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Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, NO-7491, Norway
Department of Sport and Health Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK

Abstract
: Gait is a powerful tool to identify ageing and track diseaseBackground

progression. Yet, its high resolution measurement via traditional instruments
remains restricted to the laboratory or bespoke clinical facilities. The potential
for that to change is due to the advances in wearables where the synergy
between devices and smart algorithms has provided the potential of ‘a gait lab
on a chip’.

: Commercially available wearables for gait quantification remainMethods
expensive and are restricted to a limited number of characteristics unsuitable
for a comprehensive assessment required within intervention or
epidemiological studies. However, the increasing demand for low-cost
diagnostics has fuelled the shift in how health-related resources are distributed.
As such we adopt open platform technology and validated research
methodologies to harmonise engineering solutions to satisfy current
epidemiological needs.

: We provide an introduction to conduct a routine instrumented gaitResults
assessment with a discrete, low-cost, accelerometer-based wearable. We
show that the capture and interpretation of raw gait signals with a common
scripting language can be straightforward and suitable for use within modern
studies. We highlight the best approaches and hope that this will help
compliment any analytical tool-kit as part of future cohort assessments.

: Deployment of wearables can allow accurate gait assessment inConclusions
accordance with advocated methods of data collection as there is a strong
demand for sensitive outcomes derived from pragmatic tools. This tutorial
shows that instrumentation of gait using a single open source wearable is
pragmatic due to low-cost and translational analytical methods to derive
sensitive outcomes.

1 1 1 1 2

3 1 1

1

2

3

 Referee Status: AWAITING PEER

REVIEW

 14 Sep 2016, :2323 (doi: )First published: 5 10.12688/f1000research.9591.1
 14 Sep 2016, :2323 (doi: )Latest published: 5 10.12688/f1000research.9591.1

v1

Page 1 of 10

F1000Research 2016, 5:2323 Last updated: 14 SEP 2016

http://f1000research.com/articles/5-2323/v1
http://f1000research.com/articles/5-2323/v1
http://dx.doi.org/10.12688/f1000research.9591.1
http://dx.doi.org/10.12688/f1000research.9591.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.9591.1&domain=pdf&date_stamp=2016-09-14


F1000Research

 Alan Godfrey ( )Corresponding author: alan.godfrey@ncl.ac.uk
 Del Din S, Hickey A, Ladha C  How to cite this article: et al. Instrumented gait assessment with a single wearable: an introductory tutorial

  2016, :2323 (doi: )[version 1; referees: awaiting peer review] F1000Research 5 10.12688/f1000research.9591.1
 © 2016 Del Din S . This is an open access article distributed under the terms of the , whichCopyright: et al Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article
are available under the terms of the  (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 SDD, AG and LR are supported by the Biomedical Research Unit/Centre at Newcastle University. The research was alsoGrant information:
supported by the NIHR Newcastle CRF Infrastructure funding. AB is supported by the ADAPT, a Norwegian Research Council funded project
(FRIMEDBIO, 230435). Views expressed are solely those of the authors.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: No competing interests were disclosed.

 14 Sep 2016, :2323 (doi: ) First published: 5 10.12688/f1000research.9591.1

Page 2 of 10

F1000Research 2016, 5:2323 Last updated: 14 SEP 2016

http://dx.doi.org/10.12688/f1000research.9591.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.12688/f1000research.9591.1


Introduction
Human locomotion (gait) can be described as the ability to perform 
a whole body movement in a rhythmical and consistent manner to 
transverse a distance in a safe and upright posture. Its preserva-
tion is important for independence and longevity in older adults 
and crucial for people with movement disorders whose quality of 
life is further threatened by falls and multisystem deconditioning1. 
Its correct quantification is now recognised as a powerful tool to 
identify ageing2, enhance diagnostics, measure efficacy of inter-
vention and monitor disease progression2–4. Furthermore, its utility 
can be broadened to predict the risk of disease, falls, and cognitive 
decline5.

While gait speed is a useful global characteristic of performance6 
it may not capture the nature of underlying pathology7. Instrument-
ing gait to define more precise and clinical relevant spatio-temporal 
gait features (e.g. step time, step length) stem from the use of 
large, expensive mechanical laboratory-based equipment typical 
of clinical/laboratory facilities. A newer more practical approach 
has emerged in the form of wearable technology (wearables), 
i.e. lightweight, discrete and smaller accelerometer and/or 
gyroscope-based devices that can be attached to the body over/ 
under clothing. The added benefit of these devices is their suit-
ability for deployment in any setting: low-cost, continuous record-
ing for a multitudinous number of gait cycles8 and potential for 
quantifying novel frequency-based gait features9. Despite their 
obvious advantages, their use has been limited to academic studies 
rather than regular clinical usage within epidemiological studies. 
This can be attributed to: (i) poor agreement when compared to 
traditional laboratory-based reference equipment during validation 
studies8,10; and (ii) bespoke technical/engineering skills required 
to design/implement algorithms for the interpretation of the raw 
signals which differ due to attachment location, e.g. chest or 
waist11. The latter presents a signal processing challenge beyond 
the scope of any (typical) clinical researcher for whom the applica-
tion of wearables would yield greater dividends: gait assessment 
as an accurate and reliable prognostic tool for healthy and/or 
pathological populations2,12.

In this tutorial we address this problem which has hindered 
both engineering and clinical professions: development versus 
application. We provide an introduction on how gait can be instru-
mented with a single, low-cost wearable. This is informed by 
best practice, validated methodologies8,10 and a clinically relevant 
conceptual gait model7. We hope this tutorial will facilitate the 
utility of instrumented gait as a pragmatic tool for biomarker 
development in future epidemiological studies.

Materials and methods
Wearable technology: the mechanics
The common sensor within modern wearables comprises a tri-axial 
(medio-lateral, anterior-posterior, longitudinal) accelerometer: 
due to low manufacturing cost, miniaturised size and low power 
consumption8. Data digitisation and associated memory within the 
wearable, one full battery charge of a modern wearable is sufficient 
to gather data every 0.01s (100 Hertz) for 7 days. The equivalent of 
over 180 million (60 data point/second × 3 axis) data points to ana-
lyse a participant. Accelerometers quantify acceleration (measured 
in meters per second squared, m∙s-2), calculated from the varying 
voltage generated within the sensor during movement (e.g. gait), for 
detailed functionality refer to 13. The signal generated is a combi-
nation of acceleration due to (i) dynamic conditions where each axis 
is perturbed due to 3-dimensional motion and (ii) static conditions 
where gravity has a pronounced effect on one axis of the tri-axial 
accelerometer (depending on attachment orientation) making this 
sensor useful for measuring static posture (lying, sitting, standing).

Wearable technology: current options
There is a plethora of commercial wearables for gait studies, e.g.: 
GaitUp (foot), Opal (ankle), StepWatch™ (shank) and DynaPort 
(lower back). Each of the aforementioned may not offer the high 
sampling rates to gather ~180 million data points but all positives/
negatives depending on the research question and provision of 
pre-programed outcomes. Nevertheless, all may be constraint by 
proprietary software and hence inbuilt data analytics. However, a 
recent shift by manufacturers has seen the (intellectual property) 
shackles loosened/removed to allow access to the ‘raw’ wearable 
data for bespoke analysis, facilitating attachment to any anatomical 
location (e.g. Shimmer™)14,15. This has been driven by the rapidly 
developing ‘open-source movement’, a concept of allowing access 
to all technical schematics, software scripts and algorithm descrip-
tions. As such the potential for researchers (engineering/clinical) 
to analyse and interpret wearable signals has risen. One open-
source wearable is the movement monitor AX3 (from Axivity;  
dimensions: 23.0 × 32.5 × 7.6 mm; weight: 9 grams), which 
allows access to raw data and is not constrained by one anatomical  
location. While that device is low-cost, no proprietary software 
exists to aid analytics from the signals that are generated.

The following section details the instrumentation of gait in any 
environment. While numerous devices have been highlighted, we 
present a methodology for a high resolution device (100Hz) worn 
on the lower back.

Instrumenting gait
Due to the miniaturised form factor of most wearables, they  
can be worn discreetly on almost any body location. As different 

Box 1. Key messages

•     Cohort/pathological studies need objective methods 
of capturing outcomes sensitive to disease onset and 
progression.

•     Gait has been shown as a pragmatic and useful (bio) 
marker of incipient pathology, inform diagnostic, track 
disease progression and measure the efficacy of 
interventions.

•     Wearable technology offers the ability to capture gait data 
in any environment.

•     A validated conceptual model of gait is presented. We 
recommend its adoption and use of a single low-cost 
wearable on the lower back with supplied analytical 
methodology.

•     Quantified gait characteristics with wearables facilitate the 
possibility for personalised treatment and integration into 
modern telehealth infrastructures.
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accelerations are experienced at different anatomical locations, 
correct placement is of paramount importance when attaching 
the wearable11. This is because algorithms used to investigate the  
signal and compute spatio-temporal outcomes are dependent on 
signal characteristics such as repeatable signal shapes/features. 
Typically, gait research has aligned to use of wearables located as 
close as possible to the centre of mass (CoM), i.e. the lower back 
(typically, 5th lumbar vertebrae, L5). This best tracks whole body 
movement and for the purposes of instrumented testing a number 
of physical capability assessments and associated algorithms16. In 
another, it facilitates the use of a single wearable which reduces 
burden on the researcher and participant. This is of paramount 
importance during intervention or epidemiological studies where 
large patient numbers are recruited and tested12,17,18. The follow-
ing details a methodology for instrumented gait analysis that has  
been successfully implemented in several healthy and pathological 
studies8,10,12,18–20.

Device attachment. Commercial devices are usually equipped with 
a strap/belt/clip for attachment. For the purposes of instrumented 
gait it is preferable that the wearable is attached as firmly to the 
participant as possible, eliminating spurious movement due to 
slippage. This usually requires direct attachment to the skin with 
a combination of dermatological adhesive(s) (e.g. Hypafix, BSN 
Medical Limited, Hull, UK) and double-sided tape. However, 
during prolonged testing, the participant’s skin (if frail/dry) can  
become compromised as a result of slight wearable movement 
due to lack of protection from thin double-sided tape. A solution 
is to adopt an adhesive hydrogel (e.g. PALstickies, PALTechnolo-
gies, Glasgow, UK) which provides additional padding due to its 

thicker design. Some motion artefact (slippage) and misalign-
ment due to correct orientation and placement may be eliminated 
at the pre-processing stage from previously recommended  
procedures21,22. Generally, under controlled gait assessment motion 
artefact is minimised due to a stringent and structured protocol. 
(Note: alternate locations (e.g. chest, waist) may be possible, 
depending on the robustness (suitability) of the algorithm used 
to accurately detect gait events for different locations other than  
from its intended use20).

Protocol & gait characteristics. Validated instrumentation has 
shown that the use of a single wearable on L5 can capture 14 clini-
cally relevant gait characteristics10,16. Derived from a conceptual 
model (Figure 1a) they have been shown to be sensitive to age and 
pathology2. Previous research suggests that the participant should 
perform a 2 minute continuous walk over a straight, or alternatively, 
looped path (Figure 1b) to record a sufficient number of gait cycles 
during steady state walking which improves the reliability of gait 
variability and asymmetry1,3. If steady state walking is required 
then the first 2.5 m of walking should be excluded23. If a testing 
environment doesn’t permit the use of a continuous walk, repeated 
intermittent walks and pooling of data is recommended. However, 
gait initiation/termination and their associated acceleration and 
deceleration periods may negatively influence results. This can be 
minimised by excluding the first and last steps (values) of the walks 
before pooling.

Data import & segmentation. Matlab® is a scripting program-
ming language for general scientific computing that utilizes matrix 
oriented high-level programming for a large number of numerical 

Figure 1. (a) A conceptual model of gait showing 5 domains and 16 characteristics, M, A and V refer to mean, asymmetry and variability, 
respectively. 14/16 characteristics can be replicated with a single wearable worn on L5, step width (mean and variability) cannot.  
(b) A suitable path to test gait. The (suggested) 25m loop shown has sufficient linear paths to sustain steady state walking, while the 
curvilinear paths should be shallow enough to avoid abrupt directional changes.
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tasks on many common platforms. Data processing can be achieved 
using existing and/or prototypic algorithms via script or command 
structure interfaces24,25. Its support network (‘Matlab Central’), 
comprehensive toolboxes and ability to be translated to open- 
source languages (e.g. PythonTM, Octave) make it suitable for 
the processing of (gait) data into other programming software 
types26–29. Therefore, for the purposes of this tutorial Matlab® 
pseudo-code is provided.

Data must be downloaded from the wearable via associated soft-
ware and saved securely. Data recorded by the wearable and saved 
by the proprietary software (including open-source) will typically 
be made available as a comma separated value (.csv) file due to its 
exchangeability. Importing the data to Matlab® (Appendix 1, 1) 
can be achieved through the use of the xlsread function which 
offers the freedom to import data from a single or multiple column 
array(s) within a specified spreadsheet (Appendix 1, 2).

Once imported, data will automatically be saved to Matlab®  
workspace as a variable. Typically some generic movement 
data will be recorded by the wearable during a testing session 
before/after the gait task and will need to be removed. If saved 
via a spreadsheet, erroneous data can be highlighted and deleted, 
trimming the data. If intermittent walks were performed, data can 
be segmented manually in the spreadsheet format prior to import-
ing. (Note: Those familiar with Matlab®, the ginput function can 
be used to segment data; enables user to define the exact start/end 
of the walk due to cursor point and click on a plot and save the 
x-axis values (samples/frames), Appendix 1, 3).

Data preparation: pre-processing. Data captured by wearables are 
subject to ‘noise’: random fluctuations in the signal due to con-
necting hardware and/or external interference. Removing noise can 
be achieved by filtering. There are many techniques one can apply 
to a signal (e.g. Butterworth, Chebyshev), each with their own 
advantages/disadvantages. Essentially, filters are deemed useful 
depending on how well they can remove the unwanted signal due to 
various associated parameters. Care must be taken when choosing 
those values as it may impact algorithm analysis, feature extraction. 
Nevertheless, the literature details the most common method as the 
4th order Butterworth filter with a cut off-frequency between 15–20 
Hertz (Hz), Appendix 1(4). (For a comprehensive assessment of 
pre-processing of wearable gait signals refer to 30).

Correcting for offset & misalignment. When the wearable is 
attached to the participant, it is generally understood that the  
orientation or alignment of the device is offset due to attachment 
error and participant body shape. Additionally, gravity exerts a 
force, most notable on one axis. Attachment error and gravity can be 
easily overcome by asking the participant to remain still upon initial 
attachment and recording a few seconds of (quasi) static activity 
in a standing posture. The average/mean of the values captured by 
each axis in this posture is later subtracted from corresponding axes 
to eliminate offsets and misalignment.

However, this method is best suited to correct acceleration data in 
static postures only and not recommended for post-processing of 
gait data22. The correct approach is to transform the tri-axial data 

into a horizontal-vertical orthogonal coordinate system, i.e. using 
trigonometry relating to the Cartesian coordinate system22,30. The 
methodology relies on calculating and correcting for the best esti-
mates of the (offset/misalignment) angles (θ ) between the true 
horizontal-vertical and that of the raw anterior-posterior (a

a
) and 

medio-lateral (a
m
) accelerations. While the accelerometer within 

the wearable cannot provide the rotational angle (gyroscopes), it 
is deduced22 that the average value of a

a
 and a

m
 will approach the 

sin of the angles within the same directions, Equation 1–Equation 4 
(translated code Appendix 1, 5). By applying the inverse sin (arcsin) 
methodology, one can derive the necessary values needed to correct 
offset/misalignment in four straightforward, recommended30 steps:

(i)   Correction in the anterior-posterior plane (a
A
, note change 

of subscript case):

              a
A
 = a

a
 cos θ

a
 – aν sin θ

a
                                       (1)

(ii)   An interim correction (a’ν) in the vertical direction must 
be derived before a true value for a

V
:

              a′ν = a
a
 sin θ

a
 + θν cos θ

a
                                       (2)

(iii)  Interim values in the vertical direction used to derive a
M
 

              a
M
 = a

m
 cos θ

m
 – a′ν sin θ

m
                                       (3)

(iv)  Finally, a
V
 may now be estimated:

              a
V
 = a

m
 sin θ

m
 + a′ν cos θ

m
 – 1g                               (4)

The above is achieved through mean, sin, cos and arcsin functions 
along with basic matrix multiplication (Appendix 1, 5).

Algorithms. Methodologies have been developed to quantify  
temporal and spatial characteristics for a wearable on L5, compari-
sons can be found here31. All aim to identify two features of gait: 
initial contact (IC, i.e. heel strike) and final contact (FC, i.e. toe 
off), Figure 2a. A robust temporal method31 uses wavelets32. This 
methodology is a powerful signal processing tool that has been 
used successfully in gait and postural transition analysis32–34, yet 
its use remains limited due to complexity. The basic premise is 
that it offers an extension on the Fourier transform by two proce-
dures: continuous (CWT) and discrete (DWT) wavelet transforms. 
Detailed descriptions is beyond the scope of this manuscript, but 
can be easily described; (i) CWT: a correlation between waveforms 
(raw signal and probing function, i.e. wavelet) at different scales 
(~ frequencies) and positions (in time), where the resulting coef-
ficients roughly correspond to the best match; and (ii) DWT: a  
combination of high/low pass filters to divide up a (raw) signal 
into various components. (see 35 in depth descriptions refer to).  
Nevertheless, implementing a CWT algorithm32 for IC/FC event 
detection can be relatively straightforward if utilising the Wavelet 
Toolbox within Matlab®, Appendix 1(6): 

(i)   Numerical integration of the raw vertical acceleration  
(a

v
) with the function cumtrapz 

(ii)   Differentiation of the integrated signal with the cwt  
function (Wavelet ToolboxTM Matlab®) resulting in signal 
S1, Figure 2b 

(iii)   Find S1 local minima times, which equate to IC, through 
the use of the findpeaks function, Figure 2b
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Figure 2. Gait signal from a young healthy adult (a) The gait cycle with depictions of stride, step, stance and swing characteristics from 
the IC/FC events (b) The raw signal (aν), integrated and differentiated CWT signals with corresponding IC/FC events. The IC/FC sequence 
must be amalgamated into one numerical array from the alternating peaks/troughs to estimate the correct timing sequence for stride, step, 
stance and swing times. (c) Step length can be derived using Equation 5, where h is derived from change of wearable height due to double 
integration of vertical acceleration (implementing cumtrapz function twice).

(iv)   Differentiate signal S1 with cwt function to get signal 
S2,

(v)   Find local maxima (FC) times of signal S2 by using  
findpeaks, Figure 2b 

Temporal characteristics. To fully replicate the characteristics 
of gait: step, stance, stride and swing times must be derived. This 
is achieved through the  sequence of IC/FC events in relation to  
the double support phase of the gait cycle (see Figure 2). From the 
sequence (i) of IC/FC events, both left and right (opposite) events 

are identified, and subsequently step, stride, stance and swing  
times are estimated (Equation 5–Equation  8). For full details of 
calculating these parameters see 10,36.

Spatial characteristics. A spatial algorithm based on the inverted 
pendulum model tracks the CoM37. However, the model is reliant 
on a known variable, wearable-height. This manual component is 
a weakness: requiring a known input and can have weak accuracy 
for step length or total distance walked8,12. Yet it remains a useful 
metric to compute via the simple relationship shown in Equation 5, 
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where l is wearable height and h is change in height of the wearable 
(i.e. CoM) as the participant walks, Appendix 1(7). Subsequently, 
by fusing the algorithms from Figure 28,10, it is possible to quantify 
an estimate for step velocity (Equation 6 and Appendix 1, 7). How-
ever, implementing the cumtrapz function to derive velocity and 
speed from acceleration introduces an error known as drift. This 
can be eliminated through the use of filtering, but generally remains 
problematic within wearable gait analysis.

                 
2Step length 2 2 –lh h=                            (5)

                 
step length

Step velocity
step time

=
                         

(6)

Variability and asymmetry characteristics. It is useful to distin-
guish between left/right step characteristics for variability and 
asymmetry outcomes (Equation 11 a, b and 12, Appendix 1, 8) in  
asymmetrical diseases38. Differentiating between left/right dur-
ing a long continuous walk is easier (assume first as left or right 
and alternate values thereafter) compared to repeated intermittent 
walks when (for robustness) it would be recommended to note what 
foot was used for initiation8. Alternatively, a protocol could request 
the participant initiates walking with the same foot. Subsequent  
assignment of values to left/right can be made during data analysis 
by manually dividing the data. (For the readers interest, left/right 
steps may be identified by automated but more complex algorithms 
and can be found here: 32,37). Correct calculation of variability1,10  
and asymmetry is performed by:

                   

–left right
left  & right

variance variance
Variability

2
=

             
(7a)

or

                     Variability = SD(Steps)                                               (7b)

                      Asymmetry
left & right

 = |average
left

 – average
right|                     (8)

Dataset 1. Raw data for 'Instrumented gait assessment with a 
single wearable'

http://dx.doi.org/10.5256/f1000research.9591.d135369

Data for 5 (#1 - #5) healthy younger adults provided: 20–40 years, 
with demographic details within each spreadsheet. (Plot the data 
from each axis to determine orientation, if vertical is orientated at 
+1g, this can be inverted by multiplying all data by -1). All walks 
performed at the participants self-selected preferred pace for 
2 minutes collected at 100Hz with a wearable worn on L5. Date 
format mat be converted by the Matlab® function datestr.

Discussion and conclusion
Our aim in this paper has been to present an introductory tutorial, 
learned from best practice and robust methodologies to instru-
mented gait with a single wearable. Drawing on a validated concep-
tual model we provide a suitable and robust means to quantify and 

implement an analysis framework to derive 14 clinically relevant 
gait characteristics, for quantification in any environment. This has 
practical implications for the understanding of instrumented gait in 
future epidemiological studies, as a useful diagnostic.

It is important to consider the limitations associated with a single 
tri-axial accelerometer wearable. Direct integration of the raw 
acceleration data can amplify errors in calculation and compro-
mise the integrity of results. Raw acceleration data varies among 
controls and across pathologies, as such universal processing (algo-
rithms) recommendations are difficult to derive39. Location of the 
wearable in this example is specific to the algorithms’ functionality 
and therefore gait outcomes quantified from alternation locations 
should treated with caution20.

Though implementing the algorithm and associated signal  
processing techniques can seem straightforward, initial famil-
iarisation with the scripting language(s) and implementation of 
code can be daunting. Nonetheless, the methodologies presented 
here provide an opportunity to add more informed, objective data 
to future epidemiological studies. Wearables are being increas-
ingly used in free-living environments, richer in habitual behav-
iours and aligning with developing telehealth infrastructures5,12.  
Understanding the abilities as well as the limitations of existing 
technologies by all professions can help harmonise technological 
resources and find application in alternate fields of research.
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Appendix 1. Listings to implement algorithm analytics, code highlighted in bold font.

Listing Code and descriptions

1 General scripting 
The different font text (below) may be input to the Command Window of Matlab®. Wording within Matlab® (like most scripting 
languages) is case-sensitive e.g. “Variable” ≠ “variable”. Words appearing after the ‘%’ are ignored, this is a useful method 
to insert comments within code for clarity. It is important to remember that Matlab® deals with rows and columns of data. For 
example the variable Data, a 100 (row) × 4 (column) matrix, 
Column 1 = Data(:,1); 
Row 57 = Data(57,:); 
Row 12, column 3 = Data(12,3); 
For further information refer to the ‘Matlab Central’ file exchange. It is a useful resource with many tips and code not already 
detailed within Matlab®. Within the package is a useful ‘help’ functionality that will inform about any code i.e. mean, standard 
deviation, integration. Moreover, it will (usually) detail how the named function is best applied with examples. When creating 
variables, its best to use descriptive names such as outcomes, e.g. ‘ParticipantHeight’ (no spaces). The variable name 
is stored/displayed in the Workspace. Typically data are stored as a numerical array (rows, columns) and are manipulated 
through by the functions within the package. ‘help mean’ returns detailed usage of the mean function and how the mean of 
an array of values may be found. Within the help text will be suggested functions similar to what was queried, in this instance 
median, std*, min, max, var*, cov*, mode are displayed. (*standard deviation, variance and covariance)

2 Importing (reading) data 
AccData = xlsread(‘GaitData.xls’, ‘Sheet1’, ‘A1:C1000’); 
The variable created (AccData, accelerometer data) is to the left of the equation. Data are written to that variable from a file 
(‘GaitData.xls’) within the sheet (‘Sheet1’), 3 columns wide (spreadsheet columns A to C; tri-axial data) and 1000 lines long, 
i.e. gait sampled at 100 Hz (0.01 times a second) for 100s.

3 Plotting and manual segmentation 
Use of the ginput function will accompany plot where the gait data are displayed via a figure. Plot allows the researcher to 
visualise the data, 
ginput to specifically highlight the start and end of the walk. Suggested use of plot and with ginput: 
plot(AccData);                                                                         % plots tri-axial accelerometer data 
legend(‘Vertical’,’Medio’,’Antero’);                                        % attaches a legend to the plot figure/window 
xlabel(‘Samples’); ylabel(‘Gravity (g)’);                                % labels x and y 
StartStop = ginput(2);                                                            % saves 2 x and y coordinates from user input clicking on plot 
For the purposes of defining start/end points within accelerometer data, refer to the 1st column of 
StartStop,as follows: 
StartStop(:,1);

4 Filtering 
The 4th order Butterworth filter is the most common within the literature, with a cut off frequency of 15–20Hz (usually accepted 
to capture human movement. Filters induce lag within a signal, i.e. delay or distortion, which must be corrected by running 
back through the filter. 
[B,A] = butter(4, Wn);                                                              % 4th order, Wn is cut off freq., correct to half sampling rate 
Run forward/backward using filtfilt to avoid distortion: 
AccDataV = AccData(:,1);                                                       % Assign vertical acceleration, column 1 of AccData 
AccDataFilt = filtfilt(B, A, AccDataV);                                    % Will generate the required filtered data

5 Acceleration correction to horizontal-vertical frame22 
Aa = AccData(:,2);                                                                   % Assign aa direction, column 2 
am = AccData(:,3);                                                                  % Assign am direction, column 3 
avMean = mean(av);                                                                % Mean of av as best estimate of sin(θv) 
amMean = mean(am);                                                             % Mean of am best estimate of sin(θm) 
aA=aa*cos(asin(aaMean)) – av.*aaMean;                              % Equation 1 
avv=aa*aaMean+ asin(aaMean).*cos(asin(avMean));          % Equation 2 
aM=am*cos(asin(amMean)) – avv.*amMean;                        % Equation 3 
aV=am*sin(asin(amMean)) + avv.*cos(asin(amMean))–1;   % Equation 4

6 Integration and peak detection  
av = AccData(:,1);                                                                   % av assigned to column 1 
Integratedav = cumtrapz(av);                                                 % Numerical integration of av 
fs = 100;                                                                                   % Define sample frequency as 100Hz 
CWTIntegratedav = cwt(Integratedav, 10, ‘gaus1’, 1/fs):      % using Gaussian CWT at scale 10 
The derivatives are calculated by a weighted average which corresponds to a smoothing function dependant on the scale 
and negative sign of the CWT40. 
[Peaks, Locations] = findpeaks(S1);                                      % Locates the Peaks (values) and locations (time/samples) 
IC can now be assigned to Locations: 
IC = Locations;                                                                        % Peaks may need examination, depending age, pathology10.
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Listing Code and descriptions

7 Calculating temporal gait characteristics from the IC/FC events 
Typically this is achieved by subtracting IC events from following IC/FC events within a looped array, undertaken by for/end 
loop as shown below. An array of SwingTime values can be estimated externally from the loop once all the stride and stance 
values have been calculated. 
for i = 1:length(IC)                                                                    % The for loop must be iterate a predefined 
           StepTime(i) = IC(i + 1) – IC(i); 
           StanceTime(i) = FC(i + 1) – IC(i); 
           StrideTime(i) = IC(i + 2) – IC(i); 
end 
SwingTime = StrideTime – StanceTime;

8 Integration and spatio-temporal estimations 
hvel = cumtrapz(av);                                                               % Integrate to estimate velocity, 
h = cumtrapz(hvel);                                                                 % further integration will derive position 
StepLength = 2(sqrt(2*(Wearable Height) *h – h^2));           % Inverted pendulum, Equation 5 
StepVelocity = Step Length/Step Time;                                 % step velocity estimate, Equation 6

9 Variability and asymmetry calculations 
Allocate left (first step within StepTime array) and right steps: 
StepTimeLeft = StepTime(1:2:end,:);                                     % from 1st data point to end 
StepTimeRight = StepTime(2:2:end,:);                                  % from 2nd data point to end 
Step time variability & asymmetry: 
StepTimeV = sqrt((var(StepTimeLeft)+var(StepTimeRight))/2);      % Equation 7a 
or 
StepTimeV = std(StepTime);                                                               % Equation 7b 
and 
StepTimeA = abs(mean(StepTimeLeft)–mean(StepTimeRight));    % Equation 8
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