal CED1kg Al. It 



cannot be otherwise. There is no definition by which CED20kWh elec could not 

include the energy content of the coal and yet CED1kg Al does, because they 

are connected only via the electricity generation process. Contrary to the 

authors’ contention that this leads to “multiple counting in energy 

statistics” [1, p.1004], in fact it is the only means to ensure that all 

energy is accounted for, as demonstrated by the balance between waste heat 

output and energy inputs for gT1kg Al. 

Weißbach et al. argue that including the energy of the feedstock fuel in 

the calculation of the CED is “completely arbitrary” as well as “biased” 

[1]. These allegations are completely unfounded. In fact, for both the 

specific cases of e.g. a conventional thermal power system (A) and of a 

power system harvesting renewable energy such as PV, wind or hydro (B), the 

CED consistently includes both the energy investments EI (to extract, 

process and deliver the feedstock – required for system A - and to produce, 

maintain and decommission the power plant – required for both systems A and 

B), and the energy flow itself that is converted into electricity 

(respectively, the feedstock fuel for system A, and the captured renewable 

energy for system B). These definitions and calculations are corroborated 

by a plethora of published LCAs, and are common practice to the extent that 

one need only open an LCA software package of choice, select a suitable 

process out of any commercial LCI database, and click on “CED” to find out. 

It should be made clear, though, that, unlike Weißbach et al., we are not 

arguing that either the NEA logic (underpinning EROI) or the LCA one 

(underpinning CED) is in any way superior or inferior to the other, nor 

that the concept or operational definition of EROI should be altered at 

all. What we are concerned about, though, is the repeated spreading of 

incorrect information and the arbitrary re-definition of widely employed 

and accepted metrics. 

 

2. Primary Energy Sources 

Weißbach et al. also raise the question of what primary energy “weighting 

factor” should be used for renewable technologies such as hydro power [1]. 

This is clearly intended as a rhetorical question, since their thesis is 

that no such “weighting factor” are to be employed, and all calculations 

should instead be performed on the basis of the straight exergy content of 

the inputs, regardless of the type of energy that they consist of (such as 

e.g. thermal or electric or solar radiation) [3]. As already argued before 

[2], this is rather questionable reasoning that results in units of ‘apples 

and oranges’ being casually tossed together. In fact, the exact same 

argument is made by Giampietro and Sorman  [6] (within a section headed 

“The importance of NOT summing apples and oranges”) used by the authors in 

support of their argument for not using a weighting factor [2, p.210], 

suggesting that they did not read the cited article very carefully. After 

careful consideration, it now appears clear to us that Weißbach et al.’s  

failure to accept the soundness of employing appropriate ‘primary energy-

equivalent’ (PE-eq) factors to account for the varied nature of a system’s 

energy inputs likely stems from their misunderstanding of what such factors 

actually stand for.  

As similarly stated countless times in the scientific literature, and 

recently reprised clearly and concisely by Murphy and Hall, “a primary 

energy source is an energy source that exists in nature and can be used to 

generate energy carriers (e.g., solar radiation, fossil fuels, or 

waterfalls). An energy carrier is a vector derived from a primary energy 

source (e.g., electricity, gasoline, or steam)” [7]. 

These definitions directly support the following statements: 

i. Each successive transformation from one type of energy to the next 

(starting from the PES itself and along an often long chain of 



different energy carriers) entails some of the previously available 

forms of energy (chemical, gravitational potential, etc.) being 

downgraded into heat dispersed into the environment (2nd law of 

thermodynamics). 

ii. Each energy transformation also requires some additional investment 

of energy to make it happen. 

iii. As a result of (i) and (ii), at each energy transformation (i.e. for 

each successively generated energy carrier) progressively higher PE-

eq factors may be calculated, which take into account both (i) and 

(ii) above, and which are specific to the employed transformation 

pathway. 

Thus, the PE-eq “weighting factor” of e.g. hydro electricity is no mystery, 

but simply ensues from the application of the definitions of CED and ER 

given in section 1 above, and is in fact numerically equal to the CED of 

one unit (e.g. MJ) of delivered hydroelectricity. The exact same logic is 

then applicable to any other energy system, be it ‘renewable’ or ‘non-

renewable’, thermal or otherwise, and without arbitrarily invoking any 

“alleged average efficiency of thermal power plants”, as Weißbach et al. 

mistakenly assume [3]. Furthermore, by the same token, the PE-eq of a 

country’s grid mix may also be directly computed as the overall CED of one 

unit of electricity delivered (or alternatively as the weighted average of 

the PE-eq of the electricity production systems that comprise it).  

Also, contrary to Weißbach et al.’s non-standard definition of Energy Pay-

Back Time [3], which results in non-externally comparable results, the 

commonly accepted definition [8] is EPBT = EI/[(ER/T)/ηG] (where T = 

system’s lifetime). This definition does include the average ‘life cycle 

efficiency’ (nG) of the grid. EPBT is an intrinsically comparative, rather 

than absolute, metric, to be interpreted as “how many years it will take 

for a system to produce as much electricity as could be produced by the 

current grid mix, using the same amount of primary energy” [9]. 

According to the same logic, the notation of a primary energy-weighted EROI 

as EROIPE-eq = T/EPBT = EROI/ηG [10] is perfectly valid, and clearly 

preferable to Weißbach et al.’s misleading “EMROI” acronym [3], since money 

has absolutely nothing whatsoever to do with the way it is calculated. 

Weißbach et al. are of course right when they argue that the choice of how 

far back to go when defining what constitutes a ‘primary’ energy source 

entails a degree of subjectivity, since e.g., even fossil fuels reserves 

came into existence through a chain of ancient energy transformation 

processes (starting with biomass production by photosynthesis, and then 

proceeding with its anaerobic degradation and fossilization) [1]. 

Incidentally, estimates of the additional energy demands of these natural 

processes leading to the formation of fossil energy resources, and of the 

associated 2nd law energy conversion efficiency factors, are available in 

the scientific literature [11]. However, it is widely accepted in both NEA 

and LCA that such initial energy transformations (up until the formation of 

the exploitable reserves of fossil fuels, as well as of other mineral ores) 

fall outside of the scope of most analyses, and should therefore be 

disregarded. In other words, by almost universal convention, the decision 

is made to define ‘primary energy sources’ as those which are readily 

available for human exploitation at the present time, including both 

‘renewable’ and ‘non-renewable’ sources “(e.g., solar radiation, fossil 

fuels, or waterfalls)” [7]. 

 

3. Buffering and the grid mix 

In their reply [1], Weißbach et al. misinterpret Raugei’s remark that their 

original storage scenarios [3] only provide “a theoretical ceiling value” 

to the “additional energy demand” due to the requirement for energy storage 



[2] (i.e., a theoretically maximum EI and therefore minimum EROI), and 

instead misquote him as stating that their scenarios provide “(optimum) 

ceiling EROI values”. In fact, the opposite is true. While we understand 

and accept that the analysis of complete grid mixes was outside of the 

intended scope of Weißbach et al.’s original study, their dismissal of the 

very real and documented benefits of combining different renewable energy 

systems such as PV and wind in terms of their relative offsetting of each 

individual system’s intermittency is unjustified and untenable. Once more, 

a fundamental lack of understanding (both of Raugei’s arguments and of 

those put forth by the studies he cites in their support [12-14]) appears 

to lie at the core of this refusal to accept any criticism. For instance, 

Weißbach et al. refer to the unrelated reduced EROI of gas power plants 

when these are used as back-up for renewables [1] (incidentally, quoting an 

unreferenced “about 20”), while Raugei’s claim referred to the reduced 

requirement for storage resulting from “the intermittent pattern of 

electricity generation by one technology” being “largely compensated by the 

out-of-phase production by other technologies” [2]. 

This viewpoint speaks to a larger issue regarding the goal of making an 

EROI calculation. Is it to examine a technology’s ability to make use of 

existing societal energy resources when plugged into the current 

electricity supply mix, or to examine that technology’s ability to supply 

all eletricity needs on its own? It seems that the authors are trying to do 

the former, however statements regarding the wind resources at Germany’s 

coast being “too sparse to supply the society” [3, p.214] or the statement 

that “significant buffering efforts are indispensable for a grid only 

consisting of renewables” [1, p. 1006] suggest the latter. If the latter is 

the goal, then why are the same demands not made of gas-fired or nuclear 

electricity? The EROI of natural gas supplies would almost certainly 

decline if these resources were required to supply all of society’s 

electricity needs. Similarly, base-load generators that are unable to 

follow demand loads, such as nuclear, are equally reliant on other flexible 

generation or storage (or must make the “unrealistic assumption that all 

electricity is usable” [3, p.213]), if their electricity output is to be 

completely “useable” at all times, a point that seems to have escaped the 

authors’ attention. 

Additionally, Weißbach et al.’s statement that “exergy supply should be 

completely adaptable to the society’s demand to provide flexible usage, not 

vice versa” [1] not only arbitrarily and single-handedly dismisses the 

well-documented potential benefits to be gained from demand-response grid 

management, but is an indication of their likely subscription to a 

politically motivated ideal that our current societal patterns of 

consumption should be non-negotiable, irrespective of how irrational, 

unnecessarily wasteful or intrinsically unsustainable they may be. Of 

course, if one were to buy this rather questionable argument, then, 

unsurprisingly, conventional energy technologies such as e.g., nuclear 

would appear to have an intrinsic advantage vs. renewables such as PV or 

wind.  

 

4. Conclusions 

In conclusion, we cannot help but reiterate here Raugei’s previous 

conclusions that “in the light of all of the above, there appears to be 

ample reason to question the reliability of the authors’ numerical results, 

and, most importantly, their internal as well as external comparability to 

those produced by previously published studies.” In addition, the authors 

make a number of physically impossible statements, such as “only exergy is 

generated and destroyed” [3, p.212] (exergy can only be destroyed, never 

created), which could be forgiven as a typographical error (though 

suggesting a lack in methodological rigour) were it not for the fact that 



it was compounded four sentences later with discussion of ”generated 

exergy” suggesting (perhaps even worse) that the authors lack a fundamental 

grasp of basic thermodynamics, further underlining the need to question the 

original analysis. Finally, Weißbach et al.’s defence of their untenable 

assertions by setting up straw man arguments and misinterpreting and 

misquoting Raugei’s comments comes across as a worrying indication of their 

seeming lack of familiarity with scientific standards and widely accepted 

methodological conventions. 
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