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Abstract 

As a baseline for software development, a correct and complete requirements 

definition is one foundation of software quality. Previously, a novel approach to 

static testing of software requirements was proposed in which requirements 

definitions are tested on a set of task scenarios by examining software behaviour 

in each scenario described by an activity list. Such descriptions of software 

behaviour can be generated automatically from requirements models. This paper 

investigates various testing methods for selecting test scenarios. Data flow, state 

transition and entity testing methods are studied. A variety of test adequacy 

criteria and their combinations are formally defined and the subsume relations 

between the criteria are proved. Empirical studies of the testing methods and the 

construction of a prototype testing tool are reported.  

 

Keywords: Software requirements, requirements definition, data flow diagram, 

state transition diagram, entity relation diagram, software testing, task analysis, 

activity list, test adequacy criteria, subsume relation, combination of test criteria, 

automatic test case generation. 
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1. Motivations 
Software requirements definitions are the documents of users’ requirements of computer 

systems and serve as the baseline for the development of the software (Stokes, 1991). Many 

studies have shown that errors in requirement definitions are very costly, even impossible, to 

rectify at later stages of software development (Boehm, 1981). Therefore, the validation of 

requirements definitions is of vital importance to software development.  

As Goodenough and Gerhard (1975) pointed out, the central problem of software testing is 

the adequacy problem, that is, what constitutes adequate testing. Over the past several 

decades a great number of test adequacy criteria have been proposed and investigated as rules 

that guide the selection of test cases and as measures for objective specification of the testing 

requirements and measurement of testing quality. Existing software testing methods can be 

classified into two types: static testing and dynamic testing. Dynamic testing involves the 

execution of program code so that the dynamic behaviour of the system can be observed and 

analysed. Dynamic software testing methods can be further classified into specification-based 

methods and program-based methods. A specification-based testing method derives test cases 

from the requirements specification such as from algebraic specifications (Bouge, et al., 1986; 

Beront et al., 1991; Chen, Tse and Deng, 2000; Chen, Tse and Chen, 2001), Z specifications 

(Amla and Ammann, 1992; Stocks and Carrington, 1993; Ammann and Offutt, 1994), finite 

state machines (Fujiwara, et al., 1991), Petri nets (Pezze and Young, 1996; Morasca and 

Pezze, 1990), and from design specifications such as from UML (Offutt and Abdurazik, 

1999; Abdurazik and Offutt, 2000) and from software architectural descriptions (Richardson 

and Wolf, 1996; Bertolino, et al., 2000; Rosenblum, 1997). A program-based testing method 

selects test cases according to the information contained in the program. Among the most 

well known testing methods are structural testing, which include control flow testing 

methods such as statement coverage, branch coverage and path testing (Howden, 1976; 

Hetzel, 1984), data flow testing methods such as definition/use path coverage methods (Laski 

and Korel, 1983; Ntafos, 1984; Rapps and Weyuker, 1985; Frankl and Weyuker, 1988), and 

dependence coverage methods (Podgurski and Clarke, 1989; 1990); functional testing, which 

include domain partition testing methods such as boundary value analysis (Myers, 1979; 

Clarke, Podguski and Richardson, 1982; Richardson and Clarke, 1985; Afifi, White and Zeil, 

1992) and functional analysis (Howden, 1987a); and fault-based testing, which include 

mutation testing (DeMillo, Lipton and Sayward, 1978; Budd, 1980), weak mutation testing 

(Howden, 1987b), perturbation testing (Zeil, 1983; 1989), and the methods based on 
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Richardson and Thompson’s (1993) RELAY model. Readers are referred to (Zhu, Hall and 

May, 1997) for a survey of research on software testing methods. Such dynamic testing 

methods are not directly applicable to the validation of requirements definitions at the 

requirements stage, however, unless an executable prototype of the system is available. 

Prototyping involves the development and demonstration of prototype software to test if the 

software satisfies users’ requirements. It provides visualised demonstrations of a system's 

behaviour, which enables users/customers to examine whether the functions and behaviour 

are as required. It is effective for validating the user interface and certain specific features of 

the system, such as timing and scheduling aspects in real-time applications, see e.g. (Luqi, 

Chang and Zhu, 1998).  It is costly to develop prototypes, however, that contain sufficiently 

accurate detail related to requirements as the amount of detail that the prototype can 

demonstrate determines the maximum level of testing strictness. 

Static testing is concerned with the review of software documents and readable high-level 

code. It is applicable to requirements definitions. Typical static testing methods include 

checklist guided inspection (Wheele, 1996; Gild and Gramham, 1993) and structured 

walkthroughs in formal review (Yourdon, 1989b). They have been widely used in practice 

and are claimed to be effective at detecting errors (Wheele, 1996; Yourdon, 1989b).  Static 

testing is by its nature a labour intensive process and for the following reasons it is difficult. 

First, in formal reviews and inspections of requirements definitions, the human testers are 

required to understand the notations used in the requirements definition. Since there are no 

tested documents against which the correctness of the requirements definition can be 

checked, it is a common practice that users and/or customers are involved in requirements 

validation (Kamsties, Hormann and Schlich, 1998). It is difficult, however, for users to 

understand the technical notations used in requirements definitions. Second, during the 

testing process, the tester has to translate in their mind the static description of the 

requirements into the dynamic behaviour of the described system. Such translations often 

have to coordinate information scattered over the requirements definition documents, 

especially when the system is described by multiple views (Yourdon, 1989a; Nuseibeh, 

Kramer and Finkelstein, 1994). Such translations are further complicated due to the difficulty 

of casting two-dimensional diagrams into one-dimensional temporal sequences of events. Not 

only is this process time consuming and expensive, but its effectiveness is dependent on the 

experience and training of the human tester (Basili and Selby, 1987). Moreover, there are few 

software tools available to support the static testing of software requirements definitions, 

although the need for such tools is widely recognised (Macdonald, et al., 1995; 1996). 
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Finally, there are few theoretical and systematic methods reported in the literature that 

address the static testing adequacy problem. In dynamic testing, test adequacy criteria enable 

software testers to specify the goal of testing before a testing process starts and to measure 

and control the strictness of the testing process objectively (Ould and Unwin, 1986; Weyuker, 

1986; Parrish and Zweben, 1993; Zhu and Hall, 1993).   No such criteria that have been 

proposed in the literature for the validation of requirements by static testing or prototyping.  

This paper is concerned with static testing of software requirements and aims at improving its 

efficiency and effectiveness by systematically applying well-defined test adequacy criteria 

and deploying automated software testing tools.  

Our approach is based on the notion of scenarios or use cases (Carroll, 2000). Generally 

speaking, a scenario represents a set of situations that might occur during the operation of a 

software system. These situations have some common characteristics in the types of users 

involved in the operation of the system and in the purposes and conditions of use. In recent 

years scenario analysis has attracted researchers in requirements engineering. Its potential in 

requirements validation has been recognised by a number of researchers, e.g. (Anderson and 

Durley, 1993; Jin and Zhu, 1998; Zhu and Jin, 2000; Haumer, Pohl and Weidenhaupt, 1998). 

The basic idea is to check requirements in various scenarios that may occur during software 

operation. One of the main advantages of scenario directed requirements validation is that the 

process of requirements validation can be naturally divided into a number of testing tasks of 

manageable size and complexity. Since each task only concentrates on one typical situation in 

the operation of the specified software, testing requirements on one scenario is independent 

of the testing on other scenarios. This facilitates the application and management of the 

testing process. Another potential advantage of scenario directed requirements validation is 

that it provides a potential method of controlling test strictness. The set of scenarios used in 

requirements testing can be large or small in size and can also be low or high in complexity. 

Testing requirements on more, and more complicated, scenarios will usually result in higher 

levels of strictness and be better at detecting errors. Of course, it also becomes more 

expensive and time consuming. Thus, the strictness and cost of requirements testing can be 

controlled by the selection of an appropriate set of scenarios.  

There are two approaches to scenario directed requirements validation. The first approach is 

to describe the required behaviour of the software on each scenario independently of the 

requirements definition being tested. Such descriptions are then checked against the 

requirements definition under test for their consistency. Techniques have been developed to 

check automatically the consistency between scenario description and requirements models 
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for this purpose (Jin and Zhu, 1998). The second approach is to derive the description of the 

behaviour of the specified software from the requirements definition. Such descriptions are 

then checked by the tester for their correctness. The second approach is often preferred 

because checking the correctness of a description is usually easier than creating a description 

from scratch. This is the approach that this paper uses.  

For both approaches, there are many important questions to be answered, for example: how 

scenarios should be described so that testing can be performed effectively and efficiently; 

where such descriptions of scenarios come from or how to derive such descriptions; and how 

to select scenarios.  

Attempting to answer the first two questions above, Zhu, Jin and Diaper (1999a, 1999b) 

proposed activity lists as a format for describing software behaviour and they advanced a 

method of automatic generation of such descriptions from requirements definitions. A set of 

transformation rules and algorithms were proposed and a prototype tool was constructed for 

the automatic generation of activity lists from requirements definitions when given a set of 

task scenarios. Activity lists are inspired by task analysis techniques (Diaper, 1989) 

developed in Human-Computer Interaction (HCI). Task analysis has been previously used for 

both analysis and design during software development activities, e.g. (O’Neill, Johnson and 

Johnson, 1999).  In this paper, however, while as in HCI an activity list is a prose description 

of a linear sequence of events in temporal order, they here describe what happens primarily 

inside the computer system for a particular scenario. Each event, an activity, is described by 

one sentence in structured natural language that combines all the relevant information 

originally scattered over the requirements definition documents in various diagrams and 

dictionaries. Information irrelevant to the scenario is filtered out. It is this feature of activity 

lists that differs from existing representations of scenarios, such as diagrams (Jin and Zhu, 

1998; Jacobson, et al., 1992) and formal notations (Hsia, et al., 1994). It thus offers a more 

testable description of system's behaviour so that formal review should be performed more 

effectively and efficiently.  

This paper further investigates how to select and generate testing scenarios. Obviously, reuse 

of the scenarios obtained during requirements acquisition is not an ideal solution because 

validation should be independent of the production of requirements models. The paper 

explores various objective approaches to the selection of test scenarios by defining the 

selection criteria and studying the relationships between them and the methods of combining 

them.  

The paper is organised as follows. Section 2 defines the basic notions and notations used in 
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this paper, which include the syntax of activity lists and diagrammatic notations of 

requirements models. Section 3 describes a requirements definition that is then used as an 

example throughout the paper. Section 4 investigates the methods of generating or selecting 

test scenarios. Data flow testing, state transition testing and entity testing methods are 

discussed. A variety of test adequacy criteria are formally defined. Section 5 is a theoretical 

study of the relationship between the testing methods. Subsume relations between adequacy 

criteria are proved. Methods for the combination of adequacy criteria are discussed. Section 6 

briefly reports on the implementation of a prototype test tool and an empirical study of the 

testing methods. Section 7 concludes the paper with a discussion of the advantages and some 

remaining problems of the proposed approach, related work and directions for future 

research.  

2. Basic notions and notations 
This section defines the ideas that the theory and method developed in this paper are based on 

and the notations used. It defines what are the software artefacts under test, what is a test 

case, and what is a test criterion.  

2.1 Requirements definitions 

Requirements definitions are the software artefacts of testing that are addressed by the theory 

and methods described in this paper. In particular, the paper is concerned with the validation 

of requirements definitions as a correct documentation of users’ requirements. For the sake of 

practicality, the testing theory and methods will be based on a standard method of structured 

analysis (Yourdon, 1989a). The particular syntax of the diagrams used is from the 

requirements definition language NDRDL (Xu and Zhu, et al., 1995), and is shown in Figure 

1.  

A requirements definition is a combination of natural language text, Entity Relationship 

Diagrams (ERDs), Data Flow Diagrams (DFDs), State Transition Diagrams (STDs) and their 

associated dictionaries.  

entity

relationship

attribute

multiple relation

unique relation

(a) Entity-Relationship Diagram

Data source or sink Process

Data store Data flow

(b) Data flow Diagram

State State transition

(c) State Transition Diagram  
Figure 1. Diagram notations  
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An ERD provides a data model for a required system by specifying the entities of the system, 

their attributes and their relationships with other entities. A DFD describes the external 

sources of data, the processing of data within the system and the external receivers of the 

processed data. A STD is a directed graph with a start node and at least one exit node. A node 

in the graph represents a state, which must be on a path from the start node to an exit node. In 

a STD, each arc is associated with an event. A path from the start node to the exit node 

represents a sequence of events that can happen in the operation of the software. Only such 

sequences of events are allowed to happen. The events associated with the arcs in a STD can 

either be an invocation of a process or a predicate describing a condition for state transition.  

Dictionaries contain more detailed information concerning the contents of the diagrammatic 

models. There are three dictionaries in a NDRDL requirements definition: data dictionary, 

process dictionary and relationship dictionary. The data dictionary defines the structure and 

usage of data in a required system. An entry in a data dictionary consists of four fields: (a) the 

name of the data to be defined, (b) an informal description of the data in natural language, (c) 

a formal description of the data that gives the type, hence the structure, of the data, and (d) a 

constraint on the value of the data. The data’s type is represented in a manner similar to a 

data type in a programming language. The constraint is in the form of a first order predicate. 

The relationship dictionary defines the relationship between entities. An entry in a 

relationship dictionary contains four fields: (a) the name of the relationship, (b) the entities 

involved the relationship, (c) an informal description of the relationship in natural language, 

and (d) a formal definition of the relationship in the form of a predicate. The process 

dictionary provides definitions of processes. An entry in a process dictionary consists of five 

fields: (a) the name of the process to be defined, (b) the input parameters of the process, (c) 

the output of the process, (d) an informal description of the function of the process, and (e) a 

formal definition of the process in the form of a predicate that relates the output to the input 

with references to data stores and defines the update to data stores. It should be noted that the 

data flows into or from a data store are not considered as input or output of processes because 

data stores are considered as globally accessible and represent a system's internal state.  

Consistency and completeness constraints are imposed on the models and dictionaries by the 

NDRDL language so that different views provide a consistent and internally complete 

requirements definition. Table 1 summarises these constraints; see also (Xu and Zhu, et al., 

1995). 
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Table 1. Completeness and consistency constraints of NDRDL. 

Views Constraints 

DFD/ 

ERD 

The collection of data in a DFD must be the same as the collection of data represented as the entities 

or their attributes in the corresponding ERD.  

The set of processes associated with the arcs in a STD must be the same as the set of processes in the 

corresponding DFD.  
STD/ 

DFD Any sequence of events in a STD (i.e. a path in the STD from the start node) must satisfy the 

permissible condition, i.e. all the input data of an event must be generated by the earlier events in the 

sequence so that them are available to execute the event. 

STD/ 

ERD 

Any data used in a STD must be contained in the collection of data in the ERD.  

ERD/ 

DD 

Every entity in an ERD must be defined in the data dictionary. The attributes of an entity in an ERD 

must be consistent with the definition of attributes of the entity in the data dictionary.  

ERD/ 

RD 

Every relationship in an ERD must be defined in the relationship dictionary with the same 

participant entities.  

DFD/ 

PD 

Every process in a DFD must be defined in the operation dictionary such that the signature of the 

operation must be consistent with the data flowing inwards to, and outwards from, the process node.  

The consistency and completeness constraints given in Table 1 can be automatically checked 

(Jin and Zhu, 1997). In this paper, it is assumed that the requirements definitions under test 

satisfy these constraints.  

2.2 Activity lists as descriptions of system behaviour 

The testing methods studied in this paper are structured testing methods of test adequacy that 

are determined by observations of a putative system's behaviour made during the testing 

process. The formal definition of adequacy criteria is therefore dependent on the 

representation of system behaviour provided by the activity lists.  

Activity lists are inspired by task analysis techniques, which have been developed by the 

ergonomics, human factors and HCI communities over the past three decades, e.g. (Annett, 

and Duncan, 1967). Task analysis techniques are collectively known as "methods of 

collecting, classifying and interpreting data on human performance in work situations … (that) 

reflect(s) both our current understanding of human performance and the design of systems 

that best serve the needs of human users." (p1529, Annett and Stanton, 1998). There are 

many advantages to the task centred view of the world and task analysis has the ability to 

represent a wide variety of types of data from many sources (Johnson, Diaper and Long, 

1984). Existing HCI models of task analysis generally ignore events internal to software 
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systems, thus they are not directly applicable to the analysis of software behaviour. 

In general, tasks are the means by which a worksystem which includes both people and tools, 

such as computers, effect changes on the real world (Long, 1989; 1997). Thus the 

worksystem model of tasks is that it is not people or computers alone that carry out tasks but 

their collaboration that achieves changes in the world. Diaper, McKearney and Hurne’s 

(1998) Pentanalysis Technique is a recently developed task analysis method that, while 

grounded in HCI, is explicitly designed to support systems analysts reasoning about software 

design. It extends the worksystem task model that treats users, components of the system and 

other agents in the environment equally and tasks are considered as interactions between all 

kinds of agents. It is this task model that enables task analysis derived techniques to be 

applied to the validation of software requirements.  

The most common input to HCI task analysis methods is a “task protocol” or “activity list” 

(Diaper, 1989). An activity list consists of a prose description of a task which, for 

convenience, is described as a series of task steps. Usually, each task step contains one 

action, carried out by an agent on one or more objects. For example, the following is a typical 

task step. 
The user types the command on the keyboard. 

What is novel about the use of task analysis in the proposed method in this paper is that the 

actions, agents and objects model the dynamic behaviour of a computer system. In particular, 

the paper is concerned with: (a) how information is exchanged between components of the 

software as well as between components and the agents in its environment; (b) what sequence 

of computations are performed by the components; (c) how the software reacts to stimuli 

from its environment; and (d) how internal states of the software are updated and affect the 

behaviour of the system. Such an analysis involves the generation of scenarios that are then 

used to examine the correctness of the requirements definition. A scenario is a detailed 

description of system behaviour in the form of an activity list.  

An activity list consists of a list of activities that have a structure defined in Extended 

Bachus-Naur Form (EBNF) as follows:  

<Activity>::= <Agent> <Action> <Object> [<Receiver agent>]  

    [<Constraint on the object>]. 

For requirements definitions in structured analysis, there are two types of agents: (a) the 

components of the software system which can be either a process or a data store in the DFD, 

and (b) the agents in a software's environment, which are terminators in a DFD, i.e. external 

data sources and receivers. Each agent in the activity list is represented by its name modified 
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with a keyword to indicate its type: 

<Agent> ::= process <Process name> | terminator <Terminator name> 

| data store <data store name> 

There are five types of activities used in the description of a system's behaviour. These are: 

(a) receiving information from another agent; (b) sending information to another agent; (c) 

obtaining information from the internal state of the software; (d) updating the internal state of 

the software; (e) performing computation by a component of the software. Hence:  

 <Action> ::= sends | receives | updates | obtains | performs  

The object of an action can either be data or a computation. In addition to the name of the 

data, more information about its type is also provided in the activity list. Similarly, for 

computational activities, any additional information about the computation available from the 

requirements definition is also provided in the activity list, which may include detailed 

informal descriptions and formal definitions of the computation.  

 <Object> ::=  data <Data name> of type <Type name> 

    | computation <Informal description> or  <Formal definition> 

For example, the following sentence is an activity. 

Process P sends data x of type real to the terminator display where x>0.

receiver constraintobjectactionagent  
The generation of an activity involves gathering related information from various models and 

dictionaries and placing the information in a structured natural language sentence. The 

following figure gives one of the rules for the generation of different types of activities and 

illustrates how information scattered over various parts of a requirements definition are put 

together to form an item in an activity list. Details of the generation process and a complete 

set of rules can be found in (Zhu, Jin and Diaper, 1999b).  

Name Description Form Constraint

a …… Ta Pred_a A P
a

Process P update data a of type Ta in data store A where a satisfies the condition pred_a

Data Dictionary

  
Figure 2. Generating the activity of updating data in a data store 

2.3 Test cases and adequacy criteria 

As argued in (Zhu, Jin and Diaper, 1999a), a path in a STD from the start node to an exit 
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node can be considered as a task scenario, i.e. as a set of situations with common 

characteristics that may occur in the operation of the system. The events associated with the 

arcs are the sub-tasks performed by the software in a scenario. The state transition conditions, 

which are the predicates associated with the arcs, are the characteristic conditions of the 

scenario. Conversely, since the system is only allowed to perform activities as specified by 

the STD, any task is an instance of a path from the start node to an exit node. Such a scenario 

is considered as one test case for the static testing of a requirements definition. Test cases are 

abstract in the sense that they may contain variables that represent any arbitrary concrete data 

or objects as sets satisfying some constraints. Concrete test cases are obtained by substituting 

actual values for the variables in scenario descriptions.  A distinction between concrete and 

abstract test cases is unnecessary for static testing, however, as it makes no difference to the 

formal definitions of test criteria.  

Test criteria are rules about what should be tested and they play a central role in software 

testing methods (Goodenough and Gerhart, 1975). A test criterion can appear in a number of 

equivalent forms (Zhu, Hall and May, 1997). For example, it can be in the form of a test data 

selection criterion, which is a rule for the selection of test cases. It can also be in the form of a 

test data adequacy criterion, which is a rule to determine whether a set of test cases is 

adequate for testing a piece of software. In this paper, test criteria are defined in the form of 

adequacy criteria. Formally, a test adequacy criterion for testing software requirements can be 

defined as follows.  

Let RE be the set of requirements definitions that consists of a DFD, a STD, an ERD and 

their three associated dictionaries. It is assumed that the diagrams and dictionaries satisfy the 

consistency and completeness constraints given in Table 1. Let STD be the state transition 

diagram of a given requirements definition. We define Path(STD) to be the set of all paths 

from the start node to an exit node in the state transition diagram STD and T=2Path(STD). The 

variable r, lower case letter in italic font, denotes a requirements definition and ranges over 

the set RE.  The variable t, lower case letter in italic font, denotes a set of test cases and 

ranges over T. A test adequacy criterion is a predicate C defined on RE and the set T of test 

suites, i.e., C: RE×T → {true, false}. The expression C(r, t) = true means the test set t is 

adequate for testing r according to adequacy criterion C; otherwise t is inadequate.  

3. An example 
This subsection provides an example that will be used throughout the remainder of the paper 

to illustrate the testing methods.  
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3.1 The requirements definition 

A simplified bank account management system provides the following functions: 

z Enquiry about the balance of an account; 

z Update the balance of an account when a deposit to the account is made; 

z Update the balance of an account when a withdrawal is made. 

Figure 4, Figure 3 and Figure 5 give the ERD, STD and DFD models of the system, 

respectively. The dictionaries are in Appendix A.  

3.2 Scenarios and activity lists 

There are four paths in the STD of the Bank system (Figure 5). Each path corresponds to one 

of the following scenarios for using the system.  

(a) invalid input, i.e. a customer tries to access an account but the information provided is 

invalid; 

(b) withdrawal from an account, i.e. a customer requested a withdrawal from an account with 

valid input data; 

(c) deposit into an account, i.e. a customer requested a deposit into an account with valid 

input data; 

(d) enquiring about an account, i.e. a customer requests an enquiry about an account with 

begin

exit

valid = true
request = enquiry

valid = true
request = deposit

valid = true, request = withdraw
valid = false

enquiry(can, b) deposit(can, amt, b)

withdraw(can, amt, b)

input(din, cn, cid, acc, amt, rqst)

validate(cn, cid, acc, valid)

 
Figure 3. STD of the Bank system 

account

owns

balance_of

customername identity

account
number

amount currencymoney  
Figure 4. ERD of the Bank system 

operator

display

deposit

enquiry

withdraw

databasevalidation

name, identity, acc

acc, amount

valid

balance
acc,
balance

acc, amount

balance

balance

acc, balancebal

bal

input

Input_data

acc

bal

 
Figure 5. DFD of the Bank system 
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valid input.  

The following are the paths in the Bank system STD that correspond to these task scenarios. 
Scenario of invalid input: 

{begin} 
input(din, cn, cid, acn, amt, rqst); 
validate(cn, cid, acn, valid); 
In this case, valid=false; 
{exit} 

 
Scenario of enquiry: 

{begin} 
input(din, cn, cid, acc, amt, rqst); 
validate(cn, cid, acc, valid); 
In this case, valid=true, request = enquiry; 
enquiry(acc, bal); 
{exit} 
 

Scenario of withdraw: 
{begin} 
input(din, cn, cid, acc, amt, rqst); 
validate(cn, cid, acc, valid); 
In this case, valid=true, request = withdraw; 
withdraw(acc, amt, bal); 
{exit} 

 
Scenario of deposit: 

{begin} 
input(din, cn, cid, acc, amt, rqst); 
validate(cn, cid, acc, valid); 
In this case, valid=true, request = deposit; 
deposit(acc, amt, bal); 
{exit} 

The following are the activity lists for the invalid input scenario. Activity lists for other 

scenarios are given in appendix B.  

Activity list for the invalid input scenario: 

{begin} 

Process input receives data din of type INPUT_DATA from terminator operator; 

Process input performs computation input, or formally, “ and(cn=din.name, 

cid=din.iden, acn =din.account, amt=din .amount, rqst=din.request)”; 

Process input sends data cn of type string to process validate; 

Process input sends data cid of type integer to process validate; 

Process input sends data acn of type integer to process validate; 

Process validate receives data cn of type string from the process input; 

Process validate receives data cid of type integer from the process input; 

Process validate receives data acn of type integer from process input; 

Process validate performs “validate if cn of cid owns the account acn according to the 
information stored in the database”, or formally, “∃r∈database. ((acn=r.account) 
∧(cid=r.customer.identity) ∧(cn=r.customer.name) ) ⇒ valid = true;¬∃r∈database. 
((acn=r.account) ∧(cid=r.customer.identity) ∧(cn=r.customer.name) ) ⇒ valid = false
”; 

Process validate sends data valid of type bool to terminator display terminal; 

In this case, valid = false; 

{exit} 

4. Testing methods 
This section explores various ways of selecting test scenarios. Three types of testing methods 

will be discussed and formally defined: data flow testing; state transition testing; and entity 
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testing.  

4.1 Data flow testing 

Data flow testing methods test software requirements according to the information contained 

in the data flow model and tests focus on the data flow between the processes, terminators 

and data stores. A modest requirement of adequate data flow testing is perhaps to test each 

process in the data flow diagram at least once. This is formally defined below as a test 

adequacy criterion called process coverage.  

Definition 1. (Process coverage criterion) 

A test set t is said to be adequate according to the process coverage criterion with respect to 

r's DFD, if for each process P in DFD, there is at least one path p in t such that p contains an 

arc to which an invocation of the process P is associated.  

For example, the path of the invalid input scenario of the Bank system covers processes input 

and validate. It does not cover the processes deposit, withdraw, nor enquiry. The set of paths 

consisting of withdrawal, deposit and enquiry scenarios covers all the processes in the Bank 

system DFD. Hence, the set of paths is adequate according to the process coverage criterion.  

Similarly, we can require a test of software requirements to cover all terminators and data 

stores in the data flow model of software requirements. The adequacy criteria of terminator 

coverage and data store coverage are defined as follows. 

Definition 2. (Terminator coverage criterion and data store coverage criterion) 

A test set t is said to be adequate according to the terminator coverage criterion with respect 

to r's DFD, if for each terminator M in DFD, there is at least one path p in t such that the 

activity list of p contains an activity that receives data from, or sends data to, the terminator 

M.  

A test set t is said to be adequate according to the data store coverage criterion, if for each 

data store R, there is at least one path p in t such that the activity list of p contains at least one 

activity that obtains data from R or updates data in R.  

For example, the test path of the invalid input scenario of the Bank system covers the 

terminators “operator” and “display”. It is adequate according the terminator coverage 

criterion with respect to the Bank system’s DFD.  It does not cover, however, the data store 

“database”.  

A data flow x from process A to process B in r's DFD is covered by a path p in r's STD, if the 

activity list for the path p contains the activities “Process A sending data x of type Tx to 

process B” and “Process B receiving data x of type Tx from process A”.  
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For example, the data flow from input process to validate process in the data flow diagram of 

the Bank system is covered by the path above.  The data flow from input process to enquiry is 

not covered by this path, however, because the activity list only contains the activity 

connected with the process of sending input data to the enquiry process, i.e. it does not 

contain an activity involving the enquiry process receiving the data.  

A data flow x from a terminator M to process A is covered by a path p, if the activity list of p 

contains an activity that process A receives the data x from terminator M. Similarly defined, a 

data flow to a terminator or a data flow from/to a data store is covered by a path according to 

the contents in the activity list of the path.  

Definition 3. (Definition, use, input, output and parameter coverage criteria) 

A set t of test cases is said to be adequate according to the definition coverage, if for all data 

flow d that flow into a data store, there is at least one path p in t such that p covers d. The set t 

is said to be adequate according to the use coverage, if for all data flows d that flow out from 

a data store, there is at least one path p in t such that p covers d. The set t is said to be 

adequate according to the input coverage criterion, if for all data flows d that flow from a 

terminator, there is at least one path p in t such that p covers d. The set t is said to be adequate 

according to the output coverage criterion, if for all data flows d that flow into a terminator, 

there is at least one test case p in t such that p covers d. The set t is adequate according to the 

parameter coverage criterion, if for all data flows d that flow into a process, there is at least 

one path p in t such that p covers d.  

The data flow coverage criterion requires a test suite that covers all data flows in the data 

flow diagram. Formally, this has the following definition.  

Definition 4. (Data flow coverage criterion) 

A test set t is said to be adequate according to the data flow coverage criterion with respect to 

r's DFD, if for all data flows d in DFD, there is at least one path p in t such that p covers d.  

A sequence q=<n1, n2, …, nk> of nodes in a DFD is called a path of data flow if there is a 

data flow from node ni to ni+1, for all i=1, 2,…, k−1, in the DFD. A path of data flow 

represents a process of transferring data from one node to another. To test such propagation 

of information within a system, a test set is required to cover such a path of data flow. Let 

data xi,1, xi,2, …, xi,k be associated to the data flow from ni to ni+1, Txi,j be the type of xi,j 

according to the data dictionary.  

A path p in a STD is said to cover the path q of data flow, if p’s activity list contains a sub-

sequence of activities A1, …, A2, …, Ak−1 such that: 
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(1)  if the data flow from ni to ni+1 is from a process node P to a process node Q, then Ai 

consists of the following activities: 

Process P performs computation … ; 

Process P sends output data xi,1 of type Txi,1 to Process Q; 

Process P sends output data xi,2 of type Txi,2 to Process Q; 

… 

Process P sends output data xi,k of type Txi,k to Process Q; 

Process Q receives data xi,1 of type Txi,2 from Process P; 

Process Q receives data xi,1 of type Txi,2 from Process P; 

… 

Process Q receives data xi,1 of type Txi,2 from Process P; 

Process Q performs computation …; 

(2)  if the data flow from ni to ni+1 is from a process node P to a terminator node M, then Ai 

consists of the following activities: 

Process P performs computation … ; 

Process P sends output data xi,1 of type Txi,1 to terminator M; 

Process P sends output data xi,2 of type Txi,2 to terminator M; 

… 

Process P sends output data xi,k of type Txi,k to terminator M; 

(3)  if the data flow from ni to ni+1 is from a process node P to a data store node R, then Ai 

consists of the following activities: 

Process P performs computation … ; 

Process P updates data xi,1 of type Txi,1 in data store R; 

Process P updates data xi,2 of type Txi,2 in data store R; 

… 

Process P updates data xi,k of type Txi,k in data store R; 

(4)  if the data flow from ni to ni+1 is from a terminator node M to a process node P, then Ai 

consists of the following activities: 

Process P receive input data xi,1 of type Txi,1 from terminator M; 

Process P receives input data xi,2 of type Txi,2 from terminator M; 

… 

Process P receives input data xi,k of type Txi,k from terminator T; 

Process P performs computation … ; 

(5)  if the data flow from ni to ni+1 is from a data store node R to a process node P, then Ai 
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consists of the following activities: 

Process P obtains data xi,1 of type Txi,1 from data store R; 

Process P obtains data xi,2 of type Txi,2 from data store R; 

… 

Process P obtains data xi,k of type Txi,k from data store R; 

Process P performs computation … ; 

For example, the path of the invalid input scenario covers the path of data flow <terminator, 

input, validate, display> in the Bank system DFD.  

A path of data flow is said to be infeasible, if there is no path in the state transition diagram 

that covers the path of data flow. In other words, in the operation of the system such data 

transfer processes cannot happen. Therefore, such a path of data flow cannot be tested. 

Subsequently, the discussion of data flow testing only concerns feasible paths of data flow.  

An elementary data flow path is a path of data flow on which there is no node that occurs 

more than once. A simple data flow path is a path of data flow on which there is no arc that 

occurs more than once.  

Definition 5. (Elementary data flow path coverage and simple data flow coverage criteria) 

A test set t is said to be adequate according to the elementary data flow path coverage 

criterion, if for all elementary data flow paths q in the DFD, there is at least one path p in t 

such that p covers q. The test set t is said to be adequate according to the simple data flow 

path coverage criterion, if for all simple data flow paths q in the DFD, there is at least one 

path p in t such that p covers q. 

Elementary data flow paths and simple data flow paths are the most simple data transfer 

processes. Elementary data flow paths do not contain any cycles, which are sub-paths whose 

start nodes and end nodes are the same. Although simple data flow paths do not contain any 

arc more than once, they may contain cycles. However, any cycle can appear only once in a 

simple path. The cycle once data flow path coverage criterion requires covering all cycles at 

least once.  

Definition 6. (Cycle once data flow path coverage criterion) 

A test set t is said to be adequate according to the cycle once data flow path coverage 

criterion, if for all data flow paths q in which no cycle occurs more than once, there is at least 

one path p in t such that p covers q. 

Adequacy criteria that require testing cycles repeatedly can be defined. However, given that 

the testing is to be performed by human analysts, such repeated cycles are inefficient and 

generally unnecessary. The strongest data flow testing method is the all data flow path 
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coverage criterion. When the data flow diagram contains feasible cycles, it requires an 

adequate test set to cover a very large or infinite number of data flow paths. Therefore, 

adequacy according to the all data flow path coverage criterion may not be practically 

achievable.  

Definition 7. (All data flow path coverage criterion) 

A test set t is said to be adequate according to the all data flow path coverage criterion, if for 

all data flow paths q in the DFD, there is at least one path p in t such that p covers q. 

4.2 State transition testing 

State transition testing methods consider whether a test suite adequately tests a STD. State 

coverage and transition coverage criteria are examples of state transition testing methods. 

The state coverage criterion requires that a test suite should cover all states in the STD. The 

transition coverage criterion requires that the test paths should cover all state transitions in 

the STD. They are formally defined as follows. 

Definition 8. (State coverage criterion and transition coverage criterion) 

A test set t is said to be adequate according to the state coverage criterion, if for all states in 

the STD, there is at least one path p in t such that p contains the state node. A test set t is said 

to be adequate according to the transition coverage criterion, if for all state transitions there is 

at least one path p in t such that p contains the state transition. 

For example, the set of paths consisting of enquiry, deposit and withdrawal scenarios is 

adequate according to the state coverage criterion, but not adequate according to the 

transition coverage criterion. The set of four scenarios given in section 3.2 is adequate 

according to both state coverage and transition coverage criteria.  

A sequence <s1, s2, …, sk> of states in a STD is called a path of control flow, if there is an arc 

from state si to si+1 for all i=1,2,…, k in the STD. The node s1 and sk are called the path’s 

start node and end node, respectively. A path is called a cycle, if its start node and end node 

are the same. A path of control flow is called a simple path, if there is no arc occurring more 

than once in the path, and it starts with the begin node and ends with an exit node. A path of 

control flow is called an elementary path, if there is no node that occurs more than once in 

the path and it starts with the begin node and ends with an exit node. Obviously, an 

elementary path is a simple path. For example, the paths given in section 3.2 are elementary 

paths. A path p in the STD covers a path q=<s1, s2, …, sk> of control flow if the <s1, s2, …, 

sk> is a sub-sequence of nodes on the path p.  

Definition 9. (Elementary and simple control flow path coverage criteria) 

A test set t is said to be adequate according to the elementary control flow path coverage 
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criterion, if for all elementary paths q of control flow in the STD, there is at least one path p 

in t such that p covers q.  

A set t is said to be adequate according to the simple control flow path coverage criterion, if 

for all simple paths q of control flow, there is at least one path p in t such that p covers q.  

Elementary and simple paths correspond to the simplest task scenarios which do not contain 

loops and repeated activities. To test more complicated scenarios, a test set may be required 

to cover all paths in a STD, including those containing cycles of activities.  

Definition 10. (All control flow path coverage criterion) 

A set t is said to be adequate according to the all control flow path coverage criterion, if for 

all paths q of a control flow that starts with the begin node and ends with an exit node, there 

is at least one path p in t such that p covers q.  

For example, the Bank system STD only contains four paths of control flow. Therefore, the 

set of the paths is adequate according to all the control flow path coverage criterion.  

Since a STD that contains cycles may have an infinite number of paths, all control flow path 

coverage testing may be too inefficient to achieve adequacy because it is impractical to cover 

all paths. In fact, repeating a cycle more than once in testing software requirements is 

sometimes unnecessary. Hence, we have the following cycle once criterion.  

Definition 11. (Cycle once control flow path coverage criterion)  

A set t is said to be adequate according to the cycle once control flow path coverage criterion, 

if for each path q of control flow that starts with the begin node, ends with an exit node of the 

diagram and contains no cycle more than once, there is at least one path p in t such that 

covers q.  

When a STD contains a large number of simple and elementary cycles, a great number of test 

cases may be required to satisfy the cycle once control flow path coverage criterion. A 

weaker criterion is given below, which is inspired in McCabe’s cyclomatic test criterion for 

program testing (McCabe, 1983).  

Definition 12. (Complete set of independent paths)  

A set t is said to be adequate according to the complete set of independent paths criterion, if t 

covers a complete set of linear independent paths of the STD.  

Note that, for a state transition diagram of n nodes, a arcs and e exit nodes, a complete set of 

independent paths contains a−n+e+1 paths. For example, there are 9 arcs, 7 states and 1 exit 

node in the STD of the Bank system. Hence, according to the formula, there are 4 

independent control flow paths. In fact, the four paths given in section 3.2 constitute a 

complete set of independent paths. Therefore, it is adequate according to the complete set of 
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independent paths criterion.  

4.3 Entity testing 

Entity testing methods focus on the testing of the entity relationship model of a requirements 

definition. The adequacy of testing is decided by whether the entities and their attributes are 

checked thoroughly. An attribute is said to be covered by a path p, if the activity list of p 

contains data on the attribute. An entity is said to be covered by a path p, if p covers at least 

one of the attributes of the entity.  

Definition 13. (Attribute coverage criterion) 

A set t of test cases is said to be adequate according to the attribute coverage criterion with 

respect to an ERD, if for all attributes b of each entity e in the ERD, there is at least one p in t 

such that p covers b.  

An adequacy criterion weaker than attribute coverage is the entity coverage criterion. 

Definition 14. (Entity coverage criterion) 

A set t is said to be adequate according to the entity coverage criterion with respect to an 

ERD, if for all entities e of the ERD, there is at least one path p in t such that p covers e. 

For example, the path of the invalid input scenario only involves the entity customer and 

account and not the entity money. Hence, it is adequate according to neither the entity 

coverage criterion, nor the attribute coverage criterion. The path of the deposit scenario 

involves all the attributes of all the entities in the ERD. Hence, it is adequate according to 

both criteria.  

5. Analysis and combinations of the testing methods 
This section analyzes the relationships between the testing methods developed in the previous 

section and derives new adequacy criteria by combining existing ones.  

5.1 The subsume relation 

Generally, a test data adequacy criterion A subsumes criterion B, if for all testing, the 

adequacy of a test set according to A implies its adequacy according to B. Here, the software 

artefact under test is a requirements definition. The subsume relation is formally defined as 

follows. 

Definition 15. (Subsume relation) 

Let A, B be two adequacy criteria. A is said to subsume B, if for all requirements definitions r 

and all test sets t for testing r, t satisfies criterion A for testing r implies that t also satisfies B 

for testing r. Formally, ∀r∈RE.∀t∈T.(A(r, t)⇒B(r, t)). 

A basic property of the subsume relation is transitivity, i.e. if A subsumes B and B subsumes 

C, then A also subsumes C.  
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The subsume relation between adequacy criteria is essentially a comparison of the strictness 

of testing methods. In general, while the subsume relation does not guarantee a better fault 

detecting ability (Frankl and Weyuker, 1993), it has been proved that under certain conditions 

the subsume relation does mean better fault detection. For example, when test adequacy 

criteria are only used to decide if a set of test cases is adequate, but not used to generate test 

cases (this is called the posterior testing scenario (Zhu, 1996)), criterion A subsumes 

criterion B implies that testing method A has a higher probability of detecting at least one 

fault and a greater expected number of errors found by testing.  

The following theorem gives a subsume relation between data flow testing methods.  

Theorem 1. The data flow coverage criterion subsumes the data node coverage criterion.  

Proof. By the definition of data flow coverage criterion, if a test set t is adequate according to 

the data flow coverage criterion, it covers all data flows in the DFD. This means it covers all 

arcs in the DFD. Since a DFD must be a connected graph, a node in a DFD must be on at 

least one arc of the diagram. Therefore, the test set t must have covered all the nodes in the 

diagram. Hence, t is also adequate according to the data node coverage criterion. Q.E.D. 

The following theorem gives a subsume relation between entity testing methods. 
Theorem 2. The attribute coverage criterion subsumes the entity coverage criterion. 

Proof. Let a test set t be adequate according to the attribute coverage criterion. By Definition 

13, the test set t covers all attributes in ERD because every entity must have at least one 

attribute in an ERD, so t must also have covered all entities in ERD. Therefore, t is also 

adequate according to the entity coverage criterion. Q.E.D. 

The following two theorems give two subsume relations between state transition testing 

methods. 

Theorem 3. The cycle once control flow path coverage criterion subsumes the transition 

coverage criterion. 

Proof. Let test set t be adequate according to the cycle once control flow path coverage 

criterion. By Definition 11, for all paths q in STD that contain no cycle more than once there 

is a path p in t such that p covers q.  Let x be any arc in STD. Because, in a STD, an arc x 

must be on a path qx from the start node to an exit node that does not contain a cycle more 

than once, there must be a path p that covers the path qx. Therefore, the set t must also cover 

all arcs in STD, hence t is adequate according to transition coverage criterion. Q.E.D. 
Theorem 4. The transition coverage criterion subsumes the state coverage criterion. 

Proof. Let t be adequate according to the transition coverage criterion. By Definition 8, for 

all state transitions s there is at least one path p in t such that p covers s. Let n be any state in 
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STD. Since in a STD, a node must be on a path from the start node to an exit node, every 

node in a STD must be associated to at least one state transition. Let sn be a transition that 

state n is associated with. The adequacy of t according to the transition coverage criterion 

implies that there is a path p in t such that p covers sn. Therefore, by Definition 8, t is also 

adequate according to the state coverage criterion. Q.E.D. 

Subsume relations also hold between testing methods of different types.  
Theorem 5. The transition coverage criterion subsumes the process coverage.  

Proof. Let t be adequate according to the transition coverage criterion. By Definition 8, for 

all transitions s in STD, there is a path p in t such that p covers s. Let P be a process in DFD. 

The consistency and completeness constraints imposed on DFDs and STDs requires that 

every process in a DFD should appear at least once in the STD. Let sP be the transition in 

STD that contains P. The adequacy of t according to the transition coverage criterion implies 

that there is a path p in t such that p covers sP. By Definition 1, the path p covers the process 

P.  Therefore, the test set t is also adequate according to process coverage criterion. Q.E.D. 

Theorem 6. The data flow coverage criterion subsumes the attribute coverage criterion. 

Proof. The consistency and completeness constraints imposed on DFDs and ERDs requires 

that the collection of data in the DFD should be the same as the collection of data represented 

as the entities and their attributes in the ERD. Therefore, if a test set covers all the data flows 

in a DFD, it must also have covered all the attributes in the ERD. Q.E.D. 
Theorem 7. The all control flow path coverage criterion subsumes the all data flow path 

coverage criterion. 

Proof. By Definition 7, the all data flow path coverage criterion only requires that feasible 

data flow paths are covered by testing. Let q be any feasible data flow path. By definition, the 

feasibility of a data flow path implies that there is a control flow path p such that p covers q. 

If a test set t is adequate according to the all control flow path coverage criterion, then by 

Definition 10, there is at least one path in t that covers p. This means q is covered by t. 

Therefore, t is also adequate according to all data flow path coverage criterion. Q.E.D. 

Notice that, although a simple control flow path always covers at least one elementary data 

flow path, a test set that satisfies the elementary data flow path coverage criterion does not 

necessarily satisfy the simple control flow adequacy criterion, because two different simple 

control flow paths may cover the same elementary data flow path. However, if in a STD any 

two different simple control flow paths always have different sequences of events associate to 

the arcs, then, a test set that satisfies the elementary data flow path coverage criterion must 

satisfy the simple control flow paths coverage criterion.  
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More subsume relations will be given in the next subsection.  

5.2 Combinations of test criteria 

Adequacy criteria can be obtained by combining existing ones. This section discusses such 

combination methods and uses them to derive new adequacy criteria to those discussed in the 

previous section and proves that some of the criteria can be defined as combinations of 

others. By doing so, more subsume relations between adequacy criteria are obtained. 
5.2.1 Conjunction 

One of the most useful combination methods is the conjunction of two or more adequacy 

criteria.  

Definition 16. (Conjunctive combination of test criteria) 

Let A, B be two test adequacy criteria. Criterion C is the conjunction of A and B, if a test set t 

is adequate if and only if t satisfies both A and B. 

For example, the data node coverage criterion can be defined as the conjunction of the 

process coverage, terminator coverage and data store coverage criteria. The data flow 

coverage criterion is the conjunction of the definition coverage criterion, use coverage 

criterion, input coverage criterion, output coverage criterion, and parameter coverage 

criterion. 

The conjunction of two adequacy criteria A and B is stronger than the original criteria in the 

sense of the subsume relation between adequacy criteria.  

Lemma 1. Let the adequacy criterion C be the conjunction of adequacy criteria A and B. 

Then, C subsumes A, and C subsumes B. 

Proof. Let C be the conjunction of A and B. By Definition 16, a test set t that satisfies C must 

also satisfy A. This means C subsumes A. Similarly, C subsumes B. Q.E.D. 

By Lemma 1, we have the following theorem about the subsume relations between adequacy 

criteria. 

Theorem 8.  

(1)  Data node coverage criterion subsumes data store coverage, process coverage, and 

terminator coverage criteria; 

(2)  Data flow coverage criterion subsumes definition coverage, use coverage, input 

coverage, output coverage, and parameter coverage. 

Proof. By the definitions of data flow coverage and data node coverage and Lemma 1. Q.E.D. 
5.2.2 Disjunction 

Another useful combination of adequacy criteria is the disjunction of criteria. Before giving a 

formal definition of the notion, an example is presented. Considering the data store coverage 
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criterion, it is defined such that a test set is adequate according to the criterion if all data 

stores in a DFD are covered by the test set, where “a data store is covered if either a data 

flow into the data store is covered or a data flow from the data store is covered”. Such a 

definition consists of two parts, the first defines what need to be covered and the second 

defines what it means by the word "cover". Such a criterion is called a coverage criterion. 

Formally, let criterion A be defined by the expression that “a test set t satisfies A if for all x 

in SA(r), there is a test case p in t such that PA(x, p)”, i.e. A(r, t) ⇔ ∀x∈SA(r). ∃p∈t. (PA(x, 

p)), where PA(x, p) is a predicate, which means that the test case p covers the structure x. 

Such a criterion is called a coverage criterion, and SA and PA are called the structure to be 

covered and the covering method. For the data store coverage criterion, the structure to be 

covered is the set of data stores in the DFD. The covering method is that "either a data flow 

into the data store is covered or a data flow from the data store is covered".  

Now considering the definition coverage and use coverage criteria, obviously they are 

coverage criteria, too. What is more important is that there is a relationship between the data 

store coverage criterion and these two criteria. First, there is a relationship between the 

structures to be covered. Each data flow to be covered by the definition coverage criterion is 

associated with a data store, which is an element of the structure to be covered by the data 

store coverage criterion. A similar relationship exists between the structures to be covered by 

the data store coverage and use coverage criteria. Second, there is also a relationship 

between the covering methods. The definition of the covering method in the data store 

coverage criterion is directly based on the covering methods of the definition coverage and 

use coverage criteria. The covering of a data store requires the existence of an associated 

element in either of the structures to be covered by the definition coverage criterion or the use 

coverage criterion be covered in the sense of the covering methods by these two criteria. 

Such a relationship between data store coverage criterion and the definition and use coverage 

criteria is called a disjunction and can be formally defined as follows.  

Definition 17. (Disjunctive combination of test criteria) 

Let A and B be coverage criteria, SA and SB are the structures to be covered for A and B, and 

PA and PB be the covering methods for A and B respectively. An adequacy criterion C is the 

disjunction of A and B, if C is a structure coverage criterion with SC as the structure to be 

covered and PC as the covering method such that 

(1) ∀x∈SC.(∃a∈SA.FA(a, x) ∨ ∃b∈SB.FB(b, x)), and  

(2) for all path p, ∀x∈SC.(PC(x, p)⇔∃a∈SA.FA(a, x)∧PA(a, p) ∨ ∃b∈SB.FB(b, x)∧PB(b, p)),  
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where FA(a, x) and FB(b, x) are predicates which define the relationship between elements in 

SC and elements in SA and SB, respectively.  

Definition 17 states that, firstly, for all elements x to be covered according to criterion C, 

there is either an element a in SA such that a is associated with x, or there is an element b in 

SB such that b is associated with x. Secondly, an element x in SC is considered as having been 

covered by a test case p according to C, if either the element a in SA associated with x is 

covered according to criterion A, or the element b in SB associated with x is covered 

according to criterion B. Approximately, each element in SC may have two components that 

constitute SA and SB. Criterion A requires adequate test sets covering all components in SA, 

while criterion B requires covering all components in SB. The disjunction of A and B only 

requires an adequate test set covering one of the components for each element in SC, but it 

does not matter which component is covered.  

For example, data store coverage is a disjunction of the definition coverage and use coverage 

criteria. Here, the structure to be covered by definition coverage contains all the data flows 

that flow into a data store. The structure to be covered by use coverage contains all the data 

flows that flow from a data store. The covering method for data store coverage is that “a 

data store is covered if either a data flow into the data store is covered or a data flow from the 

data store is covered”. Similarly, terminator coverage is a disjunction of input coverage and 

output coverage.  

The disjunction of two adequacy criteria is not necessarily subsumed by the original ones.  

Thus, the disjunction of criteria is weaker than the conjunction of the original ones.  

Lemma 2. Let adequacy criteria A and B be two coverage criterion, adequacy criterion C 

being a disjunction of A and B. Then the conjunction of A and B subsumes C. 

Proof. Let A and B be coverage criteria, SA and SB be the structures to be covered for A and B, 

and PA and PB be the covering methods for A and B respectively. Let C' be the conjunction of 

A and B. By Definition 16, C'(r, t) ⇔ A(r, t) ∧ B(r, t).  By the definition of coverage criteria, 

we have that 

A(r, t) ⇔ ∀x∈SA(r). ∃p∈t. (PA(x, p)),  and  B(r, t) ⇔ ∀x∈SB(r). ∃p∈t. (PB(x, p)) 

Thus,   

 C'(r, t) ⇔ (∀x∈SA(r).∃p∈t.(PA(x, p)) ∧∀x∈SB(r).∃p∈t. (PB(x, p))).  (*) 

Let x'∈SC.. By Definition 17, ∃a∈SA.FA(a, x') ∨ ∃b∈SB.FB(b, x'). By (*) and Definition 17, we 

have that 

 C'(r, t) ⇒ ∀x'∈SC. (∃a∈SA.FA(a, x')∧ ∃p∈t. PA(a, p) ∨ ∃b∈SB.FB(b, x')∧∃p∈t.PB(b, p)) 
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 ⇒ ∀x'∈SC.∃p∈t. PC(x', p) 

 ⇒ C(r, t) 

Q.E.D. 
Theorem 9. 

(1)  The conjunction of the definition coverage criterion and the use coverage criterion 

subsumes the data store coverage criterion; 

(2)  The conjunction of the input coverage and output coverage criteria subsumes the 

terminator coverage criterion. 

Proof. By Lemma 2. Q.E.D. 
5.2.3 Reduction 

Reduction is a widely used method to produce a new test criterion from an existing one for 

structure coverage testing in the study of adequacy criteria for testing. The new criterion 

reduces the strength of testing by requiring adequate test sets covering fewer elements. 

Formally, reduction is defined as follows. 

Definition 18. (Reduction of test criterion) 

Let A be a structure coverage criterion with SA as the structure to be covered and PA as the 

covering method. An adequacy criterion B is called a reduction of A, if its covering methods 

is the same as PA, but its structure to be covered is a subset of SA, i.e. SB ⊆ SA. 

The reduction of a test criterion generates a criterion weaker than the original. 

Lemma 3. If B is a reduction of adequacy criterion A, than A subsumes B. 

Proof. By the definition of coverage criteria and Definition 18. Q.E.D. 

The following theorem gives the reduction relationship between data flow testing methods. 

Theorem 10.  

(1)  The all data flow path coverage criterion subsumes the cycle once data flow path 

coverage criterion; 

(2)  The cycle once data flow path coverage criterion subsumes the simple data flow path 

coverage criterion ; 

(3)  The simple data flow path coverage criterion subsumes the elementary data flow path 

coverage criterion ; 

(4)  The simple data flow path coverage criterion subsumes the data flow coverage criterion. 

Proof. By proving that one is a reduction of the other and then by applying Lemma 3. As 

discussed in section 4.1, the set of data flows is a subset of simple data flow paths; the set of 

elementary data flow paths is a subset of simple data flow paths; the set of simple data flow 

paths is a subset of cycle once data flow paths; and the set cycle once data flow paths is a 
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subset of all data flow paths. Q.E.D. 

The following theorems gives the reduction relationship between state transition testing 

methods. 

Theorem 11. 

(1)  The all control flow paths coverage criterion subsumes the cycle once control flow path 

coverage criterion; 

(2)  The cycle once control flow path coverage criterion subsumes the simple control flow 

path coverage criterion ; 

(3)  The simple control flow path coverage criterion subsumes the elementary control flow 

path coverage criterion. 

Proof. Similar to the proof of Theorem 10. Q.E.D. 

Theorem 12. 

(1) The all control flow paths coverage criterion subsumes the complete set of independent 

paths criterion; 

(2) The complete set of independent paths criterion subsumes the all simple paths coverage 

criterion . 

Proof. It is easy to prove (1) by applying Lemma 3. The proof of statement (2) is similar to 

the proof of a theorem in (Jin, Zhu and Hall, 1997). Details are omitted for the sake of space. 

Q.E.D.  

A summary of the subsume relationships between adequacy criteria is given in Figure 6, in 

which nodes are adequacy criteria and arrows are subsume relations. 
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Figure 6. The subsume hierarchy 

6. Tool implementation and empirical studies 
A software tool has been constructed to automatically generate a set of task activity lists 

according to state transition based test criteria, and to measure the adequacy of the test set 

according a set of data flow adequacy criteria. This requirements testing tool has been 

integrated into a requirements analysis support system NDRASS (Xu and Zhu, 1995; Jin and 

Zhu, 1997; Zhu and Jin, 2000). Figure 7 shows the interface of the tool as a part of the 

NDRASS system.  

 
Figure 7. Integration of the testing tools into NDRASS. 

NDRASS tool bar 

Testing tools 

Adequacy criteria 

Cycle once CF
path coverage

All CF path
coverage

All DF path
coverage

Transition
coverage

State
coverage

Complete set of
independent paths

Simple CF
path coverage

Elementary CF
path coverage

Cycle once DF
path coverage

Simple DF
path coverage

Elementary DF
path coverage

Data flow
coverage

Data node
coverage

Process
coverage

Terminator
coverage

Data store
coverage

Output
coverage

Input
coverage

Definition
coverage

Use
coverage

Input & output
coverage

Definition & use
coverage

Parameter
coverage

Attribute
coverage

Entity
coverage

 



Testing Software Requirements via Task Analysis 5/14/01 

-- 29 -- 

The tool shows on the screen the generated test sets, their activity lists and their adequacy 

measurement, see Figure 8.  

 
Figure 8. The display of an activity list on screen. 

The adequacy of various generated state transition test sets are measured according to data 

flow test criteria and displayed as a table, see Figure 9.  

 
Figure 9. Measurement of adequacy according to data flow test criteria. 

A number of case studies have been conducted with the testing tool. Table 2 gives the data 

collected from these case studies. It shows the numbers of the test cases generated by the tool 

for each sample system to satisfy various test criteria. It also gives the complexity of the 

requirements in terms of the number of states, transitions and elementary cycles for each 

sample system. The results from these case studies shows that the testing method proposed in 

this paper is practical in the sense that a reasonable number of activity lists are generated. 

Moreover, the length of these activity lists is also manageable, see Table 3.  
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Table 2. Requirements complexity and the numbers of test cases to satisfy test criteria 

Test criteria Requirements complexity 
Sample 
system State 

coverage 
Transition 
coverage 

Elementary 
path coverage 

Simple path 
coverage 

Complete set of 
independent path  

No. of 
states 

No. of 
transitions 

No. of 
cycles 

Wind     
tunnel 2 2 2 2 2 8 7 0 

Bank 
management 3 4 4 4 4 6 8 0 

Elevator 
controller 4 5 5 5 6 12 16 1 

Travel   
agents 6 6 6 6 7 16 16 1 

Book store 
management 1 1 1 1 4 10 12 3 

Gas burner 
controller  4 6 2 9 14 24 29 6 

Mobile phone 
cellar net  6 10 2 16 26 38 47 11 

    

Table 3. Average length of activity lists to satisfy test criteria 

Test criteria 
Sample system State 

coverage 
Transition 
coverage 

Elementary 
path coverage 

Simple path 
coverage 

Complete set of 
independent path  

Elevator controller 6.75 6 5.6 5.6 6.33 

Travel   agents 6 6 6 6 7 

Wind     tunnel 10 10 10 10 10 

Bank management 17 15 15 15 15 

Book store management 54 54 3 3 20 

Gas burner controller  28.25 21.17 21.11 17.5 24.67 

Mobile phone cellular net  47.5 47.5 18 35.75 41.62 

 

7. Conclusion 
Based on previous work on the application of activity lists to the description of software 

behaviour for requirements validation, this paper explores testing methods for selecting test 

scenarios. Three types of testing methods are investigated. Data flow testing methods select 

test scenario according to the data flow model of requirements definition. State transition 

testing methods are based on the state transition model. Entity testing methods are concerned 

with the entity relationship model. The adequacy criteria for these testing methods fall into an 

almost hierarchical structure of subsume relations, which include relationships between 

different types of testing methods provided that the different models satisfy a set of 
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consistency and completeness constraints. Test adequacy criteria for these testing methods 

are formally defined so that different levels of test strictness can be accurately specified and 

objectively measured.  

7.1 Advantages of the proposed approach 

The proposed approach has the following advantages.  

First, as argued in (Zhu, Jin and Diaper, 1999a; 1999b), descriptions of software behaviour in 

the form of activity lists are more readable than diagrams and their associate dictionaries. 

Each activity list represents a task scenario that may occur in the use of the system. 

Information related to the scenario originally scattered over various diagrams and dictionaries 

are put together in one activity list. Information irrelevant to the scenario is filtered out so 

that they are not presented in the activity list. Two-dimensional diagrams are cast into 

sequences of events in temporal order. Each event is described in structured natural language. 

Such a linear description provides all the details of a system's behaviour specified by the 

requirements definition concerning the information exchanged between components as well 

as agents in the environment, the computations performed and the uses and updates of 

internal states. Therefore, system's behaviour is much more testable when described in the 

form of activity lists than in the form of diagrams and dictionaries.  

Second, this paper shows that various methods of systematically selecting test scenarios can 

be formally defined as test adequacy criteria. These methods form a fairly simple, nearly 

hierarchical structure, and so can be selectively applied to achieve various levels of test 

strictness. This offers a flexible but systematic approach to testing requirements definitions 

because test adequacy criteria provide a means of accurately specifying test requirements and 

objectively measuring test achievement.  

Third, software tools, such as the prototype we have developed, can be implemented to 

automatically generate a set of task scenarios according to user selected adequacy criterion 

and to generate an activity list for each task scenario. Therefore, the cost of generating 

activity lists is negligible in comparison with the cost of examining the behaviour of the 

system. Moreover, as shown by the empirical studies, the number of task scenarios and the 

lengths of activity lists are acceptable for the practical use of the method. 

7.2 Related work and further research 

Since Goodenough and Gerhart (1975) pointed out that the central problem of software 

testing methods is test criteria, a great number of test criteria have been proposed and 

investigated in the literature for program testing (Zhu, Hall and May, 1997), but few 

adequacy criteria have been proposed for testing software requirements. The data flow testing 
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methods proposed in this paper are inspired in the data flow testing methods for testing 

programs, especially the work by Rapps and Weyuker (1985), Frankl and Weyuker (1988), 

Ntafos (1984), and Laski and Korel (1983). The state transition testing methods are similar to 

program control flow testing methods, such as statement coverage, branch coverage and 

various path coverage methods (Myers, 1979). Although a number of state transition testing 

methods can be defined analogously to control flow testing methods, such as level-i path 

testing (Paige, 1978) and various decision condition coverage criteria (Myers, 1979), how 

effective such criteria are for testing software requirements is an open issue and warrants 

further empirical studies and theoretical analysis. The entity testing methods seems less 

mature than the data flow and state transition testing methods. Further development of such 

testing methods might focus on how to test relationships specified in ERDs. 

Although the proposed methods improves the efficiency of static testing of requirements 

definitions by providing more testable descriptions of software behaviour, how effective the 

testing methods are for detecting errors needs further study. Empirical studies of the methods 

in industrial environments are needed to investigate the error detecting ability of activity lists 

with various testing methods.  

A future research topic will involve adapting or extending the proposed approach for other 

software design and testing purposes. There are a number of possible directions for such 

adaptations and extensions. For example, is the method applicable to the testing of software 

designs presented in other formats such as in the object-oriented models? While the syntax of 

activity lists and the transformation rules that generate such activity lists seem more suitable 

for testing functional requirements than non-functional requirements, the question is whether 

or not they can be modified so that other features, such as performance and real time 

requirements, can be effectively tested, provided that such non-functional requirements are 

appropriately represented in requirements definitions. Finally, although the method is 

inspired by HCI’s approach to task analysis, the activity lists generated from the requirements 

definitions focuses on the internal behaviour of the system and hence existing HCI task 

analysis techniques cannot be applied to the analysis of the specified system. The question is 

whether an activity list that contains more information about the user will be closer to that of 

an HCI task analysis. Of course, this requires that enough information about the user's 

behaviour should be contained in the requirements definition.  
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Appendix A. Bank system requirement definition dictionaries 
 

Table A. The data dictionary of the Bank system 

Data name Description Form Constraint 
name the name of a customer String name <> nil 

identity the identity number of a customer Integer  
customer a customer of a bank branch Record  Name: string; 

        Identity: integer  
End 

 

INPUT_DATA the structure of input data Record  name: string; 
        iden: integer; 
        acc: integer; 
        amount: real; 
        request: REQUEST 
end 

 

Account number an account number held in the branch Integer  
REQUEST service request, which can be an enquiry, a 

deposit or a withdraw. 
Enum (enquiry, deposit, 
withdraw) 

 

balance the amount of money left in an account. Real balance ≥ 0 
money the amount of money to be deposited to or 

to be withdrawn from an account 
Record amount: Real; 
      currency: Enum ( $ ) 
End 

amount≥ 0 

database the database used by the branch for storing 
the information about who is a customer, 
which number is an account number and 
who owns an account.  

Set ( Record  
  Customer: customer;    
  Account : account number; 
  Balance: money  End ) 

 

rqst the request of a customer REQUEST  
input_data the input data from the operator INPUT_DATA  

acc account number Integer  
amt amount Real  
din input data from operator INPUT_DATA  
cn customer name String cn<>nil 
cid customer identity number Integer  

valid If the personal information is valid, the 
validation process outputs true as the value 
of valid, otherwise, it outputs false.  

Bool  

 

Table B. The relationship dictionary of the Bank system 

name Entities Description Definition 

owns 
customer, 

account 

Owns(John, 210093) means that John 

owns the account 210093. 

owns(c, ac) ⇔ ∃r∈database. 

((ac=r.account) ∧(c=r.customer) ) 

balance-of 

account, 

money 

Balance-of(210093, 20.50) means that the 

amount of money left in the account 

210093 is $20.50. 

balance_of(ac,b) ⇔ ∃r∈database. 

((ac=r.account) ∧(b=r.balance) ) 
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Table C. The process dictionary of the Bank system 

Name Input Output Description Definition 
input input_data: 

INPUT_DATA 

name:string; 

identity: integer; 

acc: integer; 

amount: real 

translate input_data to the 

name, identity of the 

customer, the the amount 

and the type of request. 

and(name=input_data.name, 

identity=input_data.iden, 

acc = input_data.account, 

amount=input_data.amount, 

request=input_data.request) 

validate name: string; 

identity:   

integer; 

acc: integer; 

valid: Bool validate if the person name 

of identity identity owns the 

account acc according to the 

information stored in the 

database.  

∃r∈database. ((acc=r.account) 

∧(identity=r.customer.identity) 

∧(name=r.customer.name) ) ⇒ 

valid = true; 

¬∃r∈database. ((acc=r.account) 

∧(identity=r.customer.identity) 

∧(name=r.customer.name) ) ⇒ 

valid = false; 

enquiry acc: integer bal: real output the balance bal of  

the account acc. 

balance_of(acc, bal) 

deposit acc: integer; 

amount: real; 

bal: balance deposit the amount of 

money into account acc so 

that the original balance b 

stored in database is updated 

to b' = b + amount, the new 

balance bal is displayed. 

balance_of(acn, b) ⇒ 

(balance_of(acn, b')∧ (b' = 

amt+b)) ^ bal=b’ 

withdraw acn: integer; 

amount: real 

bal: balance withdraw the amount of 

money from account acc 

when the original balance b 

is greater than or equal to 

amount. Then, the balance is 

updated to be b'=b - amount. 

Then, the new balance bal is 

displayed. 

balance_of(acn, b) ∧ (b≥amt) 

⇒ (balance_of(acn, b') ∧  (b' = 

b-amt)) ^ bal=b' 
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Appendix B. Activity Lists for the Bank System example 
Enquiry: 

 {begin} 

Process input receives data din of type INPUT_DATA from terminator operator; 

Process input performs computation input, or formally, "and(cn=din.name, cid=din.iden, 

acn =din.account, amt=din .amount, rqst=din.request)"; 

Process input sends data cn of type string to process validate; 

Process input sends data cid of type integer to process validate; 

Process input sends data acn of type integer to process validate; 

Process input sends data acc of type integer to process enquiry. 

Process validate receives data cn of type string from the process input; 

Process validate receives data cid of type integer from the process input; 

Process validate receives data acn of type integer from process input; 

Process validate performs “validate if cn of cid owns the account acn according to the 
information stored in the database”, or formally, "∃r∈database. ((acn=r.account) 
∧(cid=r.customer.identity) ∧(cn=r.customer.name) ) ⇒ valid = true;¬∃r∈database. 
((acn=r.account) ∧(cid=r.customer.identity) ∧(cn=r.customer.name) ) ⇒ valid = 
false"; 

Process validate sends data valid of type bool to terminator display terminal; 

In this case, valid=true, request = enquiry; 

Process enquiry receives data acc of type integer from process input; 

Process enquiry obtains data b of type real from data store database; 

Process enquiry performs computation "output the balance b of the account acc.", or 

formally, "balance_of(acc,b)"; 

Process enquiry sends data bal of type real to terminator display ternimal; 

{exit} 

Withdrawal: 

 {begin} 

Process input receives data din of type INPUT_DATA from terminator operator; 

Process input performs computation input, or formally, "and(cn=din.name, cid=din.iden, 

acn =din.account, amt=din .amount, rqst=din.request)"; 

Process input sends data cn of type string to process validate; 

Process input sends data cid of type integer to process validate; 

Process input sends data acn of type integer to process validate; 

Process input sends data acc of type integer to process withdraw; 
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Process input sends data amt of type real to process withdraw; 

Process validate receives data cn of type string from the process input; 

Process validate receives data cid of type integer from the process input; 

Process validate receives data acn of type integer from process input; 

Process validate performs "validate if cn of cid owns the account acn according to the 
information stored in the database", or formally, "∃r∈database. ((acn=r.account) 
∧(cid=r.customer.identity) ∧(cn=r.customer.name) ) ⇒ valid = true;¬∃r∈database. 
((acn=r.account) ∧(cid=r.customer.identity) ∧(cn=r.customer.name) ) ⇒ valid = 
false"; 

Process validate sends data valid of type bool to terminator display terminal; 

In this case, valid=true, request = withdraw; 

Process withdraw receives data acc of type integer from process input; 

Process withdraw receives data amt of type real from process input; 

Process withdraw obtains data balance of type real from data store database; 

Process withdraw performs computation "withdraw the amt of money from account acc 

when the original balance b is greater than or equal to amt. Then, the balance is 

updated to be b'=b - amt. Then, the new balance bal is displayed", or formally, 

"balance_of(acc, b) ∧ (b≥amt) ⇒ (balance_of(acc, b') ∧  (b' = b-amt)) ^ bal=b'"; 

Process withdraw updates the data acc of type integer in data store database; 

Process withdraw updates the data balance of type real in data store database; 

Process withdraw sends data bal of type real to terminator display terminal; 

{exit} 

Deposit: 

{begin} 

Process input receives data din of type INPUT_DATA from terminator operator; 

Process input performs computation input, or formally, "and(cn=din.name, cid=din.iden, 

acn =din.account, amt=din .amount, rqst=din.request)"; 

Process input sends data cn of type string to process validate; 

Process input sends data cid of type integer to process validate; 

Process input sends data acn of type integer to process validate; 

Process input sends data acc of type integer to process deposit; 

Process input sends data amt of type real to process deposit; 

Process validate receives data cn of type string from the process input; 

Process validate receives data cid of type integer from the process input; 

Process validate receives data acn of type integer from process input; 
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Process validate performs "validate if cn of cid owns the account acn according to the 
information stored in the database", or formally, "∃r∈database. ((acn=r.account) 
∧(cid=r.customer.identity) ∧(cn=r.customer.name) ) ⇒ valid = true;¬∃r∈database. 
((acn=r.account) ∧(cid=r.customer.identity) ∧(cn=r.customer.name) ) ⇒ valid = 
false"; 

Process validate sends data valid of type bool to terminator display terminal; 

In this case, valid=true, request = deposit; 

Process deposit receives data acc of type integer from process input; 

Process deposit receives data amt of type real from process input; 

Process deposit obtains data balance of type real from data store database; 

Process deposit performs computation "deposit the amount of money into account acc so 

that the original balance b stored in database is updated to b' = b + amount, the new 

balance bal is displayed", or formally, "balance_of(acn, b) ⇒ (balance_of(acn, b')∧ 

(b' = amount+b)) ^ bal=b'"; 

Process deposit update the data acc of type integer in data store database; 

Process deposit update the data balance of type real in data store database; 

Process deposit sends data bal of type real to terminator display ternimal; 

{exit} 
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