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ADAPTATION BASED ONMEMORY DYNAMICS IN
A CHAOTIC NEURAL NETWORK

NIGEL CROOK
TJEERD OLDE SCHEPER

Neurocomputing Research Group, School of Computing and
Mathematical Sciences, Oxford Brookes University, Oxford, UK

The complex dynamics that emerge from systems governed by deterministic

chaos offer signi®cant advantages to the neuromorphic engineer. Included in

these is the potential for a very large memory store and the ease with which

chaotic systems can be controlled. By de®nition, a chaotic system is aperiodic.

However, during the course of its trajectory through state space, the chaotic

system will come in®nitely close to points that it has previously visited. These

almost repeating trajectories are referred to as Unstable Periodic Orbits

(UPOs). Normally, under the in¯uence of chaos, the trajectory would move

away exponentially fast from its previous path, thereby describing a new path

on the surface of the attractor. It is possible to apply a simple delayed feedback

control mechanism to a chaotic system that will constrain it within one of its

UPOs. This article presents a neural implementation of this delayed feedback

mechanism. The network presented here is able to stabilize different UPOs in

response to different input signals, with each UPO corresponding to a dynamic

recognition state for that input. We also present two learning rules for this

network, which enables it to adapt to novel inputs in a self-organized manner.

INTRODUCTION

The research presented in this paper attempts to identify and model ways

to store information in dynamic, chaotic neural networks. The justi®ca-

tion for this research is given by both biological as well as theoretical
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motivations (Aihara, Takabe, and Toyoda 1990; Freeman 1985; Freeman

1987; Freeman and Barrie 1994; Kaneko and Tsuda 1994; Tsuda 1996).

Firstly, there seems to be substantial support for the use of dynamic

networks to study more complex and interesting behavior. Arti®cial

neural networks (ANN) have speci®c properties that de®ne their order,

such as size, type, and function. Simply extending the ANN with complex

non-linear dynamics does not improve the memory performance of the

network. It may, however, modify the rate at which a global minimum is

located, if such a state exists. Using non-linear differential equations may

add more complexity to the system and thereby increase the possible

memory states. Secondly, even though chaos may seem to be generally

undesirable, it has important properties that may be exploited to store

and retrieve information (Sinha and Ditto 1999). These are the space

®lling, the possibility of control via delayed feedback, synchronization

and the sensitive dependence on initial conditions. In this paper we de-

monstrate how these unique properties may be exploited to store in-

formation in the dynamic behavior of a neural network. Furthermore, we

present a novel approach to neural network adaptation which is based on

supporting the dynamics from which memory states emerge during pat-

tern recognition.

CHAOS

The de®nition of chaos is complex but is well described in the case of

models. Signal analysis of a chaotic signal is even more complex and the

identi®cation of chaos is only assured in speci®c types of signals. The

difference between noisy and chaotic signals may be lost if a signal is

indistinguishable from a random noise. There exist, however, some

measures which may indicate the possibility of chaos in the case of

low-dimensional chaotic signals. High-dimensional chaos is often too

complex to enable a numerical algorithm to separate it from noise. The

attracting set of a dissipating chaotic system or chaotic attractor is

usually referred to as a strange attractors because of the fractal dimension

of the attractor, i.e. the attractor has a dimension that is not an integer.

The right panel (b) of Figure 1 shows the strange attractor of the RoÈ ssler

equation (RoÈ ssler 1976):

_x = – y – z (1)
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_y = x ‡ ay (2)

_z = b ‡ (xz) ‡ gz (3)

with a = 0:2, b = 0:2, and g = – 5:7. In the right panel (b) of Figure 1 at

the top of the z-axis the stretching of the attractor can be seen, this is

demonstrated by two trajectories ®rst close together but later expanding

away as shown. At the x; y plane the folding of the trajectory back into

the z-direction is recognizable. This is also indicated in the left panel (a)
in the same ®gure. Here the upper plot demonstrates the exponential rate

of expansion of three trajectories. The lower plot demonstrates the

folding of trajectories. Another property of a chaotic system is its de-

pendence on initial conditions. With a very small difference in initial

conditions, two identical chaotic systems may diverge away from each

other at an exponential rate. The shape of the attractor will remain the

same, but the two systems will traverse the phase space differently. This is

shown in Figure 2 where two trajectories of the variable x are depicted

with the same parameter values but with different initial conditions. For

one trajectory the initial condition is x = 5 and for the other x = 5:0001.

The initial values of y and z are the same in both cases. (Note that even

Figure 1. Stretching and folding (or contraction) of an unstable manifold, three close by tra-

jectories diverge with exponential rate. Folding of a manifold with the direction of evolu-

tion: (b) The RoÈ ssler attractor with both stretching and folding.
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though the difference is still fairly large, i.e. 0.01%, the sensitive depen-

dence on initial conditions is valid, but with a smaller initial difference

between the two trajectories, the divergence would take much longer

before the effect becomes visible.)

Chaos is often considered to be an undesirable property of systems

because it tends to complicate analysis and function. However, making

large modi®cations to a system parameter to reduce chaotic behavior

may be undesirable since it may well change the behavior of the system in

unacceptable ways. Rather than having to rede®ne the system, in most

cases the presence of chaos makes it is possible to change the behavior of

the system with only small changes to one of the system parameters.

Typically, most chaotic attractors embed a large, dense set of unstable

periodic orbits (UPO). This is shown in Figure 3 where an unstable

periodic orbit is indicated inside the strange attractor described by the

RoÈ ssler system.

By determining several of these orbits and selecting the orbit that

improves system performance a chaotic system may be controlled.

A speci®c unstable periodic orbit may be stabilized by making appro-

priate pre-programmed modi®cations to the parameter. If the changes are

small enough the orbits will not have completely different properties than

Figure 2. Dependence on initial conditions of the RoÈ ssler model, numerical divergence ex-

ists almost instantaneously, but becomes visible at approximately time step 135.
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the unchanged attractor. The stabilization of an UPO in this way is called

the control of chaos.

One method of controlling chaos requires making a small time-

dependent perturbation to a controllable system parameter. This has ®rst

been numerically demonstrated by Ott (1993); Schuster (1999); and Ott,

Grebogi, and Yorke (1990) and is referred to as the OGY method of

chaos control. A different method that has been used successfully is de-

layed feedback control of a chaotic system (Pyragas 1995; olde Scheper

2001). The continuous feedback method for controlling chaos presented

by Pyragas (1992) has been applied to continuous time systems. This

method of controlling chaos assumes that a continuous time system has

an output variable, say y(t), that can be measured and an input signal,

F(t):

dy

dt
= P(y; x) ‡ F(t)

dx

dt
= Q(y; x)

(4)

Here, P(y; x) and Q(y; x), which govern the chaotic dynamics of the

system, and the matrix x, which denotes all of the remaining system

variables, are assumed to be unknown. When the control signal F(t) is

zero, the system (4) is governed by a chaotic attractor. The input signal

F(t) is proportional to the difference between the value of y at time t and

the value of y at time t – t, where t is a ®xed delay:

F(t) = K[y(t) – y(t – t)] (5)

Figure 3. An unstable periodic orbit in the RoÈ ssler attractor.
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The input signal F(t) attempts to nudge the system back to a state in

which output variable y repeats the same value it had at the earlier time

speci®ed by the delay t. In this way, F(t) encourages the system to follow

a periodic trajectory with periodicity t (see Figure 4).

As the system approaches the periodic trajectory, F(t) will become

very small. Figure 5 shows a time series for the RoÈ ssler system. The

controlling input signal is initially zero and the system follows its chaotic

attractor for a period of time. When the input signal is activated the

system quickly converges to a period one UPO. Figure 5 shows a burst of

activity in F(t) which the system is brought under control. Subsequently,

as the system moves into the UPO, F(t) becomes very small.

The same method can also be applied to discrete time systems. All

that is required is that the system has a measurable output variable y(t)
and a controlled input signal F(t):

G(t ‡ 1) = P(y(t) ; x(t))

y(t) = G(t) ‡ F(t)

x(t ‡ 1) = Q(y(t); x(t))

F(t) = k[G(t) – y(t – t)]

(6)

Figure 4. A sample time series in y with the time delay t superimposed.
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where P(y(t); x(t)) and Q(y(t); x(t)) govern the chaotic dynamics of

the system, and x denotes all of the remaining system variables. The

mechanism of stabilization is similar to the continuous method, but the

control compares the new point in G(t) to the delayed point y(t – t),
instead of the current point.

By using delayed feedback with varying parameters, it is possible to

select a speci®c orbit when presenting the system with periodic input. This

is proposed to be the ``recognized state,’’ while the normal chaotic state is

called the ``undetermined state.’’ The existence of an UPO may be in-

¯uenced by adapting the parameter space. Thus by making small changes

to a selected parameter, UPOs may be found, depending on the period of

the external input (Crook, Dobbyn, and olde Scheper 2000; Tsui and

Jones 1999). In a locally connected network of delayed controlled neu-

rons it is possible to demonstrate the control response of responsive units

in speci®c regions. Units that are capable of controlling a speci®c UPO

will stabilize into the UPO when presented with associated input.

CHAOTIC NETWORK MODELS

This section describes some interesting models proposed by different au-

thors, that have various approaches to modelling a chaotic neural network

with control. A very useful model is proposed by Aihara, Takabe, and

Figure 5. Time series plot for one of the RoÈ ssler equation variables, superimposed on a plot

of F(t).
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Toyoda (1990), that describes a single neuron model with chaotic dy-

namics, including graded responses, relative refractoriness and spatio-

temporal summation of inputs. The model is derived from the Caianiello’s

neuronic equation, of which the McCulloch-Pitts neuron is a special case. A

modi®ed version of the same equation was used by Nagumo and Sato to

develop the following model to produce the output x(t ‡ 1):

x(t ‡ 1) = u A(t) – a
Xt

r= 0

krx(t – r) – y

Á !
(7)

where u is a unit step function or sigmoid function, A(t) is the input

strength at time t and k is the damping of the refractor rate. Aihara et al.

de®ned a new internal state y(t ‡ 1) as:

y(t ‡ 1) = A(t) – a
Xt

r= 0

krx(t – r) – y (8)

subsequently, (7) and (8) can then be simpli®ed into:

y(t ‡ 1) = ky(t) – au(y(t)) ‡ a(t) (9)

x(t ‡ 1) = u(y(t ‡ 1)) (10)

where a(t) = A(t) – kA(t – 1) – y(1 – k) (11)

If the input into the network is periodic with constant amplitude A then

(11) may be used as a = (A – y)(1 – k). The response characteristic of

the equations (9) and (10) form complete devil’s staircases, this means

that chaotic solutions exist only at a self-similar Cantor set of the para-

meter values with zero Lebesgue measure. It is shown by Aihara et al.

that this model may be used to produce a chaotic neural network with a

small positive largest Lyapunov exponent.

The Aihara model has been used by Kushibe, Liu, and Othsubo

(1996) to build a network that can target a speci®c embedded memory by

associating it with a desired output. The incomplete target enables the

system to locate a memory by chaotic searching avoiding local minima.

Even when random input patterns are used, the system does not fall into

a local minimum but will reproduce a memory pattern provided that at

least 20% of the target pattern is available.
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Mappings are often used in modeling discrete chaotic neural

dynamics. A good example of this type of model is a map model by

Pasemann and Stollenwerk (1998) that is described by a recurrent two-

neuron model as:

xn‡1 = W1 ‡ w11s(xn) ‡ w12s(yn) (12)

yn‡1 = W2 ‡ w21s(xn) ‡ w22s(yn) (13)

s(x) =
1

1 ‡ e– x
(14)

where xn represents the state of an inhibitory neuron and yn the state

of an excitatory neuron. The variables are set as W1 = – 2; W2 = 3;

w11 = – 20; w12 = – 6; w12 = 6 and w22 = 0, i.e. no auto inhibition of yn.

Applying a modi®ed OGY form of control using linear least squares

estimations of Dxn‡ k on the parameter W1, this model may stabilize

different periodic orbits with the current parameter set. Further mod-

i®cations are made to establish a process of self-control, this comprises of

four control neurons used as a one-layer feedforward network. The

combination of the model and the control network allow stabilization of

all available periodic orbits. The authors then use external or dynamic

noise to switch between different orbits.

A comparable model as the Pasemann system is used by Klotz and

BraÈ uer (1999). The system is described by:

xi(t ‡ 1) = f
Xn

j= 1

wijxj(t)

Á !
(15)

f(z) =
1

1 ‡ e– 4sz
(16)

From this several different network con®gurations can be constructed. A

two-neuron model with appropriate weights demonstrates two chaotic

attractors. A four-neuron model with time delay is constructed to show

one chaotic attractor. Introducing an external input on one of the neu-

rons reduces the system to one half of the attractor depending on the sign

of the input. This model is then used by the authors to create an XOR

function network. It shows chaotic behavior when the two inputs are
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both zero or one. It will reduce to one of the two halves of the attractor

when one of the two inputs is one.

As in the previous model, instead of stabilizing a periodic orbit or

state a particular subspace within the attractor or even different attrac-

tors may be used as an encoding of information. Itinerating a chaotic

state among different attractors is used in a large model by Hoshino, et

al. (1997) . This model is a network of a three-neuron module as described

by Chapeau-Blondeau and Chauvet (1992) . This system is capable or

chaotic and periodic oscillations within a certain distance of unit ®ring.

This may then be modi®ed by parameter changes in the system to re-

present different learning patterns. The system is not controlled but

merely illustrates the ability to associate information with speci®c chaotic

or periodic behavior in the parameter domain.

A compartmenta l neuronal model approach has been used by, Des-

texhe (1994) to model a network of delayed neurons. Within certain

boundaries of the critical parameter values, particularly the weights, peri-

odic oscillations, spiral waves, and spatiotemporal chaos was found. None

of these dynamicscan be produced without the delay, although the system is

not particularly sensitive to the delay length. It is argued that the spatio-

temporal phenomenon observed is useful to optimize information transfer

within the network, even though the model does not demonstrate this.

A recurrent neural network model has been constructed by An-

dreyev, et al. (1996) that is trained to store a piecewise linear map. The

exact nature of the map, i.e. the transition from one map state to another,

is de®ned by the encoding of the desired information. This will result for

n pieces of information of a repeated information block of length n ‡ 1.

After training of the network with different blocks of information, the

trajectory of the system will visit all regions of the stored patterns during

iteration. Presentation of an input pattern will then stabilize a particular

period associated with one of the information blocks. This model shows a

useful method of encoding information temporally into a neural net that

then may be searched chaotically for the correct pattern.

In papers by (Watanabe and Aihara (1997); Watanabe, Aihara, and

Kondo (1998) the effect of coincidence detection in a network is in-

vestigated. A simple continuous neuron model is described with an ex-

ponential decay and threshold. The internal state is described as:

a(tn‡1) = sn‡1 ‡ a(tn)e
tn‡ 1

t and a global negative feedback is calculated to

reduce or increase the threshold value. This model can demonstrate

coincidental ®ring of neurons in an almost synchronized manner.
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A more complex neural network model with coincidence detector is also

described. This second model is continuous and includes a time delay and

exponential decay of the activation. A global negative feedback with time

decay tg is applied to the network. The model is described as:

t
dai(t)

dt
= – ai(t) ‡ Sext

X

n

d(t – tp
i;n) ‡

XN

j= 1

wijxj(t – dij) (17)

tg
dr(t)

dt
= – r(t) ‡ R

XN

j= 1

xj(t) (18)

If:

h(t) ² ai(t) – (y ‡ r(t)) ¶ 0 (19)

then:

xi(t
0) = d(t0 – g(h(t)) – t) and ai(t

0) = 0 (20)

otherwise:

xi(t) = 0 (21)

where Sext is an external input pulse strength, R is the global feedback

strength, xi(t) is the output of neuron i at t, tP
i;n is the time for external

pulse n to arrive at neuron i, wij and dij are the synaptic weight and delay

from neuron j to neuron i, and N the total number of neurons. All sy-

naptic weights are set to 1 with the exception of autoconnections wii = 0.

The external pulse is required for the activity of the network to be

maintained. If the external pulse generation is increased over time the

system will become unstable, due to the fact that the monotone increase

of the pulse does not allow the system to stabilize onto a coinciding pulse.

If the pulse is varied but not monotone, coincidental pulses may be found

and the system becomes periodic.
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NETWORK ARCHITECTURE

The principle that UPOs corresponding to memory states can be stabi-

lized in response to speci®c input patterns is investigated in this section.

Speci®cally, we present a neural implementation of the continuous

delayed feedback method of chaos control (Pyragas 1992). This im-

plementation is de®ned by a set of discrete-time equations which a three-

model layered network. The ®rst layer is composed of units which receive

dynamic input signals from the environment. This input layer is fully

connected to the second layer which is made up of inhibitory units. Each

unit in the inhibitory layer is connected to one chaotic unit in the third

layer. Units in the chaotic layer are connected to their immediate

neighbors via lateral connections. An overview of the network archi-

tecture is shown in Figure 6.

The chaotic dynamics of each unit in the third layer are governed by

the following discrete time equation which has been modi®ed from

Aihara, Takabe, and Toyoda (1990):

x(t ‡ 1) = ox(t) – af(x(t)) ‡ a (22)

Figure 6. An overview of the network architecture.

352 N. CROOK AND T. OLDE SCHEPER

D
ow

nl
oa

de
d 

by
 [

V
ri

je
 U

ni
ve

rs
ite

it 
A

m
st

er
da

m
] 

at
 0

7:
39

 1
2 

N
ov

em
be

r 
20

12
 



where xi(t) is the activation of the chaotic unit and o (0 < o < 1), a (a >

0) and a are parameters of the Aihara model. The sigmoid function f(y) is

given by f(y) = 1=(1 ‡ e– y=E).
The time series generated by equation (22) is chaotic for certain

sub ranges of the bifurcation parameter a in [– 1,1]. This is demon-

strated in the graphs in Figure 7 which show the cobweb iterations of

this equation with two values of parameter a. The sigmoidal curve in

each graph corresponds to the value of x(t ‡ 1) for each value of x(t)
in the range [– 1,1]. The cobweb diagram is then iterated by taking an

initial value of x(0), drawing a vertical line to the sigmoidal curve

which gives the value of x(1), then drawing a horizontal line to the

diagonal, and then drawing a vertical line to the sigmoidal curve to

give x(2), and so on. In each of the graphs of Figure 7 the value of

x(0) = 0:2. In graph (a), parameter a = 0:74, which gives rise a chaotic

sequence of values. In graph (b), the value of a = 0:5 which results in a

periodic sequence (in this case the sequence alternates between 0.333

and – 0.333, the initial transients to the periodic sequence have been

omitted from the graph).

The network model presented here uses the value of a = 0:74, to

ensure a chaotic ®ring sequence. An example chaotic time series for this

parameter setting is shown in Figure 8. A strong positive average

Lyapunov exponent (l = 0:295) indicates that this is indeed a chaotic

sequence.

The activation yi(t) of unit i on the chaotic layer is determined by the

following equations:

gi(t ‡ 1) = (1 – f)(oyi(t) – af(yi(t)) ‡ a) ‡
f
Ni

XNi

j= 1

yj(t) (23)

yi(t) = gi(t) ‡ ki(t)zi(t) (24)

The chaotic layer can be organised either linearly (Figure 9(a)), so that

each unit has at most two lateral connections with its immediate neigh-

bours, or it can be organized as a rectangular lattice (Figure 9(b)) so that

each unit has at most four lateral connections. The right most term of

equation (23) sums up the input from these lateral connections, with Ni

denoting the number of neighbors for unit i. The constant f determines

the strength of the lateral connections relative to the units own chaotic
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Figure 7. The cobweb iterations for the Aihara equation with (a) a = 0.74, (b) a = 0.5.
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dynamics. The right most term of equation (24) introduces the control to

be applied to this unit (see below). When this term is zero for a number of

time steps, the dynamics of yi(t) are governed by the chaotic attractor of

the Aihara equation.

Figure 10 shows the time series of a linear chaotic layer (Figure 9(a))

consisting of four units with no applied control. The average Lyapunov

exponents of each unit is strongly positive, indicating that the dynamics

of the connected units are chaotic (l1 = 0:268734 ; l2 = 0:166363;

l3 = 0:158992 ; l4 = 0:182272):

Figure 9. Two possible structures for the chaotic layer: (a) linear, (b) rectangular.

Figure 8. An example chaotic time series for the Aihara equation.
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Figure 10. A chaotic time series generated by a 4-unit linearly connected chaotic layer.
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Figure 11 shows the time series of four units taken from a 4 £ 4

rectangular layer (Figure 9(b)) of chaotic units. Once again, the average

Lyapunov exponents of each unit indicates that these time series are

chaotic (see Table 1).

Each chaotic unit is associated with one unit in the inhibitory layer.

The purpose of each inhibitory unit is to apply feedback control to sta-

bilize the associated chaotic unit into a UPO. To achieve this, each in-

hibitory unit receives two inputs from the associated chaotic unit: an

instantaneous input gi(t), and a multiple-delayed input:

XD

j= 1

xjyi(t – j £ átiñ)

where ti is a characteristic time delay associated with inhibitory unit

i (áxñ denotes that x is rounded to the nearest integer value). We have

found that a weighted sum of multiple delays is more effective at con-

trolling discrete time equations than using a single delay value. The val-

ues of weight xj decrease as j increases, so that more recent values in the

evolution of yi(t) are given a higher weighting than older values. xj is

given by:

xn =
1

n(1 ‡
PD– 1

k= 1
1
2k)

(25)

where D is the number of delays used. In our experiments, we found it

suf®cient to have D = 3.

The activation zi(t) of inhibitory unit i is given by:

zi(t) =

0 :
PM

j= 1

wij(t)Ij(t) = 0

gi(t) –
PD

j= 1

xjyi(t – j £ átiñ) :
PM

j= 1

wij(t)Ij(t) 6= 0

8
>>><

>>>:
(26)

where M is the number of input units, wij(t) (wij(t) > 0) is the weight on

the connections from input unit j to inhibitory unit i and Ij(t) is the

activation of the jth input unit. Note that the inhibitory unit’s activa-

tion is gated by the presence of instantaneous input from the input

layer: If there is no input to the network, the inhibitory units do not
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Figure 11. The chaotic time series generated by 4 units from a 16-unit rectangular chaotic

layer.
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apply control to the chaotic units, thereby allowing them to follow their

chaotic dynamics. The local coupling between the chaotic units ensures

that a global chaotic dynamic state will emerge. The presence of this

global chaotic state on the chaotic layer corresponds to a non-recogni-

tion state for the network. In other words, the network is not re-

cognizing or classifying an input pattern when its chaotic layer is in a

global chaotic state.

Figure 12 shows the time series of a four-unit linear chaotic layer. No

control was applied during the ®rst 50 iterations of this network, thereby

allowing each unit to follow its chaotic dynamics. Control was then ap-

plied from t = 51 (i.e. zi(t) 6= 0 for t > 51), with ti = 2:0 for each in-

hibitory unit. The graph shows that each of the chaotic units quickly

stabilizes to a period 2 orbit and remains within that orbit for as long as

the control is applied. Figure 13 shows a similar experiment, but this time

the control was applied with ti = 3:0 for each inhibitory unit. In this case

each chaotic unit stabilises to a period 6 orbit.

Figures 12 and 13 con®rm that the length of the delay ti

determines the period of the orbit which is subsequently stabilized.

This fact is used in this model to relate input patterns to the orbits

which are stabilized on the chaotic layer. This network is speci®cally

designed to respond to the dynamics of the input signals it is presented

with. Speci®cally, the network is sensitive to periodic elements which

occur in those inputs. For example, an input might consist of the

binary sequence (0, 1, 0, 1, . . . ), which contains a period 2 element.

The association between the period of the input pattern and the delay

applied for the control of the chaotic units is achieved by the con-

nections from the input layer to the inhibitory layer. Each inhibitory

unit has two connections to each of the units in the input layer: One is

an instantaneous connection Ij(t), the other is a delayed connection

denoted by Ij(t – átiñ), with ti being the characteristic time delay value

for inhibitory unit i (each inhibitory unit uses the same time delay on

all of its delayed input connections).

Table 1. Average Lyapunov exponents for sixteen-unit rectangular layer

l1 = 0:158137 l2 = 0:144228 l3 = 0:17781 l4 = 0:18886

l5 = 0:169635 l6 = 0:114216 l7 = 0:199601 l8 = 0:204769

l9 = 0:152558 l10 = 0:0510107 l11 = 0:20415 l12 = 0:203094

l13 = 0:194234 l14 = 0:154669 l15 = 0:0912817 l16 = 0:0868024
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The characteristic delays for the inhibitory units are set to random

real values at initialization. When an input signal is presented to the

network, the inhibitory units are enabled and can apply control to the

chaotic units. The network will select the unit in the inhibitory layer

whose characteristic delay best matches the dominant period of the input

Figure 12. A 4-unit linear chaotic layer where each unit is stabilized to a period 2 orbit.
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Figure 13. A 4-unit linear chaotic layer where each unit is stabilized to a period 3 orbit.
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sequence. This selection of the winning unit is made by ®nding the unit

which has the smallest value of hi(t):

hi(t) =
XM

j= 1

wij(t)(Ij(t) – Ij(t – átiñ)) (27)

The summation in this equation is close to 0 when the delayed activation

Ij(t – átiñ) is close in value to the instantaneous activation Ij(t) on the

input units whose weights wij(t) are not close to 0. (Note that for each

inhibitory unit
PM

j= 1 wij = M; so that not all of the input weights of an

inhibitory unit can be close to 0 at the same time.) This means that hi(t) is

close to 0 when the characteristic delay of inhibitory unit i is close to a

frequency which is dominant in the input signal. In this way each in-

hibitory unit becomes a feature detector for the frequency pro®le of the

input signal.

The Characteristic delay of the winning unit is denoted by twin . All

inhibitory units i whose values of átiñ are equal to átwinñ can apply

control to their chaotic units. This is achieved through the following

equation:

ki(t) =
0 : átiñ 6= átwinñ
g : átiñ = átwinñ

(
(28)

where g (g < 0) is the optimum value that ki can have for effective control

to be applied to the chaotic unit.

ADAPTATION

The network architecture presented in Section 4 demonstrates how it is

possible to generate internal dynamic recognition states (UPOs) which

are associated with the dynamics present in the input signals. In this

approach, memories are not stored as distributed patterns of weights

between units, as is commonly used with arti®cial neural networks. In-

stead, memory states emerge from the dynamics of the network. Conse-

quently, conventional approaches to network adaptation, which are

centered on weight adaptation, cannot be applied in this model. In this

section we present a novel approach to adaptation which is based on
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modifying network parameters in order to support the dynamics from

which the memory states emerge.

The pro®le of characteristic delays across the inhibitory units

determines which UPOs will be stabilized when input is presented to the

network. Initially these delays are randomly selected. In which case

neighboring inhibitory units can have characteristic delays which would

attempt to stabilize different UPOs in their chaotic units. This would

result in local con¯ict on the chaotic layer because of the lateral con-

nections between neighboring units. Furthermore, it is possible that the

input signals presented to the network may have a frequency pro®le

which is not well ®tted to the randomly selected characteristic delays of

the inhibitory layer. Two competitive learning rules are introduced which

enable the network to (i) adapt the weights on the connections from the

input layer to the inhibitory layer so that input signals which are more

commensurate with the characteristic delays of the inhibitory units can be

given a stronger weighting, (ii) tune the characteristic delays to match the

frequency pro®les of the input signals, and (iii) develop a localized re-

sponse on the inhibitory layer so that neighboring units have similar

characteristic delays. In this way different regions of the inhibitory layer

become feature detectors for certain characteristic frequencies of the in-

put signals and dominant input frequencies would have a signi®cant ef-

fect on the dynamics of the chaotic layer.

Both learning rules use the concept of a neighborhood around the

winning unit which is commonly used in competitive learning neural

networks (Kohonen 1989). The neighborhood is delimited by a radius R
and a maximum reach M(t). Learning is applied to all units which are

within a distance M(t) from the winning neuron. The distance dij from

unit j to unit i in the inhibitory layer is de®ned as the minimum number of

connections required to connect them. In Figure 14(b), for example, the

distance d1;49 be between unit 1 (top left of the diagram) and unit 49

(bottom right) is 12.

Figure 14 shows examples of the neighborhood radius R and

maximum reach M(t) for a linear layer (a) and a rectangular layer (b).

The neighborhood radius remains constant throughout training. All

inhibitory units inside the neighborhood boundary (and inside the

maximum reach if M(t) < R) will have their characteristic delays and

input weights adjusted so that they are better able to respond to the

current input next time it is presented. Inhibitory units outside the

neighborhood radius but within the maximum reach boundary (if
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M(t) > R.) will have their characteristic delays and input weights

adapted so that they are less able to respond to the current input. In

this way the regions of the inhibitory layer which respond to different

frequencies in the input signals are pushed apart resulting in localized

responses across the layer. The function r(dij) calculates the direction

and magnitude of the changes to be made to the characteristic delay

and input weights of an inhibitory unit i based on its distance dij from

the winning unit j:

r(dij) =
Z(R – dij)

R ¤ dij

(29)

The maximum reach M(t) determines which units will be affected by

the learning rules at time step t. To achieve the separation of units

which respond to different frequencies in the input it is necessary for

M(t) to start off larger than R. However, if a unit repeatedly wins

over several iterations then a large maximum reach would destroy

previous adaptations on other units which were made in response to

different frequencies on the input. To avoid this, when the winner

changes from one unit to another in the inhibitory layer the maximum

Figure 14. Examples of the neighborhood radius and maximum reach for (a) a linear chao-

tic layer, (b) a rectangular chaotic layer.
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reach is set to a maximum value (which is constant) greater than R. If

the same units wins over several sequential iterations then M(t) is

periodically decremented until it reaches zero, after which the only unit

affected by the learning rules is the winning unit. If subsequently a

different unit wins, then M(t) is set back to its maximum value and

learning proceeds as before.

The ®rst learning rule, LR1, is concerned with adapting the weights

on the connections from the input layer to the inhibitory layer. These

weights are important because the frequency pro®les on each of the input

units may differ signi®cantly from each other, since each unit has its own

independent input signal. This means that the characteristic delay of an

inhibitory unit may only be commensurate with the frequencies of some

of the input signals. Learning rule LR1 enables an inhibitory unit to shift

weights away from input signals which are not commensurate with its

characteristic delay, and towards units which are commensurate. LR1 is

expressed by the following equation (note that for each inhibitory unitPM
j= 1 wij = M) :

mij(t) = jIj(t) – Ij(t – átiñ)j (30)

wij(t ‡ 1) =

wij(t) : di j > M(t)

wij(t) – r wij(t)
N – 1 ‡ wij(t)mij(t)PN

p= 1
wip(t)mip(t)

" #

: di j <= M(t)

8
><

>:

(31)

The second learning rule, LR2, is responsible for tuning the char-

acteristic delays to match the frequency pro®les of the input signals and

developing a localized response on the inhibitory layer so that neigh-

boring units have similar characteristic delays. This is achieved at each

iteration by identifying the period tij of the strongest input j to the

winning unit i. The characteristic delay of the winning unit is then

modi®ed to be closer to the value of tij. The modi®cation of the char-

acteristic delays of units within the maximum reach of the learning rule

operates under the same conditions as LR1 with regard to the neigh-

borhood radius.

The value of tij can be calculated by storing a pivot value

pij(t) = wij(t)Ij(t) at time step t, and then comparing delayed inputs

with the pivot value until wij(t ‡ tij)Ij(t ‡ tij) – pij(t) < D, where D is the
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tolerance level set for the comparison. When this condition is met,tij can

be taken as the period of that input signal at time t ‡ tij. Each inhibitory

unit uses this method to calculate the period of the signals on each of its

instantaneous connections from the input layer. At each time step of the

evolution of the system the winning inhibitory unit ®nds the period tij of

the input connection with the largest weight wij(t). All units within the

maximum reach of the learning rule then modify their characteristic de-

lays according to the following equation:

tk(t ‡ 1) =
tk(t) : di j > M(t)
tk(t) ‡ r(dij)(tij(t) – tk(t)) : di j <= M(t)

»
(32)

where i is the index of the winning unit.

The following three experiments demonstrate how learning rules

LR1 and LR2 adapt a four-unit linear layered network, and a 16-unit

rectangular layered network. Input is presented to the network for t > 50

in all three experiments. In the ®rst experiment a four-unit linear layered

network was initialized to random characteristic delays for the inhibitory

units. The network was then presented with two alternating input

sequences.

In the ®st sequence the input unit 1 was presented with a period 2

input (0, 1, 0, 1, . . . ) lasting for 100 iterations, while input unit 2 was

presented with a chaotic sequence over the same iterations. In the second

sequence, input unit 1 was presenting with 100 values from a chaotic

series whilst input unit 2 received a period three input (1, 0.5, 0, 1, 0.5,

0, . . . ) over the same iterations. Since a chaotic sequence is by de®nition

aperiodic, inhibitory units should shift their weights away from the

chaotic input and towards the periodic input which is commensurate with

their characteristic delay. The results of this experiment are presented

graphically in Figures 15, 16, and 17.

Figure 15 shows how the values of the characteristic delays are

modi®ed by LR2 during learning. The ®nal values of the characteristic

delays are t1 = 2:42, t2 = 2:72118, t3 = 2:99575 and t4 = 3, showing that

LR2 has been able to separate units responding to period 2 input (unit 1),

from units responding to period 3 input (units 2, 3, and 4).

Figure 16 shows how LR1 enables each inhibitory unit to shift

weights towards the input with the period which corresponds best to its

characteristic delay, and away from the input which has a chaotic signal.
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Figure 15. Adaptation of t as a result of applying LR2 to a 4-unit linear network (experi-

ment 1).
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Figure 16. Adaptation of input weights which result for applying LR1 to a 4-unit linear

network (experiment 1).
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Figure 17. The activation time series of the 4-unit linear network during adaptation from

LR1 and LR2 (experiment 1).
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The ®nal values of the weights are w11 = 1:36046, w12 = 0:63954,

w21 = 0:950279, w22 = 1:04972, w31 = 0:105788, w32 = 1:89421,

w41 = 5:09E – 05, w42 = 1:99995. Note that unit 1 has shifted its weight

towards input 1 where it ®nds the period 2 input is commensurate with

the rounded value of its characteristic delay t1 = 2:42. Similarly, units 2,

3, and 4 have shifted their weights towards the second input unit.

The graphs is Figure 17 show the activation of the chaotic units for

this experiment. These results show that unit 1 learns to respond to

period 2 input by stabilizing a period 2 orbit while that input is presented

(t 2 [51..150, 251..350]). Unit 4, on the other hand, learns to respond to a

period 3 orbit by stabilizing a period 6 orbit when that input is presented

(t 2 [151..250, 351..450]). The units in between are compromised by their

local connections and attempt to stabilize both orbits.

The second and third experiment involve a 4-unit linear network

(Figure 9(a)), and the 16-unit rectangular network (Figure 9(b)). Both

networks were presented with two input sequences: the ®rst was period 2

(i.e. input unit I1 was presented with the sequence (0, 1, 0, 1, . . .), and

input unit I2 was presented with the sequence (1, 0, 1, 0, . . .)), the other

was period 3 (i.e. I1 was presented with (0, 0.5, 1, 0, 0.5, 1, . . .) and I2 with

(1, 0.5, 0, 1, 0.5, 0, . . .)). In each case the input was started at t = 51, and

consisted of alternating 100 of the period 2 iterations with 100 of the

period 3 iterations. The results of applying adaptation to the character-

istic delays for the 4-unit and the 16-unit network are shown in Figures 18

and 20, respectively. The activations of the chaotic units are plotted in

Figures 19 and 21.

The ®nal values of the characteristic delays for the 4-unit linear

network are t1 = 2:19627, t1 = 2:60376, t1 = 2:99479, t1 = 3. Note that

unit 1 is a feature detector for inputs with period 2, while units 2, 3, and 4

have become feature detectors for inputs of period 3. Consequently,

Figure 19 shows that chaotic unit 1 quickly stabilizes a period 2 orbit in

response to a period 2 input (for t 2 [51..150, 251..350]). Unit 4 on the

other hand eventually stabilizes for period three input (for t 2 [151.. 250,

351..450]). The units in between are affected by both periods and so have

a mixed response.

The ®nal values of the characteristic delays for the 16-unit rectan-

gular network are shown in Figure 22. This ®gure clearly shows that the

inhibitory layer has been partitioned into units which have átiñ = 2 and

units which have átiñ = 3. Figure 21 shows the activation of two units

from each partition. Units 4 and 7 have átiñ = 3, and so develop a
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Figure 18. The characteristic delays of a 4-unit linear network presented with period 2 and 3

input sequences (experiment 2).
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Figure 19. The activation time series of a 4-unit linear network presented with period 2 and

3 input sequences (experiment 2).
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Figure 20. The characteristic delays of 4 units taken from a 16-unit rectangular network

presented with period 2 and 3 input sequences (experiment 3).
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Figure 21. The activation time series of 4 units taken from a 16-unit rectangular network

presented with period 2 and 3 input sequences (experiment 3).
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response to period 3 input by stabilizing a period 6 orbit. Units 5 and 9,

on the other hand, have adapted their characteristic delays so that

átiñ = 2, enabling them to respond to a period 2 input.

DISCUSSION

The results presented in this paper demonstrate the ability of a discrete

neural network to respond on periodic input by stabilizing into an

unstable periodic orbit. Delayed feedback control is used to respond to

the period of the input and the behavior of the network is affected

accordingly. Varying the input patterns, period-2, period-3 or chaos

allows the system to distinguish between information and the absence

thereof.

The spatial organization of the network makes it possible to allow

subsets of neurons to stabilize into different orbits depending on the

presented input. By dynamically modifying the characteristic delays of

the inhibitory units, the system can be trained to stabilize appropriate

orbits. In addition the input weights may be modi®ed to stabilize the

sensitivity of a subset of neurons for a particular input frequency.

Figure 22. The ®nal values of the characteristic delays for a 16-unit rectangular network

trained on period 2 and period 3 inputs (experiment 3).
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The activations on the chaotic layer act as a kind of dynamic re-

presentation. This representation consists of temporally and spacially

distributed patterns of activity across the chaotic units. When input

signals are present, the network has to resolve the reduced dynamics from

the input patterns with the chaotic behavior. Both of these types of dy-

namics are responsible for generating the stabilized dynamic patterns of

part of the network which are the internal recognition state for the input

signals being presented. One of the appealing aspects of this model is that

the self-organized representations which emerge are a consequence of the

resolution of internal and external dynamic states.

A signi®cant aspect of this model is that the representations (or

memories) generated are not stored as distributed patterns of weights

across network connections. Rather, the representations are embedded in

the dynamics of the system. This raises questions about the role of

learning and weight adaptation in networks like this. The adaptation rule

for the weights from the input layer to the inhibitory layer (LR1) is based

on extracting dynamic features of periodic input sequences. The weight

ki(t) is modi®ed according to the ®t of the characteristic delay of the

inhibitory unit against the frequency pro®le of the input unit. Both of

these types of weight changes are aimed at supporting the dynamics of the

network from which the representations emerge. The second learning rule

(LR2) is also designed to support the dynamics of the network. This

learning rule modi®es the characteristic delays of the inhibitory units,

which in turn determine which orbits are stabilized on the chaotic layer.

This is done by selecting delays that are inherent in the frequency pro®le

of the input signals. The application of both learning rules ensures that

the network is able to differentiate input sequences which have different

frequency pro®les. In other words, the network operates as a pattern

classi®er.

Further work on this approach will necessarily involve (i) assessing

how well this network model is able to generalize when presented with

noisy input and (ii) quantifying the capacity of the network in terms of

the number of distinct classes of input patterns it is able to recognize

without serious loss of performance. Meanwhile, the results presented

here demonstrate that it is possible to use chaos as a method of pattern

recognition, where recognition states are dynamic orbits which have been

stabilized according to the frequency pro®les of the input sequences. We

have also addressed the issue of adaptation in the context of a dynamic

network of this kind.
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