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Abstract

The problem of obtaining the maximum a posteriori estimate of a general discrete Markov random
field (i.e., a Markov random field defined using a discrete set of labels) is known to be NP-hard.
However, due to its central importance in many applications, several approximation algorithms have
been proposed in the literature. In this paper, we present an analysis of three such algorithms based
on convex relaxations: (i) LP-S: the linear programming (LP) relaxation proposed by Schlesinger
(1976) for a special case and independently in Chekuri et al. (2001), Koster et al. (1998), and Wain-
wright et al. (2005) for the general case; (ii) QP-RL: the quadratic programming (QP) relaxation of
Ravikumar and Lafferty (2006); and (iii) SOCP-MS: the second order cone programming (SOCP) re-
laxation first proposed by Muramatsu and Suzuki (2003) for two label problems and later extended
by Kumar et al. (2006) for a general label set.

We show that the SOCP-MS and the QP-RL relaxations are equivalent. Furthermore, we prove
that despite the flexibility in the form of the constraints/objective function offered by QP and SOCP,
the LP-S relaxation strictly dominates (i.e., provides a better approximation than) QP-RL and SOCP-
MS. We generalize these results by defining a large class of SOCP (and equivalent QP) relaxations
which is dominated by the LP-S relaxation. Based on these results we propose some novel SOCP

relaxations which define constraints using random variables that form cycles or cliques in the graph-
ical model representation of the random field. Using some examples we show that the new SOCP

relaxations strictly dominate the previous approaches.

Keywords: probabilistic models, MAP estimation, discrete MRF, convex relaxations, linear pro-
gramming, second-order cone programming, quadratic programming, dominating relaxations
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1. Introduction

Discrete random fields are a powerful tool to obtain a probabilistic formulation for various applica-
tions in computer vision and related areas (Boykov et al., 2001; Cohen, 1986). Hence, developing
accurate and efficient algorithms for performing inference on a given discrete random field is of
fundamental importance. In this work, we will focus on the problem of maximum a posteriori
(MAP) estimation. MAP estimation is a key step in obtaining the solutions to many applications
such as stereo, image stitching and segmentation (Szeliski et al., 2006). Furthermore, it is closely
related to many important Combinatorial Optimization problems such as MAXCUT (Goemans and
Williamson, 1995), multi-way cut (Dalhaus et al., 1994), metric labelling (Boykov et al., 2001;
Kleinberg and Tardos, 1999) and 0-extension (Boykov et al., 2001; Karzanov, 1998).

Given data D, a discrete random field models the distribution (i.e., either the joint or the con-
ditional probability) of a labelling for a set of random variables. Each of these variables v =
{v0,v1, · · · ,vn−1} can take a label from a discrete set l = {l0, l1, · · · , lh−1}. A particular labelling
of variables v is specified by a function f whose domain corresponds to the indices of the random
variables and whose range is the index of the label set, that is,

f : {0,1, · · · ,n−1}→ {0,1, · · · ,h−1}.

In other words, random variable va takes label l f (a). For convenience, we assume the model to be a
Markov random field (MRF) while noting that all the results of this paper also apply to conditional
random fields (CRF).

An MRF specifies a neighbourhood relationship E between the random variables, that is, (a,b)∈
E if, and only if, va and vb are neighbouring random variables. Within this framework, the joint
probability of a labelling f given data D is specified as

Pr( f ,D|θ) =
1

Z(θ)
exp(−Q( f ,D;θ)).

Here θ represents the parameters of the MRF and Z(θ) is a normalization constant which ensures
that the probability sums to one (known as the partition function). Assuming a pairwise MRF (i.e.,
an MRF with maximum clique size of 2 according to the neighbourhood relationship E), the energy
Q( f ,D;θ) is given by

Q( f ,D;θ) = ∑
va∈v

θ1
a; f (a) + ∑

(a,b)∈E
θ2

ab; f (a) f (b).

The term θ1
a; f (a) is called a unary potential since its value depends on the labelling of one random

variable at a time. Similarly, θ2
ab; f (a) f (b) is called a pairwise potential as it depends on a pair of

random variables. Note that the assumption of pairwise MRF is not a severe restriction as any MRF

can be converted into an equivalent (i.e., representing the same probability distribution) pairwise
MRF, for example, see Yedidia et al. (2001). For further simplicity of notation, we assume that
θ2

ab; f (a) f (b) = w(a,b)d( f (a), f (b)) where w(a,b) is the weight that indicates the strength of the
pairwise relationship between variables va and vb, with w(a,b) = 0 if (a,b) /∈ E , and d(·, ·) is a
distance function on the labels.1 As will be seen later, this formulation of the pairwise potentials
would allow us to concisely describe our results.

1. The pairwise potentials for any MRF can be represented in the form θ2
ab;i j = w(a,b)d(i, j). This can be achieved by

using a larger set of labels l̂ = {l0;0, · · · , l0;h1 , · · · , ln−1;h1} such that the unary potential of va taking label lb;i is θ1
a;i if
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We note that a subclass of this problem where w(a,b) ≥ 0 and the distance function d(·, ·) is a
semi-metric or a metric has been well-studied in the literature (Boykov et al., 2001; Chekuri et al.,
2001; Kleinberg and Tardos, 1999). However, we will focus on the general MAP estimation problem.
In other words, unless explicitly stated, we do not place any restriction on the form of the unary and
pairwise potentials.

The problem of MAP estimation for a discrete MRF is well known to be NP-hard in general. Since
it plays a central role in several applications, many approximate algorithms have been proposed in
the literature. In this work, we analyze three such algorithms which are based on convex relaxations.
Specifically, we consider: (i) LP-S, the linear programming (LP) relaxation of Chekuri et al. (2001),
Koster et al. (1998), Schlesinger (1976), and Wainwright et al. (2005); (ii) QP-RL, the quadratic
programming (QP) relaxation of Ravikumar and Lafferty (2006); and (iii) SOCP-MS, the second
order cone programming (SOCP) relaxation of Kumar et al. (2006) and Muramatsu and Suzuki
(2003). In order to provide an outline of these relaxations, we formulate the problem of MAP

estimation as an Integer Program (IP).

1.1 Integer Programming Formulation

We define a binary variable vector x of length nh. We denote the element of x at index a · h + i as
xa;i where va ∈ v and li ∈ l. These elements xa;i specify a labelling f such that

xa;i =

{

1 if f (a) = i,
−1 otherwise.

We say that the variable xa;i belongs to variable va since it defines whether the variable va takes the
label li. Let X = xx>. We refer to the (a · h + i,b · h + j)th element of the matrix X as Xab;i j where
va,vb ∈ v and li, l j ∈ l. Clearly the sum of the unary potentials for a labelling specified by x is given
by

∑
va,li

θ1
a;i

(1+ xa;i)

2
.

Similarly the sum of the pairwise potentials for a labelling x is given by

∑
(a,b)∈E ,li,l j

θ2
ab;i j

(1+ xa;i)

2
(1+ xb; j)

2
= ∑

(a,b)∈E ,li,l j

θ2
ab;i j

(1+ xa;i + xb; j +Xab;i j)

4
.

Hence, the following IP finds the labelling with the minimum energy, that is, it is equivalent to the
MAP estimation problem:

IP: x∗ = argminx ∑va,li θ1
a;i

(1+xa;i)
2 +∑(a,b)∈E ,li,l j

θ2
ab;i j

(1+xa;i+xb; j+Xab;i j)
4

s.t. x ∈ {−1,1}nh, (1)

∑li∈l xa;i = 2−h, (2)

X = xx>. (3)

a = b and ∞ otherwise. In other words, a variable va can only take labels from the set {la;0, · · · , la;h−1} since all other
labels will result in an energy value of ∞. The pairwise potential for variables va and vb taking labels la;i and lb; j

respectively can then be represented in the form w(a,b)d(a; i,b; j) where w(a,b) = 1 and d(a; i,b; j) = θ2
ab;i j . Note

that using a larger set of labels l̂ will increase the time complexity of MAP estimation algorithms, but does not affect
the analysis presented in this paper.
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Constraints (1) and (3) specify that the variables x and X are binary such that Xab;i j = xa;ixb; j. We
will refer to them as the integer constraints. Constraint (2), which specifies that each variable
should be assigned only one label, is known as the uniqueness constraint. Note that one uniqueness
constraint is specified for each variable va. Solving the above IP is in general NP-hard. It is therefore
common practice to obtain an approximate solution using convex relaxations. We describe four such
convex relaxations below.

1.2 Linear Programming Relaxation

The LP relaxation, proposed by Schlesinger (1976) for a special case (where the pairwise potentials
specify a hard constraint, that is, they are either 0 or ∞) and independently in Chekuri et al. (2001),
Koster et al. (1998), and Wainwright et al. (2005) for the general case, is given as follows:

LP-S: x∗ = argminx ∑va,li θ1
a;i

(1+xa;i)
2 +∑(a,b)∈E ,li,l j

θ2
ab;i j

(1+xa;i+xb; j+Xab;i j)
4

s.t. x ∈ [−1,1]nh,X ∈ [−1,1]nh×nh,

∑li∈l xa;i = 2−h,

∑l j∈l Xab;i j = (2−h)xa;i, (4)

Xab;i j = Xba; ji, (5)

1+ xa;i + xb; j +Xab;i j ≥ 0. (6)

In the above relaxation, which we call LP-S, only those elements Xab;i j of X are used for which
(a,b) ∈ E and li, l j ∈ l. Unlike the IP, the feasibility region of the above problem is relaxed such
that the variables xa;i and Xab;i j lie in the interval [−1,1]. Further, the constraint (3) is replaced
by Equation (4) which is called the marginalization constraint (Wainwright et al., 2005). One
marginalization constraint is specified for each (a,b) ∈ E and li ∈ l. Constraint (5) specifies that
X is symmetric. Constraint (6) ensures that θ2

ab;i j is multiplied by a number between 0 and 1 in
the objective function. These constraints (5) and (6) are defined for all (a,b) ∈ E and li, l j ∈ l.
The formulation of the LP-S relaxation presented here uses a slightly different notation to the ones
described in Kolmogorov (2006) and Wainwright et al. (2005). However, it can easily be shown
that the two formulations are equivalent by using the variables y and Y instead of x and X such that
ya;i = 1+xa;i

2 ,Yab;i j =
1+xa;i+xb; j+Xab;i j

4 . Throughout this paper, we will make use of the variables x and
X instead of y and Y. As will be seen in the subsequent sections, this would allow us to concisely
describe our results. Note that the above constraints are not exhaustive, that is, it is possible to
specify other constraints for the problem of MAP estimation (e.g., see § 1.3 and 1.5).

1.2.1 PROPERTIES OF THE LP-S RELAXATION

• Since the LP-S relaxation specifies a linear program it can be solved in polynomial time. A
labelling f can then be obtained by rounding the (possibly fractional) solution of the LP-S.

• Using the rounding scheme of Kleinberg and Tardos (1999), the LP-S provides a multiplicative
bound2 of 2 when the pairwise potentials form a Potts model (Chekuri et al., 2001).

2. Consider a set of optimization problems A and a relaxation scheme defined over this set A . In other words, for every
optimization problem A ∈ A , the relaxation scheme provides a relaxation B ∈ B of A. Let eA denote the optimal value
of the optimization problem A. Further, let êA denote the value of the objective function of A at the point obtained
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• Using the rounding scheme of Chekuri et al. (2001), LP-S obtains a multiplicative bound of
2+

√
2 for truncated linear pairwise potentials.

• LP-S provides a multiplicative bound of 1 when the energy function Q(·,D;θ) of the MRF is
submodular (Schlesinger and Flach, 2000) (also see Ishikawa 2003 and Schlesinger and Flach
2006 for the st-MINCUT graph construction for minimizing submodular energy functions).

• The LP-S relaxation provides the same optimal solution for all reparameterizations θ of θ
(Kolmogorov, 2006; Werner, 2007).3

We note here that, although the LP-S relaxation can be solved in polynomial time, the state of
the art Interior Point algorithms can only handle up to a few thousand variables and constraints. In
order to overcome this deficiency several efficient algorithms have been proposed in the literature for
(approximately) solving the Lagrangian dual of LP-S (Kolmogorov, 2006; Komodakis et al., 2007;
Schlesinger and Giginyak, 2007a,b; Wainwright et al., 2005; Werner, 2007). Recently, efficient
methods have also been devised for solving the primal problem directly (Ravikumar et al., 2008).

1.3 Quadratic Programming Relaxation

We now describe the QP relaxation for the MAP estimation IP which was proposed by Ravikumar
and Lafferty (2006). To this end, it would be convenient to reformulate the objective function of the

IP using a vector of unary potentials of length nh (denoted by θ̂1
) and a matrix of pairwise potentials

of size nh× nh (denoted by θ̂2
). The element of the unary potential vector at index (a · h + i) is

defined as
θ̂1

a;i = θ1
a;i − ∑

vc∈v
∑
lk∈l

|θ2
ac;ik|,

where va ∈ v and li ∈ l. The (a · h + i,b · h + j)th element of the pairwise potential matrix θ̂2
is

defined such that

θ̂2
ab;i j =

{

∑vc∈v ∑lk∈l |θ2
ac;ik|, if a = b, i = j,

θ2
ab;i j otherwise,

where va,vb ∈ v and li, l j ∈ l. In other words, the potentials are modified by defining a pairwise
potential θ̂2

aa;ii and subtracting the value of that potential from the corresponding unary potential θ1
a;i.

The advantage of this reformulation is that the matrix θ̂2
is guaranteed to be positive semidefinite,

that is, θ̂2 � 0. This can be seen by observing that for any vector z ∈ R
nh the following holds true:

z>θ̂2
z = ∑

(a,b)∈E
∑

li,l j∈l

(

|θ2
ab;i j|z2

a;i + |θ2
ab;i j|z2

b; j +2θ2
ab;i jza;izb; j

)

,

= ∑
(a,b)∈E

∑
li,l j∈l



|θ2
ab;i j|

(

za;i +
θ2

ab;i j

|θ2
ab;i j|

zb; j

)2


 ,

≥ 0.

by rounding the optimal solution of its relaxation B. The relaxation scheme is said to provide a multiplicative bound
of ρ for the set A if, and only if, the following condition is satisfied: E(êA) ≤ ρeA,∀A ∈ A , where E(·) denotes the
expectation of its argument under the rounding scheme employed.

3. A parameter θ is called a reparameterization of θ (denoted by θ ≡ θ) if and only if Q( f ,D;θ) = Q( f ,D;θ) for all
labellings f .
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Using the fact that for xa;i ∈ {−1,1},
(

1+ xa;i

2

)2

=
1+ xa;i

2
,

it can be shown that the following is equivalent to the MAP estimation problem (Ravikumar and
Lafferty, 2006):

QP-RL: x∗ = argminx
( 1+x

2

)> θ̂1
+
(1+x

2

)> θ̂2 ( 1+x
2

)

, (7)

s.t. ∑li∈l xa;i = 2−h,∀va ∈ v, (8)

x ∈ {−1,1}nh, (9)

where 1 is a vector of appropriate dimensions whose elements are all equal to 1. It is worth noting

that, although θ̂1
and θ̂2

define the same energy for a labelling f as the original parameter θ, they
are not a valid reparameterization of θ since they contain non-zero pairwise potentials of the form
θ̂2

aa;ii. By relaxing the feasibility region of the above problem to x ∈ [−1,1]nh, the resulting QP can

be solved in polynomial time since θ̂2 � 0 (i.e., the relaxation of the QP (7)-(9) is convex). We call
the above relaxation QP-RL. Note that in Ravikumar and Lafferty (2006), the QP-RL relaxation was
described using the variable y = 1+x

2 . However, the above formulation can easily be shown to be
equivalent to the one presented in Ravikumar and Lafferty (2006).

In Ravikumar and Lafferty (2006), the authors proposed a rounding scheme for QP-RL (different
from the ones used in Chekuri et al. 2001 and Kleinberg and Tardos 1999) that provides an additive
bound4 of S

4 for the MAP estimation problem, where

S = ∑
(a,b)∈E

∑
li,l j∈l

|θ2
ab;i j|,

that is, S is the sum of the absolute values of all pairwise potentials (Ravikumar and Lafferty, 2006).
Under their rounding scheme, this bound can be shown to be tight5 using a random field defined over
two random variables which specifies uniform unary potentials and Ising model pairwise potentials
(see Fig. 2(a)). Further, they also proposed an efficient iterative procedure for solving the QP-RL

relaxation approximately. However, unlike LP-S, no multiplicative bounds have been established
for the QP-RL formulation for special cases of the MAP estimation problem.

1.4 Semidefinite Programming Relaxation

The SDP relaxation of the MAP estimation problem replaces the non-convex constraint X = xx> by
the convex semidefinite constraint X− xx> � 0 (de Klerk et al., 2004; Goemans and Williamson,
1995; Lasserre, 2001) which can be expressed as

(

1 x>

x X

)

� 0,

4. A relaxation scheme defined over the set of optimization problems A is said to provide an additive bound of σ for
A if, and only if, the following holds true: E(êA) ≤ eA + σ,∀A ∈ A . Here eA is the optimal value of A and êA is the
value obtained by rounding the solution of B.

5. The multiplicative bound specified by a relaxation scheme defined over the set of optimization problems A is said
to be tight if, and only if, there exists an A ∈ A such that E(êA) = ρeA. Similarly, the additive bound specified by a
relaxation scheme defined over A is said to be tight if, and only if, there exists an A ∈ A such that E(êA) = eA +σ.
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using Schur’s complement (Boyd and Vandenberghe, 2004). Further, like LP-S, it relaxes the integer
constraints by allowing the variables xa;i and Xab;i j to lie in the interval [−1,1] with Xaa;ii = 1 for all
va ∈ v, li ∈ l. Note that the value of Xaa;ii is derived using the fact that Xaa;ii = x2

a;i. Since xa;i can only
take the values −1 or 1 in the MAP estimation IP, it follows that Xaa;ii = 1. The SDP relaxation is a
well-studied approach which provides accurate solutions for the MAP estimation problem (e.g., see
Wainwright and Jordan 2004). However, due to its computational inefficiency, it is not practically
useful for large scale problems with nh > 1000. See however Olsson et al. (2007), Schellewald and
Schnorr (2003) and Torr (2003).

1.5 Second Order Cone Programming Relaxation

We now describe the SOCP relaxation that was proposed by Muramatsu and Suzuki (2003) for the
MAXCUT problem (i.e., MAP estimation with h = 2) and later extended for a general label set (Kumar
et al., 2006). This relaxation, which we call SOCP-MS, is based on the technique of Kim and Kojima
(2000). For completeness we first describe the general technique of Kim and Kojima (2000) and
later show how SOCP-MS can be derived using it.

1.5.1 SOCP RELAXATIONS

In Kim and Kojima (2000), the authors observed that the SDP constraint X−xx> � 0 can be further
relaxed to second order cone (SOC) constraints. Their technique uses the fact that the Frobenius
inner product of two semidefinite matrices is non-negative. For example, consider the inner prod-
uct of a fixed matrix C = UU> � 0 with X− xx> (which, by the SDP constraint, is also positive
semidefinite). The non-negativity of this inner product can be expressed as an SOC constraint as
follows:

C• (X−xx>) ≥ 0,

⇒‖(U)>x‖2 ≤ C•X.

Hence, by using a set of matrices S = {Ck|Ck = Uk(Uk)> � 0,k = 1,2, . . . ,nC}, the SDP constraint
can be further relaxed to nC SOC constraints,that is,

⇒‖(Uk)>x‖2 ≤ Ck •X,k = 1, · · · ,nC.

It can be shown that, for the above set of SOC constraints to be equivalent to the SDP constraint,
nC = ∞. However, in practice, we can only specify a finite set of SOC constraints. Each of these
constraints may involve some or all variables xa;i and Xab;i j. For example, if Ck

ab;i j = 0, then the kth

SOC constraint will not involve Xab;i j (since its coefficient will be 0).

1.5.2 THE SOCP-MS RELAXATION

Consider a pair of neighbouring variables va and vb, that is, (a,b) ∈ E , and a pair of labels li and
l j. These two pairs define the following variables: xa;i, xb; j, Xaa;ii = Xbb; j j = 1 and Xab;i j = Xba; ji

(since X is symmetric). For each such pair of variables and labels, the SOCP-MS relaxation specifies
two SOC constraints which involve only the above variables (Kumar et al., 2006; Muramatsu and
Suzuki, 2003). In order to specify the exact form of these SOC constraints, we need the following
definitions.
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Using the variables va and vb (where (a,b) ∈ E) and labels li and l j, we define the submatrices
x(a,b,i, j) and X(a,b,i, j) of x and X respectively as:

x(a,b,i, j) =

(

xa;i

xb; j

)

,X(a,b,i, j) =

(

Xaa;ii Xab;i j

Xba; ji Xbb; j j

)

.

The SOCP-MS relaxation specifies SOC constraints of the form:

‖(Uk
MS)

>x(a,b,i, j)‖2 ≤ Ck
MS •X(a,b,i, j), (10)

for all pairs of neighbouring variables (a,b)∈E and labels li, l j ∈ l. To this end, it uses the following
two matrices:

C1
MS =

(

1 1
1 1

)

,C2
MS =

(

1 −1
−1 1

)

.

In other words SOCP-MS specifies a total of 2|E |h2 SOC constraints. Note that both the matrices C1
MS

and C2
MS defined above are positive semidefinite, and hence can be written as C1

MS = U1
MS(U

1
MS)

>

and C2
MS = U2

MS(U
2
MS)

> where

U1
MS =

(

0 1
0 1

)

and U2
MS =

(

0 −1
0 1

)

,

Substituting these matrices in inequality (10) we see that the constraints defined by the SOCP-MS

relaxation are given by

‖(U1
MS)

>x(a,b,i, j)‖2 ≤ C1
MS •X(a,b,i, j),

‖(U2
MS)

>x(a,b,i, j)‖2 ≤ C2
MS •X(a,b,i, j),

⇒
∣

∣

∣

∣

∣

∣

∣

∣

(

0 0
1 1

)(

xa;i

xb; j

)∣

∣

∣

∣

∣

∣

∣

∣

2

=

(

1 1
1 1

)

•
(

Xaa;ii Xab;i j

Xba; ji Xbb; j j

)

,

∣

∣

∣

∣

∣

∣

∣

∣

(

0 0
−1 1

)(

xa;i

xb; j

)∣

∣

∣

∣

∣

∣

∣

∣

2

=

(

1 −1
−1 1

)

•
(

Xaa;ii Xab;i j

Xba; ji Xbb; j j

)

,

⇒ (xa;i + xb; j)
2 ≤ Xaa;ii +Xbb; j j +Xab;i j +Xba; ji,

(xa;i − xb; j)
2 ≤ Xaa;ii +Xbb; j j −Xab;i j −Xba; ji,

⇒ (xa;i + xb; j)
2 ≤ 2+2Xab;i j,

(xa;i − xb; j)
2 ≤ 2−2Xab;i j.

The last expression is obtained using the fact that X is symmetric and Xaa;ii = 1, for all va ∈ v and
li ∈ l. Hence, in the SOCP-MS formulation, the MAP estimation IP is relaxed to

SOCP-MS: x∗ = argminx ∑va,li θ1
a;i

(1+xa;i)
2 +∑(a,b)∈E ,li,l j

θ2
ab;i j

(1+xa;i+xb; j+Xab;i j)
4

s.t. x ∈ [−1,1]nh,X ∈ [−1,1]nh×nh,

∑li∈l xa;i = 2−h,

(xa;i − xb; j)
2 ≤ 2−2Xab;i j, (11)

(xa;i + xb; j)
2 ≤ 2+2Xab;i j, (12)

Xab;i j = Xba; ji. (13)
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We refer the reader to Kumar et al. (2006) and Muramatsu and Suzuki (2003) for details. The
SOCP-MS relaxation yields the supremum and infimum for the elements of the matrix X using
constraints (11) and (12) respectively, that is,

(xa;i + xb; j)
2

2
−1 ≤ Xab;i j ≤ 1− (xa;i − xb; j)

2

2
.

These constraints are specified for all (a,b) ∈ E and li, l j ∈ l. When the objective function of SOCP-
MS is minimized, one of the two inequalities would be satisfied as an equality. This can be proved
by assuming that the value for the vector x has been fixed. Hence, the elements of the matrix X
should take values such that it minimizes the objective function subject to the constraints (11) and
(12). Clearly, the objective function would be minimized when Xab;i j equals either its supremum or
infimum value, depending on the sign of the corresponding pairwise potential θ2

ab;i j, that is,

Xab;i j =

{

(xa;i+xb; j)
2

2 −1 if θ2
ab;i j > 0,

1− (xa;i−xb; j)
2

2 otherwise.

Similar to the LP-S and QP-RL relaxations defined above, the SOCP-MS relaxation can also be solved
in polynomial time. To the best our knowledge, no bounds have been established for the SOCP-MS

relaxation in earlier work. Our recent work (Kumar and Torr, 2008) provides an efficient approach
for solving general SOCP relaxations of the MAP estimation problem for discrete MRF.

2. Comparing Relaxations

In order to compare the relaxations described above, we require the following definitions. We say
that a relaxation A dominates (Chekuri et al., 2001) the relaxation B (alternatively, B is dominated
by A) if and only if

min
(x,X)∈F (A)

e(x,X;θ) ≥ min
(x,X)∈F (B)

e(x,X;θ),∀θ,

where F (A) and F (B) are the feasibility regions of the relaxations A and B respectively. The
term e(x,X;θ) denotes the value of the objective function at (x,X) (i.e., the energy of the possibly
fractional labelling (x,X)) for the MAP estimation problem defined over the MRF with parameter θ.
Thus the optimal value of the dominating relaxation A is always greater than or equal to the optimal
value of relaxation B. We note here that the concept of domination has been used previously by
Chekuri et al. (2001) (to compare LP-S with the linear programming relaxation of Kleinberg and
Tardos 1999).

Relaxations A and B are said to be equivalent if A dominates B and B dominates A, that is, their
optimal values are equal to each other for all MRFs. A relaxation A is said to strictly dominate
relaxation B if A dominates B but B does not dominate A. In other words there exists at least one
MRF with parameter θ such that

min
(x,X)∈F (A)

e(x,X;θ) > min
(x,X)∈F (B)

e(x,X;θ).

Note that, by definition, the optimal value of any relaxation would always be less than or equal to
the energy of the optimal (i.e., the MAP) labelling. Hence, the optimal value of a strictly dominating
relaxation A is closer to the optimal value of the MAP estimation IP compared to that of relaxation
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B. In other words, A provides a tighter lower bound for MAP estimation than B and, in that sense,
is a better relaxation than B. It is worth noting that the concept of domination (or strict domination)
does not apply to the final solutions obtained by rounding the possibly fractional solutions of the
relaxation. In other words, it is possible for a relaxation B which is strictly dominated by a relaxation
A to provide a better final (integer) solution than A. However, the concept of domination provides
an intuitive measure for comparing relaxations. One may also argue that if a dominating relaxation
provides worse final solutions, then the deficiency of the method may be rooted in the rounding
technique used.

We now describe two special cases of domination which are used extensively in the remainder
of this paper.

Case I: Consider two relaxations A and B which share a common objective function. For ex-
ample, the objective functions of the LP-S and the SOCP-MS relaxations described in the previous
section have the same form. Further, let A and B differ in the constraints that they specify such that
F (A) ⊆ F (B), that is, the feasibility region of A is a subset of the feasibility region of B.

Given two such relaxations, we claim that A dominates B. This can be proved by contradiction:
assume that A does not dominate B then, by definition of domination, there exists at least one
parameter θ for which B provides a greater value of the objective function than A. Let an optimal
solution of A be (xA,XA). Similarly, let (xB,XB) be an optimal solution of B. By our assumption,
the following holds true:

e(xA,XA;θ) < e(xB,XB;θ). (14)

However, since F (A) ⊆ F (B) it follows that (xA,XA) ∈ F (B). Hence, from Equation (14), we see
that (xB,XB) cannot be an optimal solution of B. This proves our claim.

We can also consider a case where F (A) ⊂ F (B), that is, the feasibility region of A is a strict
subset of the feasibility region of B. Using the above argument we see that A dominates B. Further,
assume that there exists a parameter θ such that the intersection of the set of all optimal solutions of
A and the set of all optimal solutions of B is null. In other words if (xB,XB) is an optimal solution
of B then (xB,XB) /∈ F (A). Clearly, if such a parameter θ exists then A strictly dominates B.

Note that the converse is not true, that is, if A dominates (or strictly dominates) B it does not
necessarily imply that F (A)⊆ F (B) (or F (A)⊂ F (B)). In other words, the concept of domination
is related to the value of the objective function and not to the feasibility region. In Section 5, we
will consider some examples of relaxations which can be related through the concept of domination
despite the fact that their feasibility regions are not subsets (or supersets) of each other.

Case II: Consider two relaxations A and B such that they share a common objective function.
Further, let the constraints of B be a subset of the constraints of A. We claim that A dominates B.
This follows from the fact that F (A) ⊆ F (B) and the argument used in Case I above.

2.1 Our Results

We prove that LP-S strictly dominates SOCP-MS (see Section 3). Further, in Section 4, we show that
QP-RL is equivalent to SOCP-MS. This implies that LP-S strictly dominates the QP-RL relaxation.
In Section 5 we generalize the above results by proving that a large class of SOCP (and equivalent
QP) relaxations is dominated by LP-S. Based on these results, we propose a novel set of constraints
which result in SOCP relaxations that dominate LP-S, QP-RL and SOCP-MS. These relaxations in-
troduce SOC constraints on cycles and cliques formed by the neighbourhood relationship of the
MRF.
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A preliminary version of this article has appeared as Kumar et al. (2007).

3. LP-S vs. SOCP-MS

We now show that for the MAP estimation problem the linear constraints of LP-S, that is,

x ∈ [−1,1]nh,X ∈ [−1,1]nh×nh, (15)

∑li∈l xa;i = 2−h, (16)

∑l j∈l Xab;i j = (2−h)xa;i, (17)

Xab;i j = Xba; ji, (18)

1+ xa;i + xb; j +Xab;i j ≥ 0. (19)

are stronger than the SOCP-MS constraints, that is,

x ∈ [−1,1]nh,X ∈ [−1,1]nh×nh,

∑li∈l xa;i = 2−h,

(xa;i − xb; j)
2 ≤ 2−2Xab;i j, (20)

(xa;i + xb; j)
2 ≤ 2+2Xab;i j, (21)

Xab;i j = Xba; ji.

In other words the feasibility region of LP-S is a strict subset of the feasibility region of SOCP-MS

(i.e., F (LP-S) ⊂ F (SOCP-MS)). This in turn would allow us to prove the following Theorem.
Theorem 1: The LP-S relaxation strictly dominates the SOCP-MS relaxation.
Proof: The LP-S and the SOCP-MS relaxations differ only in the way they relax the non-convex

constraint X = xx>. While LP-S relaxes X = xx> using the marginalization constraint (17), SOCP-
MS relaxes it to constraints (20) and (21). The SOCP-MS constraints provide the supremum and
infimum of Xab;i j as

(xa;i + xb; j)
2

2
−1 ≤ Xab;i j ≤ 1− (xa;i − xb; j)

2

2
.

Consider a pair of neighbouring variables va and vb and a pair of labels li and l j. Recall that SOCP-
MS specifies the constraints (20) and (21) for all such pairs of random variables and labels, that is,
for all xa;i,xb; j,Xab;i j such that (a,b) ∈ E and li, l j ∈ l. In order to prove this Theorem we use the
following two Lemmas.

Lemma 3.1: If xa;i, xb; j and Xab;i j satisfy the LP-S constraints, that is, constraints (15)-(19), then

|xa;i − xb; j| ≤ 1−Xab;i j.

The above result holds true for all (a,b) ∈ E and li, l j ∈ l.
Proof: From the LP-S constraints, we get

1+ xa;i

2
= ∑

lk∈l

1+ xa;i + xb;k +Xab;ik

4
,

1+ xb; j

2
= ∑

lk∈l

1+ xa;k + xb; j +Xab;k j

4
. (22)
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Therefore,

|xa;i − xb; j| = 2
∣

∣

∣

1+xa;i
2 − 1+xb; j

2

∣

∣

∣
,

= 2
∣

∣

∣

(

1+xa;i
2 − 1+xa;i+xb; j+Xab;i j

4

)

−
(

1+xb; j

2 − 1+xa;i+xb; j+Xab;i j

4

)∣

∣

∣ ,

≤ 2
(

1+xa;i
2 − 1+xa;i+xb; j+Xab;i j

4

)

+2
(

1+xb; j

2 − 1+xa;i+xb; j+Xab;i j

4

)

,

= 1−Xab;i j.

Note that the inequality holds since both the expressions in the parentheses, that is,
(

1+ xa;i

2
− 1+ xa;i + xb; j +Xab;i j

4

)

,

(

1+ xb; j

2
− 1+ xa;i + xb; j +Xab;i j

4

)

,

are non-negative, as follows from equations (19) and (22).
Using the above Lemma, we get

(xa;i − xb; j)
2 ≤ (1−Xab;i j)(1−Xab;i j), (23)

⇒ (xa;i − xb; j)
2 ≤ 2(1−Xab;i j), (24)

⇒ (xa;i − xb; j)
2 ≤ 2−2Xab;i j. (25)

Inequality (24) is obtained using the fact that −1 ≤ Xab;i j ≤ 1 and hence, 1−Xab;i j ≤ 2. Using
inequality (23), we see that the necessary condition for the equality to hold true is (1−Xab;i j)(1−
Xab;i j) = 2− 2Xab;i j, that is, Xab;i j = −1. Note that inequality (25) is equivalent to the SOCP-MS

constraint (20). Thus LP-S provides a smaller supremum of Xab;i j when Xab;i j > −1.
Lemma 3.2: If xa;i, xb; j and Xab;i j satisfy the LP-S constraints then

|xa;i + xb; j| ≤ 1+Xab;i j.

This holds true for all (a,b) ∈ E and li, l j ∈ l.
Proof: According to constraint (19),

−(xa;i + xb; j) ≤ 1+Xab;i j. (26)

Using Lemma 3.1, we get the following set of inequalities:

|xa;i − xb;k| ≤ 1−Xab;ik, lk ∈ l,k 6= j.

Adding the above set of inequalities, we get

∑lk∈l,k 6= j |xa;i − xb; j| ≤ ∑lk∈l,k 6= j(1−Xab;ik),

⇒ ∑lk∈l,k 6= j(xa;i − xb;k) ≤ ∑lk∈l,k 6= j(1−Xab;ik),

⇒ (h−1)xa;i −∑lk∈l,k 6= j xb;k ≤ (h−1)−∑lk∈l,k 6= j Xab;ik,

⇒ (h−1)xa;i +(h−2)+ xb; j ≤ (h−1)+(h−2)xa;i +Xab;i j.

The last step is obtained using constraints (16) and (17), that is,

∑
lk∈l

xb;k = (2−h), ∑
lk∈l

Xab;ik = (2−h)xa;i.
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Rearranging the terms, we get
(xa;i + xb; j) ≤ 1+Xab;i j. (27)

Thus, according to inequalities (26) and (27)

|xa;i + xb; j| ≤ 1+Xab;i j.

Using the above Lemma, we obtain

(xa;i + xb; j)
2 ≤ (1+Xab;i j)(1+Xab;i j),

⇒ (xa;i + xb; j)
2 ≤ 2+2Xab;i j.

where the necessary condition for the equality to hold true is 1+Xab;i j = 2 (i.e., Xab;i j = 1). Note that
the above constraint is equivalent to the SOCP-MS constraint (21). Together with inequality (25),
this proves that the LP-S relaxation provides smaller supremum and larger infimum of the elements
of the matrix X than the SOCP-MS relaxation. Thus, F (LP-S) ⊂ F (SOCP-MS).

One can also construct a parameter θ for which the set of all optimal solutions of SOCP-MS do
not lie in the feasibility region of LP-S. In other words the optimal solutions of SOCP-MS belong to
the non-empty set F (SOCP-MS)−F (LP-S), for example, see Fig. 1. Using the argument of Case I
in Section 2, this implies that LP-S strictly dominates SOCP-MS.

Note that the above Theorem does not apply to the variation of SOCP-MS described in Kumar
et al. (2006) and Muramatsu and Suzuki (2003) which include triangular inequalities (Chopra and
Rao, 1993). However, since triangular inequalities are linear constraints, LP-S can be extended to
include them. The resulting LP relaxation would strictly dominate the SOCP-MS relaxation with
triangular inequalities.

4. QP-RL vs. SOCP-MS

We now prove that QP-RL and SOCP-MS are equivalent (i.e., their optimal values are equal for MAP

estimation problems defined over all MRFs). Specifically, we consider a vector x which lies in the
feasibility regions of the QP-RL and SOCP-MS relaxations, that is, x ∈ [−1,1]nh. For this vector, we
show that the values of the objective functions of the QP-RL and SOCP-MS relaxations are equal.
This would imply that if x∗ is an optimal solution of QP-RL for some MRF with parameter θ then
there exists an optimal solution (x∗,X∗) of the SOCP-MS relaxation. Further, if eQ and eS are the
optimal values of the objective functions obtained using the QP-RL and SOCP-MS relaxation, then
eQ = eS.

Theorem 2: The QP-RL relaxation and the SOCP-MS relaxation are equivalent.
Proof: Recall that the QP-RL relaxation is defined as follows:

QP-RL: x∗ = argminx
( 1+x

2

)> θ̂1
+
(1+x

2

)> θ̂2 ( 1+x
2

)

,

s.t. ∑li∈l xa;i = 2−h,∀va ∈ v,

x ∈ {−1,1}nh,

where the unary potential vector θ̂1
and the pairwise potential matrix θ̂2 � 0 are defined as

θ̂1
a;i = θ1

a;i − ∑
vc∈v

∑
lk∈l

|θ2
ac;ik|, (28)
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(a) (b) (c)

Figure 1: (a) An example MRF defined using two neighbouring random variables. Note that the
observed nodes are not shown for the sake of clarity of the image. Each random variable
can take one of two labels, represented by the branches (i.e., the horizontal lines) of the
trellises (i.e., the vertical lines) on top of the variables. The value of the unary potential
θ1

a;i is shown next to the ith branch of the trellis on top of va. For example, θ1
a;0 = 10

(shown next to the lower branch of the trellis on top of va) and θ1
b;1 = 3 (shown next to

the upper branch of the trellis on top of vb). The pairwise potential θ2
ab;i j is shown next to

the connection between the ith and jth branches of the trellises on top of va and vb respec-
tively. For example, θ2

ab;00 = −10 (shown next to the bottom-most connection between
the two trellises) and θ2

ab;01 = −5 (shown next to the diagonal connection between the
two trellises). (b) The optimal solution obtained using the LP-S relaxation. The value of
xa;i is shown next to the ith branch of the trellis on top of va. Similarly, the value of Xab;i j

is shown next to the connection between the ith and jth branches of the trellises on top
of va and vb respectively. Note that the value of the objective function for the optimal
solution is 6. (c) A feasible solution of the SOCP-MS relaxation which does not belong
to the feasibility region of LP-S and has an objective function value of 2. It follows that
the optimal solution of SOCP-MS would lie in F (SOCP-MS)−F (LP-S) and have a value
of at most 2. Together with Lemmas 3.1 and 3.2, this proves that LP-S strictly dominates
SOCP-MS.

θ̂2
ab;i j =

{

∑vc∈v ∑lk∈l |θ2
ac;ik|, if a = b, i = j,

θ2
ab;i j otherwise.

(29)

Here, the terms θ1
a;i and θ2

ac;ik are the (original) unary potentials and pairwise potentials for the given
MRF. Consider a feasible solution x of the QP-RL and the SOCP-MS relaxations. Further, let X be
the solution obtained when minimizing the objective function of the SOCP-MS relaxation whilst
keeping x fixed. We prove that the value of the objective functions for both relaxations at the above
feasible solution is the same by equating the coefficient of θ1

a;i and θ2
ab;i j for all va ∈ v, (a,b) ∈ E

and li, l j ∈ l in both formulations. Using Equation (28), we see that θ1
a;i is multiplied by 1+xa;i

2 in the

objective function of the QP-RL. Similarly, θ1
a;i is multiplied by 1+xa;i

2 in the SOCP-MS relaxation.
Therefore the coefficients of θ1

a;i in both relaxations are equal for all va ∈ v and li ∈ l.
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We now consider the pairwise potentials, that is, θ2
ab;i j and show that their coefficients are the

same when obtaining the minimum of the objective function. We consider the following two cases.
Case I: Let θ2

ab;i j = θ2
ba; ji ≥ 0. Using Equation (29) we see that, in the QP-RL relaxation, θ2

ab;i j +

θ2
ba; ji is multiplied by the following term:

(

1+ xa;i

2

)2

+

(

1+ xb; j

2

)2

+2

(

1+ xa;i

2

)(

1+ xb; j

2

)

− 1+ xa;i

2
− 1+ xb; j

2
. (30)

In the case of SOCP-MS relaxation, since θ2
ab;i j ≥ 0, the minimum of the objective function is ob-

tained by using the minimum value that Xab;i j would take given the SOC constraints. Since X is
symmetric, we see that θ2

ab;i j +θ2
ba; ji is multiplied by the following term:

1+xa;i+xb; j+inf{Xab;i j}
2

=
1+xa;i+xb; j+(xa;i+xb; j)

2/2−1
2 , (31)

where the infimum of Xab;i j is defined by constraint (21) in the SOCP-MS relaxation. It can easily be
verified that the terms (30) and (31) are equal.

Case II: Now consider the case where θ2
ab;i j = θ2

ba; ji < 0. In the QP-RL relaxation, the term

θ2
ab;i j +θ2

ba; ji is multiplied by

1+ xa;i

2
+

1+ xb; j

2
+2

(

1+ xa;i

2

)(

1+ xb; j

2

)

−
(

1+ xa;i

2

)2

−
(

1+ xb; j

2

)2

. (32)

In order to obtain the minimum of the objective function, the SOCP-MS relaxation uses the maximum
value that Xab;i j would take given the SOC constraints. Thus, θ2

ab;i j +θ2
ba; ji is multiplied by

1+xa;i+xb; j+sup{Xab;i j}
2

=
1+xa;i+xb; j+1−(xa;i−xb; j)

2/2
2 , (33)

where the supremum of Xab;i j is defined by constraint (20). Again, the terms (32) and (33) can be
shown to be equivalent.

Theorems 1 and 2 prove that the LP-S relaxation strictly dominates the QP-RL and SOCP-MS

relaxations. A natural question that now arises is whether the additive bound of QP-RL (proved
by Ravikumar and Lafferty 2006) is applicable to the LP-S and SOCP-MS relaxations. Our next
Theorem answers this question in an affirmative. To this end, we use the rounding scheme proposed
by Ravikumar and Lafferty (2006) to obtain the labelling f for all the random variables of the given
MRF. This rounding scheme is summarized below:

• Pick a variable va which has not been assigned a label.

• Assign the label li to va (i.e., f(a) = i) with probability 1+xa;i
2 .

• Continue till all variables have been assigned a label.

Recall that ∑h−1
i=0

1+xa;i
2 = 1 for all va ∈ v. Hence, once va is picked it is guaranteed to be assigned a

label. In other words the above rounding scheme terminates after n = |v| steps. To the best of our

85



KUMAR, KOLMOGOROV AND TORR

knowledge, this additive bound was previously known only for the QP-RL relaxation (Ravikumar
and Lafferty, 2006).

Theorem 3: For the above rounding scheme, LP-S and SOCP-MS provide the same additive
bound as the QP-RL relaxation of Ravikumar and Lafferty (2006), that is, S

4 where
S = ∑(a,b)∈E ∑li,l j∈l |θ2

ab;i j| (i.e., the sum of the absolute values of all pairwise potentials). Fur-
thermore, this bound is tight.

Proof: The QP-RL and SOCP-MS relaxations are equivalent. Thus the above Theorem holds
true for SOCP-MS. We now consider the LP-S relaxation (Chekuri et al., 2001; Koster et al., 1998;
Schlesinger, 1976; Wainwright et al., 2005). We denote the energy of the optimal labelling as e∗.
Recall that eL denotes the optimal value of the LP-S which is obtained using possibly fractional
variables (x∗,X∗). Clearly, eL ≤ e∗. The energy of the labelling x̂, obtained after rounding the
solution of the LP-S relaxation, is represented by the term êL,

Using the above notation, we now show that the LP-S relaxation provides an additive bound of
S
4 for the above rounding scheme. We first consider the unary potentials and observe that

E

(

θ1
a;i

(

1+ x̂a;i

2

))

= θ1
a;i

(

1+ x∗a;i

2

)

,

where E(·) denotes the expectation of its argument under the above rounding scheme. Similarly, for
the pairwise potentials,

E

(

θ2
ab;i j

(

1+ x̂a;i

2

)(

1+ x̂b; j

2

))

= θ2
ab;i j

(

1+ x∗a;i + x∗b;i j + x∗a;ix
∗
b; j

4

)

.

We analyze the following two cases:
(i) θ2

ab;i j ≥ 0: Using the fact that X∗
ab;i j ≥ |x∗a;i + x∗b; j|−1 (see Lemma 3.2), we get

1+ x∗a;i + x∗b; j + x∗a;ix
∗
b; j − (1+ x∗a;i + x∗b; j +X∗

ab;i j)

= x∗a;ix
∗
b; j −X∗

ab;i j

≤ x∗a;ix
∗
b; j +1−|x∗a;i + x∗b; j|

≤ 1,

where the equality holds when x∗a;i = x∗b; j = 0. Therefore,

E

(

θ2
ab;i j

(

1+ x̂a;i

2

)(

1+ x̂b; j

2

))

≤ θ2
ab;i j

(1+ x∗a;i + x∗b;i j +X∗
ab;i j)

4
+

|θ2
ab;i j|
4

.

(ii) θ2
ab;i j < 0: Using the fact that X∗

ab;i j ≤ 1−|x∗a;i − x∗b; j| (see Lemma 3.1), we get

1+ x∗a;i + x∗b; j + x∗a;ix
∗
b; j − (1+ x∗a;i + x∗b; j +X∗

ab;i j)

≥ x∗a;ix
∗
b; j −1+ |x∗a;i − x∗b; j|

≥ −1,

where the equality holds when x∗a;i = x∗b; j = 0. Therefore,

E

(

θ2
ab;i j

(

1+ x̂a;i

2

)(

1+ x̂b; j

2

))

≤ θ2
ab;i j

(1+ x∗a;i + x∗b;i j +X∗
ab;i j)

4
+

|θ2
ab;i j|
4

.
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Summing the expectation of the unary and pairwise potentials for all va ∈ v, (a,b) ∈ E and li, l j ∈ l,
we get

e∗ ≤ E(êL) ≤ eL +
S
4
≤ e∗ +

S
4
,

which proves the additive bound for LP-S.

(a) (b)

Figure 2: An example MRF for proving the tightness of the LP-S additive bound of S
4 . (a) The MRF

consisting of two random variables va and vb. The potentials are shown similar to Fig. 1.
Note that the unary potentials are uniform while the pairwise potentials form an Ising
model. (b) An optimal solution of the LP-S relaxation for the MRF shown in (a). The
values of the variables xa;i are shown next to the ith branch of the trellis of va. Note that
all variables xa;i have been assigned to 0. The values of the variables Xab;i j are shown next
to the connection between the ith and jth branch of the trellises of va and vb. Note that
Xab;i j = −1 if θ2

ab;i j > 0 and Xab;i j = 1 otherwise.

This additive bound can indeed be shown to be tight by using the following simple example.
Consider an instance of the MAP estimation problem for an MRF defined on two variables v =
{va,vb} each of which can take one of two labels from the set l = {l0, l1}. Let the unary and
pairwise potentials be as defined in Fig. 2(a), that is, the unary potentials are uniform and the
pairwise potentials follow the Ising model. Note that this MRF is a chain of size 2 and can thus, be
solved exactly using the LP-S relaxation (Chekuri et al., 2001; Wainwright and Jordan, 2003) (i.e.,
the optimal value of the objective function of the LP-S relaxation is exactly equal to the energy of
the MAP estimate). However, our aim is to show that for a particular randomized rounding scheme
the MRF in Fig. 2(a) offers an example of tightness for the additive bound.

An optimal solution of the LP-S relaxation is given in Fig. 2(b). Clearly, e∗ = 2 (e.g., for the
labelling f = {0,0} or f = {1,1}) while E(êL) = 2+ 2

4 = e∗+ S
4 . Thus the additive bounds obtained

for the LP-S, QP-RL and SOCP-MS algorithms are the same. In fact, one can construct arbitrarily
large MRFs (i.e., MRF defined over a large number of variables) with uniform unary potentials and
Ising model pairwise potentials for which the bound can be shown to be tight.

The above bound was proved for the case of binary variables (i.e., h = 2) by Hammer and Kalan-
tari (1987) using a slightly different rounding scheme. Our result can be viewed as a generalization
of this for any arbitrary number of labels. The above Theorem proves a tight additive bound using
a simple rounding scheme. However, using this rounding scheme in practical applications may not
be desirable as it generates an independent random number for rounding the fractional labelling of
each random variable. We note here that better bounds can be obtained for some special cases of
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the MAP estimation problem using the LP-S relaxation together with more clever rounding schemes
(such as those described in Chekuri et al. 2001 and Kleinberg and Tardos 1999).

5. QP and SOCP Relaxations over Trees and Cycles

We now generalize the results of Theorem 1 by defining a large class of SOCP relaxations which
is dominated by LP-S. Specifically, we consider the SOCP relaxations which relax the non-convex
constraint X = xx> using a set of second order cone (SOC) constraints of the form

||(Uk)>x|| ≤ Ck •X,k = 1, · · · ,nC (34)

where Ck = Uk(Uk)> � 0, for all k = 1, · · · ,nC. In order to make the proofs of the subsequent
Theorems easier, we make two assumptions. However, the Theorems would hold true even without
these assumptions as discussed below.

Assumption 1: We assume that the integer constraints

x ∈ {−1,+1}nh,X ∈ {−1,+1}nh×nh, (35)

are relaxed to
x ∈ [−1,+1]nh,X ∈ [−1,+1]nh×nh, (36)

with Xaa;ii = 1, for all va ∈ v, li ∈ l. The constraints (36) provide the convex hull for all the points
defined by the integer constraints (35). Recall that the convex hull of a set of points is the smallest
convex set which contains all the points. We now discuss how the above assumption is not restrictive
with respect to the results that follow. Let A be a relaxation which contains constraints (36). Using A

it is possible to obtain another relaxation B by substituting constraints (36) by some other relaxation
of the integer constraints. By the definition of convex hull, it would follow that F (A) ⊂ F (B).
In other words A dominates B (see Case I in Section 2). Hence, if A is dominated by the LP-S

relaxation, then LP-S would also dominate B.

Assumption 2: We assume that the set of constraints (34) contains all the constraints specified
in the SOCP-MS relaxation. Recall that for a given pair of neighbouring random variables, that is,
(a,b) ∈ E , and a pair of labels li, l j ∈ l, SOCP-MS specifies SOC constraints using two matrices (say
C1 and C2) which are 0 everywhere except for the following 2×2 submatrices:

(

C1
aa;ii C1

ab;i j

C1
ba; ji C1

bb; j j

)

=

(

1 1
1 1

)

,

(

C2
aa;ii C2

ab;i j

C2
ba; ji C2

bb; j j

)

=

(

1 −1
−1 1

)

. (37)

In the case where a given relaxation A does not contain the SOCP-MS constraints, we can define a
new relaxation B. This new relaxation B is obtained by adding all the SOCP-MS constraints to A.
By definition, B dominates A (although not necessarily strictly, see Case II in Section 2). Hence, if
B is dominated by the LP-S relaxation then it follows that LP-S would also dominate A. Hence, our
assumption about including the SOCP-MS constraints is not restrictive for the results presented in
this section.

Note that each SOCP relaxation belonging to this class would not include the marginalization
constraints. Hence, it would define an equivalent QP relaxation (similar to the equivalent QP-RL

relaxation defined by the SOCP-MS relaxation). By definition of equivalent relaxations, all these QP

relaxations will also be dominated by LP-S. Before we begin to describe our results in detail, we
need to set up some notation as follows.
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5.1 Notation

(a) (b) (c)

Figure 3: (a) An example MRF defined over four variables which form a cycle. (b) The set E k

specified by the matrix Ck shown in Equation (39), that is, Ek = {(a,b),(b,c),(c,d)}. (c)
The set V k = {a,b,c,d}. See text for definitions of these sets.

We consider an SOC constraint which is of the form described in Equation (34), that is,

||(Uk)>x|| ≤ Ck •X, (38)

where k ∈ {1, · · · ,nC}. In order to help the reader understand the notation better, we use an example
MRF shown in Fig. 3(a). This MRF is defined over four variables v = {va,vb,vc,vd} (connected to
form a cycle of length 4), each of which take a label from the set l = {l0, l1}. For this MRF we
specify a constraint using a matrix Ck � 0 which is 0 everywhere, except for the following 4× 4
submatrix:









Ck
aa;00 Ck

ab;00 Ck
ac;00 Ck

ad;00
Ck

ba;00 Ck
bb;00 Ck

bc;00 Ck
bd;00

Ck
ca;00 Ck

cb;00 Ck
cc;00 Ck

cd;00
Ck

da;00 Ck
db;00 Ck

dc;00 Ck
dd;00









=









2 1 1 0
1 2 1 1
1 1 2 1
0 1 1 2









. (39)

Using the SOC constraint shown in Equation (38) we define the following sets:

• The set Ek is defined such that (a,b) ∈ Ek if, and only if, it satisfies the following conditions:

(a,b) ∈ E ,

∃li, l j ∈ l such that Ck
ab;i j 6= 0.

Recall that E specifies the neighbourhood relationship for the given MRF. In other words E k is
the subset of the edges in the graphical model of the MRF such that Ck specifies constraints for
the random variables corresponding to those edges. For the example MRF (shown in Fig. 3(a))
and Ck matrix (in Equation 39), the set Ek obtained is shown in Fig. 3(b).

• The set V k is defined as a ∈ V k if, and only if, there exists a vb ∈ v such that (a,b) ∈ Ek. In
other words V k is the subset of hidden nodes in the graphical model of the MRF such that Ck

specifies constraints for the random variables corresponding to those hidden nodes. Fig. 3(c)
shows the set V k for our example SOC constraint.
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• The set T k consists of elements a; i ∈ T k which satisfy

a ∈V k, li ∈ l,

∃b ∈V k, l j ∈ l, such that Ck
ab;i j 6= 0.

In other words the set T k consists of the set of indices for the vector x which are constrained
by inequality (38), that is, the coefficient of xa;i where a; i ∈ T k are non-zero in the LHS of
inequality (38). Note that in Equation (39) the constraint is specified using only the label l0

for all the random variables v. Thus the set T k is given by

T k = {(a;0),(b;0),(c;0),(d;0)}.

For each set T k we define three disjoint subsets of T k ×T k as follows.

• The set T k
0 is defined as

T k
0 = {(a; i,b; j)|(a; i,b; j) ∈ T k ×T k,(a,b) ∈ E ,(a,b) /∈ Ek}.

Note that by definition Ck
ab;i j = 0 if (a; i,b; j) ∈ T k

0 . Thus T k
0 indexes the elements of matrix

X which are not constrained by inequality (38) but are present in the set T k ×T k. For the
matrix Ck in Equation (39), the set T k

0 is given by

T k
0 = {(a;0,d;0)}.

• The set T k
1 is defined as

T k
1 = {(a; i,b; j)|(a; i,b; j) ∈ T k ×T k,(a,b) /∈ E}.

In other words the set T k
1 indexes the elements of matrix X which are constrained by in-

equality (38) but do not belong to any pair of neighbouring random variables. Note that the
variables Xab;i j such that (a; i,b; j) ∈ T k

1 were not present in the LP-S relaxation. For the
matrix Ck in Equation (39), the set T k

1 is given by

T k
1 = {(a;0,c;0),(b;0,d;0)}.

• The set T k
2 is defined as

T k
2 = {(a; i,b; j)|(a; i,b; j) ∈ T k ×T k,(a,b) ∈ Ek}.

In other words the set T k
2 indexes the elements of matrix X which are constrained by in-

equality (38) and belong to a pair of neighbouring random variables. For the matrix Ck in
Equation (39), the set T k

2 is given by

T k
2 = {(a;0,b;0),(b;0,c;0)(c;0,d;0)}.

Note that T k
0

S

T k
1

S

T k
2 = T k ×T k. For a given set of pairwise potentials θ2

ab;i j we define

two disjoint sets of T k
2 as follows.
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• The set T k
2+ corresponds to non-negative pairwise potentials, that is,

T k
2+ = {(a; i,b; j)|(a; i,b; j) ∈ T k

2 ,θ2
ab;i j ≥ 0},

Thus the set T k
2+ indexes the elements of matrix X which belong to T k

2 and are multiplied by
a non-negative pairwise potential in the objective function of the relaxation.

• The set T k
2− corresponds to negative pairwise potentials, that is,

T k
2− = {(a; i,b; j)|(a; i,b; j) ∈ T k

2 ,θ2
ab;i j < 0},

Thus the set T k
2− indexes the elements of matrix X which belong to T k

2 and are multiplied
by a negative pairwise potential in the objective function of the relaxation. Note that T k

2 =
T k

2+

S

T k
2−. For the purpose of illustration let us assume that, for the example MRF in Fig. 3(a),

θ2
ab;00 ≥ 0 while θ2

bc;00 < 0 and θ2
cd;00 < 0. Then,

T k
2+ = {(a;0,b;0)},

T k
2− = {(b;0,c;0),(c;0,d;0)},

We also define a weighted graph Gk = (V k,Ek) whose vertices are specified by the set V k and
whose edges are specified by the set Ek. The weight of an edge (a,b) ∈ Ek is given by w(a,b).
Recall that w(a,b) specifies the strength of the pairwise relationship between two neighbouring
variables va and vb. Thus, for our example SOC constraint, the vertices of this graph are given in
Fig. 3(c) while the edges are shown in Fig. 3(b). This graph can be viewed as a subgraph of the
graphical model representation for the given MRF.

Further, we define the submatrices xk
T and Xk

T of x and X respectively such that

xk
T = {xa;i|a; i ∈ T k},

Xk
T = {Xab;i j|(a; i,b; j) ∈ T k ×T k}.

For our example, these submatrices will be given by

xk
T =









xa;0

xb;0

xc;0

xd;0









,Xk
T =









Xaa;00 Xab;00 Xac;00 Xad;00

Xba;00 Xbb;00 Xbc;00 Xbd;00

Xca;00 Xcb;00 Xcc;00 Xcd;00

Xda;00 Xdb;00 Xdc;00 Xdd;00









.

Using the above notation, we are now ready to describe our results in detail.

5.2 QP and SOCP Relaxations over Trees

We begin by considering those relaxations where the SOC constraints are defined such that the
graphs Gk = (V k,Ek) form trees. For example, the graph Gk defined by the SOC constraint in
Equation (39) forms a tree as shown in Fig. 3(b). We denote such a relaxation, which specifies SOC

constraints only over trees, by SOCP-T. Note that SOCP-MS (and hence, QP-RL) can be considered
a special case of this class of relaxations where the number of vertices in each tree is equal to two
(since the constraints are defined for all (a,b) ∈ E).

91



KUMAR, KOLMOGOROV AND TORR

We will remove this restriction by allowing the number of vertices in each tree to be arbitrarily
large (i.e., between 1 and n). We consider one such tree G = (V,E). Note that for a given relaxation
SOCP-T, there may be several SOC constraints defined using this tree G (or its subtrees). Without
loss of generality, we assume that the constraints

||(Uk)>x|| ≤ Ck •X,k = 1, · · · ,n′C,

are defined on the tree G. In other words,

Gk ⊆ G,k = 1, · · · ,n′C,

where Gk ⊆ G implies that Gk is a subtree of G. In order to make the notation less cluttered, we will
drop the superscript k from the sets defined in the previous section (since we will consider only
one tree G in our analysis).

We will now show that SOCP-T is dominated by the LP-S relaxation. This result is independent
of the choice of the tree G and matrices Ck. To this end, we define the term e1(xT ) for a given value
of xT as

e1(xT ) = ∑
(a;i)∈T

(

θ1
a;i + ∑

(b; j)∈T

θ2
ab;i j

2

)

xa;i.

Further, for a fixed xT we also define the following two terms:

eS
2(xT ) = min

(xT ,XT )∈F (SOCP-T)
∑

(a;i,b; j)∈T2

θ2
ab;i jXab;i j,

eL
2(xT ) = min

(xT ,XT )∈F (LP-S)
∑

(a;i,b; j)∈T2

θ2
ab;i jXab;i j,

where F (SOCP-T) and F (LP-S) are the feasibility regions of SOCP-T and LP-S respectively. We use
the notation (xT ,XT ) ∈ F (SOCP-T) loosely to mean that we can obtain a feasible solution (x,X) of
SOCP-T such that the values of the variables xa;i where a; i ∈ T and Xab;i j where (a; i,b; j) ∈ T ×T
are equal to the values specified by xT and XT . The notation (xT ,XT ) ∈ F (LP-S) is used similarly.
Note that for a given xT the possible values of XT are constrained such that (xT ,XT ) ∈ F (SOCP-T)
and (xT ,XT ) ∈ F (LP-S) (in the case of SOCP-T and LP-S respectively). Hence different values of
xT will provide different values of eS

2(xT ) and eL
2(xT ).

The contribution of the tree G to the objective function of SOCP-T and LP-S is given by

eS = min
xT

e1(xT )

2
+

eS
2(xT )

4
,

eL = min
xT

e1(xT )

2
+

eL
2(xT )

4
,

respectively. Assuming that the trees G do not overlap, the total value of the objective function
would simply be the sum of eS (for SOCP-T) or eL (for LP-S) over all trees G. However, since we use
an arbitrary parameter θ in our analysis, it follows that the results do not depend on this assumption
of non-overlapping trees. In other words if two trees G1 and G2 share an edge (a,b) ∈ E then we
can simply consider two MAP estimation problems defined using arbitrary parameters θ1 and θ2

such that θ1 +θ2 = θ. We can then add the contribution of G1 for the MAP estimation problem with

92



AN ANALYSIS OF CONVEX RELAXATIONS FOR MAP ESTIMATION OF DISCRETE MRFS

parameter θ1 to the contribution of G2 for the MAP estimation problem with parameter θ2. This
would then provide us with the total contribution of G1 and G2 for the original MAP estimation
defined using parameter θ.

Using the above argument it follows that if, for all G and for all θ, the following holds true:

e1(xT )
2 +

eS
2(xT )

4 ≤ e1(xT )
2 +

eL
2(xT )

4 ,∀xT ∈ [−1,1]|T |

⇒ eS
2(xT ) ≤ eL

2(xT ),∀xT ∈ [−1,1]|T |, (40)

then LP-S dominates SOCP-T (since this would imply that eS ≤ eL, for all G and for all θ). This is
the condition that we will use to prove that LP-S dominates all SOCP relaxations whose constraints
are defined over trees. To this end, we define a vector ω = {ωk,k = 1, · · · ,n′C} of non-negative real
numbers such that

∑
k

ωkC
k
ab;i j = θ2

ab;i j,∀(a; i,b; j) ∈ T2.

Due to the presence of the matrices Ck defined in Equation (37) (which result in the SOCP-MS

constraints for all (a,b)∈E and li, l j ∈ l), such a vector ω would always exist for any MRF parameter
θ. We denote the matrix ∑k ωkCk by C. Clearly, C � 0, and hence can be written as C = UU>.

Using the constraints ||(Uk)>x||2 ≤ Ck •XT together with the fact that ωk ≥ 0, we get the fol-
lowing inequality:6

∑k ωk||(Uk)>x||2 ≤ ∑k ωkCk •X,

⇒ ||U>x||2 ≤ C•X,

⇒ ||U>x||2 ≤ ∑a;i∈T Caa;iiXaa;ii +∑(a;i,b; j)∈T1
Cab;i jXab;i j +∑(a;i,b; j)∈T2

Cab;i jXab;i j,

⇒ ‖U>x‖2 −∑a;i∈T Caa;ii −∑(a;i,b; j)∈T1
Cab;i jXab;i j ≤ ∑(a;i,b; j)∈T2

θ2
ab;i jXab;i j,

(41)

where the last expression is obtained using the fact that Cab;i j = θ2
ab;i j for all (a; i,b; j) ∈ T2 and

Xaa;ii = 1 for all va ∈ v and li ∈ l. Note that the above inequality provides a lower bound of eS
2(xT ).

Another lower bound of eS
2(xT ) is provided by the constraints that −1≤ Xab;i j ≤ 1 for all (a; i,b; j)∈

T2. Since the objective function being minimized contains eS
2(xT ), it follows that in the absence of

any other constraints (which is our assumption) eS
2(xT ) would be equal to the maximum of the two

lower bounds, that is,

max

{

∑
(a;i,b; j)∈T2

−|θ2
ab;i jXab;i j|,‖U>x‖2 − ∑

a;i∈T
Caa;ii − ∑

(a;i,b; j)∈T1

Cab;i jXab;i j

}

.

The first expression is obtained by substituting the following values for Xab;i j where (a; i,b; j) ∈ T2:

Xab;i j =

{ −1 if θ2
ab;i j ≥ 0,

1 otherwise,

while the second expression is the LHS of inequality (41). Clearly, if eS
2(xT ) is equal to the first

expression then eL
2(xT ) ≥ eS

2(xT ), that is, LP-S dominates SOCP-T. In what follows, we will only

6. Note that there are no terms corresponding to (a; i,b; j) ∈ T0 in inequality (41) since Cab;i j = 0 if (a; i,b; j) ∈ T0. In
other words, Xab;i j vanishes from the above inequality if (a; i,b; j) ∈ T0.
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consider the non-trivial case when

eS
2(xT ) = min ∑

(a;i,b; j)∈T2

θ2
ab;i jXab;i j,

= ‖U>x‖2 − ∑
a;i∈T

Caa;ii − ∑
(a;i,b; j)∈T1

Cab;i jXab;i j. (42)

For the LP-S relaxation, from Lemmas 3.1 and 3.2, we obtain the following value of eL
2(xT ):

|xa;i + xb; j|−1 ≤ Xab;i j ≤ 1−|xa;i − xb; j|,
⇒ eL

2(xT ) = min∑(a;i,b; j)∈T2
θ2

ab;i jXab;i j,

= ∑(a;i,b; j)∈T2+
θ2

ab;i j(|xa;i + xb; j|)−∑(a;i,b; j)∈T2− θ2
ab;i j(|xa;i − xb; j|)−

∑(a;i,b; j)∈T2
|θ2

ab;i j|. (43)

We are now ready to prove one of our main results which generalizes Theorems 1 and 2. However,
before proceeding with the proof, we note that our result can also be obtained using the moment
constraints of Wainwright and Jordan (2003) (which imply that LP-S provides the exact solution for
the MAP estimation problems defined over tree-structured random fields). However, as will be seen
shortly, the proof presented here allows us to generalize our results to certain cycles.

Theorem 4: SOCP relaxations (and the equivalent QP relaxations) which define constraints only
using graphs G = (V,E) which form (arbitrarily large) trees are dominated by the LP-S relaxation.

Proof: We begin by assuming that d(i, j) ≥ 0 for all li, l j ∈ l and later drop this constraint on
the distance function.7 We will show that for any arbitrary tree G and any matrix C, the value of
eL

2(xT ) is greater than the value of eS
2(xT ) for all xT . This would prove inequality (40) which in turn

would show that the LP-S relaxation dominates SOCP-T (and the equivalent QP relaxation which we
call QP-T) whose constraints are defined over trees.

It is assumed that we do not specify any additional constraints for all the variables Xab;i j where
(a; i,b; j)∈ T1 (i.e., for Xab;i j not belonging to any of our trees). In other words these variables Xab;i j

are bounded only by the relaxation of the integer constraint, that is, −1 ≤ Xab;i j ≤ +1. Thus in
Equation (42) the minimum value of the RHS (which is equal to the value of eS

2(xT )) is obtained by
using the following value of Xab;i j where (a; i,b; j) ∈ T1:

Xab;i j =

{

1 if Cab;i j ≥ 0,
−1 otherwise.

Substituting these values in Equation (42) we get

eS
2(xT ) = ||U>x||2 −∑a;i∈T Caa;ii −∑(a;i,b; j)∈T1

|Cab;i j|,
⇒ eS

2(xT ) = ∑a;i∈T Caa;iix2
a;i +∑(a;i,b; j)∈T1

Cab;i jxa;ixb; j +∑(a;i,b; j)∈T2
θ2

ab;i jxa;ixb; j

−∑a;i∈T Caa;ii −∑(a;i,b; j)∈T1
|Cab;i j|,

where the last expression is obtained using the fact that C = U>U. Consider the term
∑(a;i,b; j)∈T1

Cab;i jxa;ixb; j which appears in the RHS of the above equation. For this term, clearly

7. Recall that d(·, ·) is a distance function on the labels. Together with the weights w(·, ·) defined over neighbouring
random variables, it specifies the pairwise potentials as θ2

ab;i j = w(a,b)d(i, j).
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the following holds true

∑
(a;i,b; j)∈T1

Cab;i jxa;ixb; j ≤ ∑
(a;i,b; j)∈T1

|Cab;i j|
2

(x2
a;i + x2

b; j), (44)

since for all (a; i,b; j) ∈ T1

Cab;i j ≤ |Cab;i j|,

xa;ixb; j ≤
(x2

a;i+x2
b; j)

2 .

Inequality (44) provides us with an upper bound on the value of eS
2(xT ) as follows:

eS
2(xT ) ≤ ∑a;i∈T Caa;iix2

a;i +∑(a;i,b; j)∈T1

|Cab;i j|
2 (x2

a;i + x2
b; j)+∑(a;i,b; j)∈T2

θ2
ab;i jxa;ixb; j

−∑a;i∈T Caa;ii −∑(a;i,b; j)∈T1
|Cab;i j|. (45)

Note that in order to prove inequality (40), that is,

eS
2(xT ) ≤ eL

2(xT ),∀xT ∈ [−1,1]|T |,

it would be sufficient to show that eL
2(xT ) specified in Equation (43) is greater than the RHS of

inequality (45) (since the RHS of inequality (45) is greater than eS
2(xT )). We now simplify the two

infimums eL
2(xT ) and eS

2(xT ) as follows.
LP-S Infimum: Let za;i =

√

|xa;i|(1−|xa;i|). From Equation (43), we see that the infimum
provided by the LP-S relaxation is given by

∑(a;i,b; j)∈T2+
θ2

ab;i j(|xa;i + xb; j|)−∑(a;i,b; j)∈T2− θ2
ab;i j(|xa;i − xb; j|)−∑(a;i,b; j)∈T2

|θ2
ab;i j|

= −∑(a;i,b; j)∈T2+
|θ2

ab;i j|(1−|xa;i + xb; j|+ xa;ixb; j)

−∑(a;i,b; j)∈T2− |θ2
ab;i j|(1−|xa;i − xb; j|− xa;ixb; j)

+∑(a;i,b; j)∈T2
θ2

ab;i jxa;ixb; j

≥−∑(a;i,b; j)∈T2
|θ2

ab;i j|(1−|xa;i|)(1−|xb; j|)−2∑(a;i,b; j)∈T2
|θ2

ab;i j|za;izb; j +

+∑(a;i,b; j)∈T2
θ2

ab;i jxa;ixb; j. (46)

The last expression is obtained using the fact that

(1−|xa;i + xb; j|+ xa;ixb; j) ≤ (1−|xa;i|)(1−|xb; j|)+2za;izb; j,

(1−|xa;i − xb; j|− xa;ixb; j) ≤ (1−|xa;i|)(1−|xb; j|)+2za;izb; j.

SOCP Infimum: From inequality (45), we see that the infimum provided by the SOCP-T relax-
ation is given by

∑a;i∈T Caa;iix2
a;i +∑(a;i,b; j)∈T1

|Cab;i j|
2 (x2

a;i + x2
b; j)+∑(a;i,b; j)∈T2

θ2
ab;i jxa;ixb; j

−∑a;i∈T Caa;ii −∑(a;i,b; j)∈T1
|Cab;i j|

= −∑a;i∈T Caa;ii(1− x2
a;i)−∑(a;i,b; j)∈T1

|Cab;i j|(1− x2
a;i
2 − x2

b; j

2 )

+∑(a;i,b; j)∈T2
θ2

ab;i jxa;ixb; j

≤ −∑a;i∈T Caa;ii(1−|xa;i|)2 −∑(a;i,b; j)∈T1
|Cab;i j|(1−|xa;i|)(1−|xb; j|)

−2∑a;i∈T Caa;iiz2
a;i −2∑(a;i,b; j)∈T1

|Cab;i j|za;izb; j

+∑(a;i,b; j)∈T2
θ2

ab;i jxa;ixb; j. (47)
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(a) (b)

Figure 4: (a) An example subgraph G which forms a tree. The weights of the edges and corre-
sponding elements of the vector m are also shown. (b) An example subgraph G which
forms an even cycle where all weights are positive. The elements of s are defined using
the {+1,−1} assignments of the vertices.

The last expression is obtained using

1− x2
a;i ≥ (1−|xa;i|)2 +2z2

a;i,

1− x2
a;i
2 − x2

b; j

2 ≥ (1−|xa;i|)(1−|xb; j|)+2za;izb; j.

In order to prove the Theorem, we use the following two Lemmas.

Lemma 5.1: The following inequality holds true for any matrix C � 0:

∑a;i∈T Caa;ii(1−|xa;i|)2 +∑(a;i,b; j)∈T1
|Cab;i j|(1−|xa;i|)(1−|xb; j|)

≥ ∑(a;i,b; j)∈T2
|θ2

ab;i j|(1−|xa;i|)(1−|xb; j|).

In other words, the first term in the RHS of inequality (46) exceeds the sum of the first two terms in
the RHS of inequality (47).

Proof: The proof relies on the fact that C is positive semidefinite. We construct a vector m =
{ma,a = 1, · · · ,n} where n is the number of variables. Let p(a) denote the parent of a non-root
vertex a of tree G (where the root vertex can be chosen arbitrarily). The vector m is defined such
that

ma =















0 if a does not belong to tree G,
1 if a is the root vertex of G,

−mp(a) if w(a, p(a)) > 0,
mp(a) if w(a, p(a)) < 0.

Here w(·, ·) are the weights provided for a given MRF. Fig. 4(a) shows an example of a graph which
forms a tree together with the corresponding elements of m. Using the vector m, we define a vector
s of length nh (where h = |l|) such that sa;i = 0 if a; i /∈ T and sa;i = ma(1−|xa;i|) otherwise. Since
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C is positive semidefinite, we get

s>Cs ≥ 0

⇒ ∑a;i∈T Caa;ii(1−|xa;i|)2 +∑(a;i,b; j)∈T1
mambCab;i j(1−|xa;i|)(1−|xb; j)

+∑(a;i,b; j)∈T2
mambθ2

ab;i j(1−|xa;i|)(1−|xb; j) ≥ 0,

⇒ ∑a;i∈T Caa;ii(1−|xa;i|)2 +∑(a;i,b; j)∈T1
mambCab;i j(1−|xa;i|)(1−|xb; j)

≥ ∑(a;i,b; j)∈T2
|θ2

ab;i j|(1−|xa;i|)(1−|xb; j),

⇒ ∑a;i∈T Caa;ii(1−|xa;i|)2 +∑(a;i,b; j)∈T1
|Cab;i j|(1−|xa;i|)(1−|xb; j|)

≥ ∑(a;i,b; j)∈T2
|θ2

ab;i j|(1−|xa;i|)(1−|xb; j|).

Lemma 5.2: The following inequality holds true for any matrix C � 0:

∑
a;i∈T

Caa;iiz
2
a;i + ∑

(a;i,b; j)∈T1

|Cab;i j|za;izb; j ≥ ∑
(a;i,b; j)∈T2

|θ2
ab;i j|za;izb; j.

In other words the second term in the RHS of inequality (46) exceeds the sum of the third and fourth
terms in inequality (47).

Proof: Similar to Lemma 5.1, we construct a vector s of length nh such that sa;i = 0 if a; i /∈ T
and sa;i = maza;i otherwise. The proof follows by observing that s>Cs ≥ 0.

Using the above two Lemmas, we see that the sum of the first two terms of inequality (46)
exceed the sum of the first four terms of inequality (47). Further, the third and the fifth terms of
inequalities (46) and (47) are the same. Since inequality (46) provides the lower limit of eL

2(xT )
and inequality (47) provides the upper limit of eS

2(xT ), it follows that eL
2(xT ) ≥ eS

2(xT ) for all xT ∈
[−1,1]|T |. Using condition (40), this proves the Theorem.

The proofs of Lemmas 5.1 and 5.2 make use of the fact that for any neighbouring random
variables va and vb (i.e., (a,b) ∈ E), the pairwise potentials θ2

ab;i j have the same sign for all li, l j ∈ l.
This follows from the non-negativity property of the distance function. However, Theorem 4 can be
extended to the case where the distance function does not obey the non-negativity property. To this
end, we define a parameter θ which satisfies the following condition:

Q( f ,D;θ) = Q( f ,D;θ),∀ f .

Such a parameter θ is called the reparameterization of θ (i.e., θ ≡ θ). Note that there exist several
reparameterizations of any parameter θ. We are interested in a parameter θ which satisfies

∑
li,l j∈l

|θ2
ab;i j| = | ∑

li,l j∈l
θ2

ab;i j|,∀(a,b) ∈ E . (48)

It can easily be shown that such a reparameterization always exists. Specifically, consider the gen-
eral form of reparameterization described by Kolmogorov (2006), that is,

θ1
a;i = θ1

a;i +Mba;i,

θ2
ab;i j = θ2

ab;i j −Mba;i −Mab; j.

Clearly one can set the values of the terms Mba;i and Mab; j such that Equation (48) is satisfied.
Further, the optimal value of LP-S for the parameter θ is equal to its optimal value obtained using θ.
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For details, we refer the reader to Kolmogorov (2006). Using this parameter θ, we obtain an LP-S

infimum which is similar in form to the inequality (46) for any distance function (i.e., without the
positivity constraint d(i, j) ≥ 0 for all li, l j ∈ l). This LP-S infimum can then be easily compared
to the SOCP-T infimum of inequality (47) (using slight extensions of Lemmas 5.1 and 5.2), thereby
proving the results of Theorem 4 for a general distance function. We omit details.

As an upshot of the above Theorem, we see that the feasibility region of LP-S is always a
subset of the feasibility region of SOCP-T (for any general set of trees and SOC constraints), that is,
F (LP-S) ⊂ F (SOCP-T). This implies that F (LP-S) ⊂ F (QP-T), where QP-T is the equivalent QP

relaxation defined by SOCP-T.

We now show how the above proof can be generalized to certain cycles. To the best of our
knowledge, the alternative proof in Wainwright and Jordan (2003) cannot be trivially extended to
these cases.

5.3 QP and SOCP Relaxations over Cycles

We now prove that the above result also holds true when the graph G forms an even cycle, that is,
cycles with even number of vertices, whose weights are all non-negative or all non-positive provided
d(i, j) ≥ 0, for all li, l j ∈ l.

Theorem 5: When d(i, j) ≥ 0 for all li, l j ∈ l, the SOCP relaxations which define constraints
only using non-overlapping graphs G which form (arbitrarily large) even cycles with all positive or
all negative weights are dominated by the LP-S relaxation.

Proof: It is sufficient to show that Lemmas 5.1 and 5.2 hold for a graph G = (V,E) which forms
an even cycle. We first consider the case where θ2

ab;i j > 0. Without loss of generality, we assume that
V = {1,2, . . . , t} (where t is even) such that (i, i+1) ∈ E for all i = 1, · · · , t −1. Further, (t,1) ∈ E
thereby forming an even cycle. We construct a vector m of size n such that ma = −1a if a ∈V and
ma = 0 otherwise. When θ2

ab;i j < 0, we define a vector m such that ma = 1 if a ∈ V and ma = 0
otherwise. Fig. 4(b) shows an example of a graph G which forms an even cycle together with the
corresponding elements of m. Using m, we construct a vector s of length nh (similar to the proofs
of Lemmas 5.1 and 5.2). Lemmas 5.1 and 5.2 follow from the fact that s>Cs ≥ 0. We omit details.

It is worth noting that the feasibility region of the above SOCP relaxation (with SOC constraints
defined using some special form of cycles) is not a subset of the LP-S relaxation. However, we
are still able to show that LP-S dominates such an SOCP relaxation. The above Theorem helps
illustrate the difference between comparing the feasibility regions of relaxations and the employing
the concept of domination. Specifically, if the feasibility region of relaxation A is a subset of the
feasibility region of relaxation B, then B dominates A. However, the converse of the above statement
is not true.

Theorem 5 can be proved for cycles of any length whose weights are all negative by a similar
construction. Further, it also holds true for odd cycles (i.e., cycles of odd number of variables) which
have only one positive or only one negative weight. However, as will be seen in the next section,
unlike trees it is not possible to extend these results for any general cycle.
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6. Some Useful SOC Constraints

We now describe two SOCP relaxations which include all the marginalization constraints specified
in LP-S. Note that the marginalization constraints can be incorporated within the SOCP framework
but not in the QP framework.

6.1 The SOCP-C Relaxation

The SOCP-C relaxation (where C denotes cycles) defines second order cone (SOC) constraints using
positive semidefinite matrices C such that the graph G (defined in § 5.1) form cycles. Let the
variables corresponding to vertices of one such cycle G of length c be denoted as vC = {vb|b ∈
{a1,a2, · · · ,ac}}. Further, let lC = {l j| j ∈ {i1, i2, · · · , ic}} ∈ lc be a set of labels for the variables vC.
The SOCP-C relaxation specifies the following constraints:

• The marginalization constraints, that is,

∑
l j∈l

Xab;i j = (2−h)xa;i,∀(a,b) ∈ E , li ∈ l.

• A set of SOC constraints
||U>x|| ≤ C•X, (49)

such that the graph G defined by the above constraint forms a cycle. The matrix C is 0
everywhere except the following elements:

Cak,al ,ik,il =

{

λc if k = l,
Dc(k, l) otherwise.

Here Dc is a c× c matrix which is defined as follows:

Dc(k, l) =







1 if |k− l| = 1,
(−1)c−1 if |k− l| = c−1,

0 otherwise,

and λc is the absolute value of the smallest eigenvalue of Dc.

In other words the submatrix of C defined by vC and lC has diagonal elements equal to λc and off-
diagonal elements equal to the elements of Dc. As an example we consider two cases when c = 3
and c = 4. In these cases the matrix Dc is given by

D3 =





0 1 1
1 0 1
1 1 0



 and D4 =









0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 0 1









,

respectively, while λ3 = 1 and λ4 =
√

2. Clearly, C = U>U � 0 since its only non-zero submatrix
λcI +Dc (where I is a c×c identity matrix) is positive semidefinite. This allows us to define a valid
SOC constraint as shown in inequality (49). We choose to define the SOC constraint (49) for only
those set of labels lC which satisfy the following:

∑
(ak,al)∈E

Dc(k, l)θ2
akal ;ikil ≥ ∑

(ak,al)∈E
Dc(k, l)θ2

akal ; jk jl ,∀{ j1, j2, · · · , jc}.
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Note that this choice is motivated by the fact that the variables Xakal ;ikil corresponding to these sets
vC and lC are assigned trivial values by the LP-S relaxation in the presence of non-submodular terms
(see example below), that is,

Xakal ;ikil =

{

−1 if θ2
akal ;ikil ≥ 0,

1 otherwise.

In order to avoid this trivial solution, we impose the SOC constraint (49) on them.
Since marginalization constraints are included in the SOCP-C relaxation, the value of the objec-

tive function obtained by solving this relaxation would at least be equal to the value obtained by the
LP-S relaxation (i.e., SOCP-C dominates LP-S, see Case II in Section 2). We can further show that
in the case where |l| = 2 and the constraint (49) is defined over a frustrated cycle8 SOCP-C strictly
dominates LP-S. One such example is given below. Note that if the given MRF contains no frustrated
cycle, then it can be solved exactly using the method described by Hammer et al. (1984).

(a) (b) (c)

Figure 5: An example MRF defined over three random variables v = {va,vb,vc} shown as unfilled
circles. Each of these variables can take one of two labels from the set l = {l0, l1} which
are shown as branches (i.e., the horizontal lines) of trellises (i.e., the vertical lines) on
top of the random variables. The unary potentials are shown next to the corresponding
branches. The pairwise potentials are shown next to the edges connecting the branches of
two neighbouring variables. Note that the pairwise potentials defined for (a,b) and (a,c)
form a submodular Ising model (in (a) and (b) respectively). The pairwise potentials
defined for (b,c) are non-submodular (in (c)). In other words, the above MRF defines a
frustrated cycle.

Example: We consider a frustrated cycle and show that SOCP-C strictly dominates LP-S. Specif-
ically, we consider an MRF with v = {va,vb,vc} and l = {l0, l1}. The neighbourhood of this MRF

is defined such that the variables form a cycle of length 3, that is, E = {(a,b),(b,c),(c,a)}. We
define a frustrated cycle which consists of all 3 variables of this MRF using the unary and pairwise
potentials shown in Fig. 5, that is, the unary potentials are uniform and the pairwise potentials define
only one non-submodular term (between the vertices b and c). Clearly, the energy of the optimal
labelling for the above problem is 4. The value of the objective function obtained by solving the
LP-S relaxation is 3 at an optimal solution shown in Fig. 6.

8. A cycle is called frustrated if it contains an odd number of non-submodular terms.
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(a) (b) (c)

Figure 6: An optimal solution provided by the LP-S relaxation for the MRF shown in Fig. 5. The
value of variable xa;i is shown next to the ith branch of the trellis on top of va. In this
optimal solution, all such variables xa;i are equal to 0. The value of the variable Xab;i j is
shown next to the connection joining the ith and the jth branch of the trellises on top of va

and vb respectively. Note that Xab;i j = −1 when θ2
ab;i j > 0 and Xab;i j = 1 otherwise. This

provides us with the minimum value of the objective function of LP-S, that is, 3.

(a) (b) (c)

Figure 7: An optimal solution provided by the SOCP-C relaxation for the MRF shown in Fig. 5. This
optimal solution provides us with the optimal value of 3.75 which greater than the LP-S

optimal value for the solution shown in Fig. 6. Note that the optimal solution of LP-S

does not belong to the feasibility region of SOCP-C as it violates constraint (50). This
example proves that SOCP-C strictly dominates LP-S.

The LP-S optimal solution is no longer feasible when the SOCP-C relaxation is used. Specifically,
the constraint

(xa;0 + xb;1 + xc;1)
2 ≤ 3+2(Xab;01 +Xac;01 +Xbc;11), (50)

is violated. In fact, the value of the objective function obtained using the SOCP-C relaxation is 3.75.
Fig. 7 shows an optimal solution of the SOCP-C relaxation for the MRF in Fig. 5. The above example
can be generalized to a frustrated cycle of any length. This proves that SOCP-C strictly dominates
the LP-S relaxation (and hence, the QP-RL and SOCP-MS relaxations).

The constraint defined in Equation (49) is similar to the (linear) cycle inequality constraints
(Chopra and Rao, 1993) which are given by

∑
k,l

Dc(k, l)Xakal ;ikil ≥ 2− c.
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We believe that the feasibility region defined by cycle inequalities is a strict subset of the feasibility
region defined by Equation (49). In other words a relaxation defined by adding cycle inequalities to
LP-S would strictly dominate SOCP-C. We are not aware of a formal proof for this. We now describe
the SOCP-Q relaxation.

6.2 The SOCP-Q Relaxation

In the previous section we saw that LP-S dominates SOCP relaxations whose constraints are defined
on trees. However, the SOCP-C relaxation, which defines its constraints using cycles, strictly dom-
inates LP-S. This raises the question whether matrices C, which result in more complicated graphs
G, would provide an even better relaxation for the MAP estimation problem. In this section, we
answer this question in an affirmative. To this end, we define an SOCP relaxation which specifies
constraints such that the resulting graph G form a clique. We denote this relaxation by SOCP-Q

(where Q indicates cliques).
The SOCP-Q relaxation contains the marginalization constraint and the cycle inequalities (de-

fined above). In addition, it also defines SOC constraints on graphs G which form a clique. We
denote the variables corresponding to the vertices of clique G as vQ = {vb|b ∈ {a1,a2, · · · ,aq}}. Let
lQ = {l j| j ∈ {i1, i2, · · · , iq}} be a set of labels for these variables vQ. Given this set of variables vQ

and labels lQ, we define an SOC constraint using a matrix C of size nh×nh which is zero everywhere
except for the elements Cakal ;ikil = 1. Clearly, C is a rank 1 matrix with eigenvalue 1 and eigenvector
u which is zero everywhere except uak;ik = 1 where vak ∈ vQ and lik ∈ lQ. This implies that C � 0,
which enables us to obtain the following SOC constraint:

(

∑
k

xak;ik

)2

≤ q+∑
k,l

Xakal ;ikil . (51)

We choose to specify the above constraint only for the set of labels lQ which satisfy the following
condition:

∑
(ak,al)∈E

θ2
akal ;ikil ≥ ∑

(ak,al)∈E
θ2

akal ; jk jl ,∀{ j1, j2, · · · , jq}.

Again, this choice is motivated by the fact that the variables Xakal ;ikil corresponding to these sets vQ

and lQ are assigned trivial values by the LP-S relaxation in the presence of non-submodular pairwise
potentials.

When the clique contains a frustrated cycle, it can be shown that SOCP-Q dominates the LP-S

relaxation (similar to SOCP-C). Further, using a counter-example, it can proved that the feasibility
region given by cycle inequalities is not a subset of the feasibility region defined by constraint (51).
One such example is given below.

Example: We present an example to prove that the feasibility region given by cycle inequalities
is not a subset of the feasibility region defined by the SOC constraint

(

∑
k

xak;ik

)2

≤ q+∑
k,l

Xakal ;ikil , (52)

which is used in SOCP-Q. Note that it would be sufficient to provide a set of variables (x,X) which
satisfy the cycle inequalities but not constraint (52).
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(a) (b) (c)

(d) (e) (f)

Figure 8: An infeasible solution for SOCP-Q. The value of the variable xa;i is shown next to the
ith branch of the trellis on top of va. The value of Xab;i j is shown next to the connection
between the ith and the jth branches of the trellises on top of vb and vb respectively. It can
easily be verified that these variables satisfy all cycle inequalities. However, they do not
belong to the feasibility region of SOCP-Q since they violate constraint (53).

To this end, we consider an MRF defined over the random variables v = {va,vb,vc,vd} which
form a clique of size 4 with respect to the neighbourhood relationship E , that is,

E = {(a,b),(b,c),(c,d),(a,d),(a,c),(b,d)}.

Each of these variables takes a label from the set l = {l0, l1}. Consider the set of variables (x,X)
shown in Fig. 8 which do not belong to the feasibility region of SOCP-Q. It can be easily shown
that these variables satisfy all the cycle inequalities (together with all the constraints of the LP-S

relaxation). However, (x,X) defined in Fig. 8 does not belong to the feasibility region of the SOCP-
Q relaxation since it does not satisfy the following SOC constraint:

(

∑
va∈v

xa;0

)2

≤ 4+2

(

∑
(a,b)∈E

Xab;00

)

. (53)

7. Discussion

We presented an analysis of approximate algorithms for MAP estimation which are based on convex
relaxations. The surprising result of our work is that despite the flexibility in the form of the objec-
tive function/constraints offered by QP and SOCP, the LP-S relaxation dominates a large class of QP

and SOCP relaxations. It appears that the authors who have previously used SOCP relaxations in the
combinatorial optimization literature (Muramatsu and Suzuki, 2003) and those who have reported
QP relaxation in the machine learning literature (Ravikumar and Lafferty, 2006) were unaware of
this result. However, our results do not discourage future research on SOCP based relaxations.
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On the contrary, we have proposed two new SOCP relaxations (SOCP-C and SOCP-Q) and presented
some examples to prove that they provide a better approximation than LP-S. We also believe that
SOC constraints are easier to obtain (using the method of Kim and Kojima 2000) than LP con-
straints. An interesting direction for future research would be to determine the best SOC constraints
for a given MAP estimation problem (e.g., with truncated linear/quadratic pairwise potentials).
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