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ABSTRACT: An analytical method for the study of the nonlinear forced vibrations and their stabilities of an elastically 

restrained tapered cantilever beam due to a direct periodic excitation is developed. The method of harmonic balance is 

used to study the steady state frequency response of the beam system for different values of physical parameters such as 

the root translational and rotational stiffness and the beam taper ratio. Results are presented for the first three modes of 

vibration. The stability of the frequency response for some selected values of the physical parameters is investigated, 

i.e. the regions on the frequency response curves at which the solution may bifurcate and then culminate into chaos. The 

qualitative features of the solutions are studied and identified using phase plane, Poincare maps and Fast Fourier 

Transform. The results are presented, discussed and conclusions on the elastically restrained tapered beam nonlinear 

dynamics are drawn. 
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1. INTRODUCTION 

 

Beams with continuous changes in cross sectional area along with the beam axis, i.e. tapered beams, 

have been extensively used in many civil and mechanical engineering structures such as; such as 

offshore structure piles, oil platform supports, oil-loading terminals, tower structures, bridges, 

lighting standards, rotating tapered blades and moving/rotating arms.  Tapered beams are also 



increasingly being used in the construction industry, due to their particular specifications and 

unique ability to combine efficiency, economy and aesthetic architectural needs.  They have the 

capability to optimise weight and strength despite the cost of fabrication of tapered members. 

 

Since tapered beams can model many engineering structures that require variable stiffness along the 

beam axis “length”, designs and analyses of such structures have attracted considerable interest and 

many researchers have directed their efforts and much research have been devoted towards the 

mathematical modelling and dynamic behaviour. 

 

Studying the dynamic analysis and vibrational behaviour of tapered beams enables the pre-

determination of undesirable behaviour such as resonance, large vibration levels and unstable 

vibration behaviour. The results of which will help designers and engineers predict the dynamic 

behaviour and enable them to impose suitable vibration control strategies to achieve optimum and 

safe behaviour. 

 

Having realized the vital role of the accurate mathematical modelling of tapered beams and having 

recognized their importance in studying dynamic behaviour researchers published many studies and 

reported analysis to deal with calculating natural frequencies and modes shapes either for small or 

large amplitude vibrations.  Broad surveys and literature on these subjects can be found in [1-14].  

In fact, most of the previous research in this direction has been oriented towards the calculation of 

linear natural frequencies and mode shapes, with different end conditions and with attached inertia 

elements at the free end of the beam. 

 

In general, tapered beams may have relatively high flexibility due to their high aspect ratio and as 

they are usually subjected to various excitation loads such as wind loads, wave loads, etc., the 

prediction of their steady state response, nonlinear forced vibrations and stability of these large 

amplitude vibrations is extremely important for design, control and analysis. 



 

The objective of the present work is to extend the analysis and the results obtained in [13, 14] by 

studying the non-linear, planar, large amplitude forced vibrations of an elastically restrained tapered 

beam for the cases of a double taper beam and a single taper “wedge shaped beam”. The 

mathematical model is derived using the Lagrange method and the resulting continuous equation is 

discretised using the assumed mode method. The inextensibility condition [14-17] is used to 

determine the axial shortening due to transverse deflection in the formulation of the kinetic energy 

of the beam and the nonlinear curvature is used in the potential energy expression. 

 

Abdel-Jaber et al. [13, 14] undertook a complete study into the non-linear natural frequencies of an 

elastically restrained tapered cantilever. Their results documented a parametric study into the 

frequency-amplitude nonlinear relation under different physical parameters and combinations. The 

tapered beam system results have shown that, for the first and second modes the behaviour is 

changed from a hardening type to a softening type when the taper ratio is increased, whilst the third 

mode is always of a softening type regardless the value of the taper ratio (a hardening behaviour 

leads to an increase in the natural frequency of the beam when the vibration amplitude increases and 

a softening behaviour to a decrease in natural frequency). For a given value of taper ratio the 

authors showed that the nonlinear natural frequency of a double tapered beam is higher than that of 

a single tapered beam. The authors also produced results for the effect of the stiffness of the 

connection between the cantilever and the ground on the nonlinear natural frequency; it was shown 

that the nonlinear natural frequency changes from a softening to a hardening behaviour depending 

upon combinations of the physical parameters of the connection stiffness and the vibration 

amplitude. 

 

As the physical properties of cantilever beam systems such as connection stiffness may change 

during operation studying the steady state response under periodic excitation is extremely 

important.  



 

In the light of the above review, the objective of this work is to extend the analyses in [13, 14] and 

to analyze the periodic steady state response of the nonlinear oscillator which describes large 

amplitude planar vibrations of an elastically restrained tapered beam, under different values of root 

translational and rotational flexibilities. Furthermore, the stability of the obtained solutions is 

investigated and discussed to determine for a selected range of system parameters the regions of 

period doubling bifurcations and chaos on frequency response curves. 

 

To the authors’ knowledge, despite its physical importance, studies dealing with forced vibrations 

and their stability of tapered beams are not commonly available. 

 

 

2.  DERIVATION OF THE EQUATION OF MOTION 

 

For the system shown in Figure 1 a complete derivation of the equation of motion is presented in 

[14] and for the sake of brevity it will not be presented here.  
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(a) Schematic for the tapered beam                                 (b) The deformed inextensible beam 

Figure 1. Beam schematics 



 

The rotational and translational stiffnesses of the elastic restraint at the cantilever root are denoted 

by rK  and tK  respectively. The Lagrangian of the system under consideration is given by: 
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   is the normalized, self-similar (i.e. independent of the motion amplitude) assumed mode shape 

of the beam and  ˆq t  is an unknown time modulation of the assumed deflection mode   . A dot 

is used to denote a derivative with respect to the non-dimensional time. 

 

For a double tapered beam 2
1

*
1  AA  and 4

1
*
1  II  and for a single tapered wedge beam  1

*
1 AA  

and 3
1

*
1  II . As can seen i , 4,..,1i  are functions of the system physical parameters, so that any 

variation in any physical quantity such as the root flexibility will be reflected in the calculated 

values of i . 

 



To study the forced planar response of the beam system, a periodic excitation  ˆQ t  is assumed to 

act only in the y direction, the beam transverse direction. Upon the application of the Euler-

Lagrange equation 
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where Q  is the generalized force, which can be determined from the principle of virtual work, 

 W Q y   . Assuming    0
ˆ ˆcosQ t F t  , the discrete beam nonlinear equation becomes 

 

                                                     t̂cosFqqqqq2qq 05
22

2
3

43
2

1     (7) 

 

where  c5    for a concentrated load which is assumed to act at an arbitrary point c  along the 

beam span and  
1

5 d 


  for a distributed load acting from   to the end of the beam. It is to 

be noted that some of the coefficients i  in Eqs. (2-5), increase sharply and attain relatively large 

values at higher modes of the beam. Therefore, for convenience, Eq. (7) is scaled and converted to 

the dimensionless form 
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For the stability analysis the damping of the beam system is assumed to be viscous, with damping 

coefficient  , which can be added to the system, also the excitation level for convenience is 

rescaled such that 003 FF  . The equation of motion takes the form: 
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Eq. (9) describes the non-linear, planar, flexural free vibration of the inextensible elastically 

restrained tapered beam. In this equation, the terms 2
1 qq  and 2

1 qq   are inertial non-linearities due 

to the kinetic energy of the axial motion which arise as a result of using the inextensibility condition 

and they are of a softening type. The non-linear term 3
2q  is due to the potential energy stored in 

bending and arises as a result of using non-linear curvature and it is of a hardening static type.  

 

 

3.  ANALYSIS 

 

Approximate analytical solutions for the periodic steady state response, having the same period as 

the excitation, of the nonlinear oscillator described by Eq. (9) are obtained using the harmonic 

balance method (HB). To simplify the analysis a new time t T   is introduced so that Eq. (9) 

becomes 
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where dots are derivatives with respect to the new time T . 

 

 

 



3.1 Steady State Solution, Harmonic Balance Method (HB) 

 

According to the Harmonic Balance method, an approximate single term solution (SHB) of Eq. (10) 

should contain sine and cosine terms, but with the same harmonic. To avoid this, an unknown phase 

  can be introduced to the excitation, and Eq. (10) takes the form 
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In this way, one may introduce a fundamental harmonic response containing a single trigonometric 

term only, which takes the form 

 

                                                                       T cos A Tq                           (12) 

 

where A is the steady state response amplitude. Substituting Eq. (12) into Eq. (11), neglecting any 

third harmonics which arise, and equating coefficients of first harmonics the following equations 

are obtained: 
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(14) 

 

To eliminate the unknown phase , the steady state frequency response is obtained by squaring and 

adding Eq. (13) to Eq. (14) and solving for 2 , for a given value A. 

 



The accuracy of the solution obtained from the SHB approximation can be improved by adding 

higher harmonics in the assumed solution given in Eq. (12). In this paper one more term is added to 

this equation, whereby the two-term approximation (2THB) to the steady state solution of the Eq. 

(11) with odd nonlinearities in the form 
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Substituting Eq. (15) into Eq. (12) and following the same procedure, i.e. neglecting higher-order 

harmonics, the following coupled nonlinear algebraic equations for A1, A3, B3 and the phase   are 

obtained: 
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A steady state solution of the system can be obtained by solving the nonlinear equations given in 

Eq. (12) and Eq. (13) for the SHB and by the nonlinear equations given in Eqs. (16)-(19) for the 

2THB using a numerical procedure. For the sake of brevity, a detailed procedure for solving such 

nonlinear systems is not given in this paper but is presented in [15-17]. 

 



4.   STABILITY OF STATE SOLUTIONS 

 

The stability analysis of the approximate harmonic balance solutions given in Eq. (11) and Eq. (14) 

may be carried out by introducing a small perturbation  Tv  to the assumed solution in Eq. (12) by 

substituting 
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into Eq. (10). This leads to the following non-linear variational equation 
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The stability is governed by the linearised version of Eq. (21). In addition, the excitation term on the 

right-side is deleted, because it has no influence on stability, this leads to the following Hill’s type 

equation: 
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By virtue of Floquet theory, a particular solution of the linearised variational equation, is sought 

in the form [17]: 

 



                                                                     TeTv T                            (23) 

 

where   is defined as the characteristic exponent and  T  is a periodic function with periods T 

and T/2 since the dimensionless frequencies of the sine and cosine terms in Eq. (22) are 2, this 

introduce the periods T and T/2. The solution of  T  is stable (respectively, unstable) if the real 

part of   is negative (positive); and the real part of   is zero on the boundary between stable and 

stable regions. In addition, some results are presented for the case of asymmetric solution and their 

stability by substituting 

 

                                        TvTcosAATu 10                   (24) 

 

where oA  is a constant bias and 1A  is the amplitude. The results are of importance because they 

give good indication about the region at which the steady state solution bifurcates and causes period 

doubling and then chaotic behaviour. 

 

For a full detailed procedure regarding the stability analysis either using single term as the one 

assumed in Eq. (20), two terms or biased solution as in Eq. (24), the readers are invited to consult 

reference [17]. 

 

 

5.   RESULTS AND DISCUSSION  

 
The steady state frequency response of the non-linear, single mode, temporal equation of motion 

Eq. (9) of the elastically restrained tapered beam as shown in Figure 1, was calculated analytically 

using the harmonic balance method and with an excitation level oF ,  for different values of the 



physical system parameters rK , tK ,  ,   where rK  is the  rotational stiffness and  tK  is the 

translational stiffness  of the elastic restraint at the cantilever root;   is the taper ratio defined by 

1

2

b
b  and   is the damping coefficient. Here and for the sake of convenience the beam root 

stiffnesses are introduced in terms of their flexibilities, lKEIC r1r   and 3
t1t lKEIC  . For 

example, for a clamped end 0CC tr  . 

 

To calculate the parameters 1  and 2  given in the nonlinear Eq. (9), for selected values of the 

physical parameters, the integrals in Eqs. (2-5) defining the coefficients i  were evaluated 

numerically. 

 

The results show that for a given value of  the nonlinear natural frequency of a double tapered 

beam is higher than that of a single tapered beam. In addition, the effect of the beam’s root 

flexibility, was shown in [14] to have a significant role in the behaviour and dynamics of the beam, 

i.e. the behaviour was changed form a softening to a hardening behaviour depending on 

combinations of the physical parameters of the beam’s root flexibilities rC and tC . 

 

The nonlinear frequency response of the beam due to excitation are dominated by the two 

competing non-linearities - softening “  22
1 qqqq   ” and hardening “ 3

2q ” nonlinearities, and the 

behaviour of the elastically restrained tapered beam considered in this paper is either hardening or 

softening depending on the ratio 21  [9], which are calculated from values of i  given in Eqs. (2-

5). 

 

In Table 1, some numerical values for the ratio    21 /   are presented for different values of rC  

and tC  and for the first three modes of vibration. 

 



 
Table 1. Sample numerical values for the ration    21 /  for different values of rC  and tC  for 

the first three modes 
 

   Rotational Flexibility rC   
   0Cr  1Cr  5Cr  10Cr  
 
 

First 
Mode 

Translational 
Rotational 

Flexibility tC 

0Ct  0.36 8 56 611.1 

5.0Ct  2.36 8.70 33.4 299.2 

1Ct  2.45 11.09 30.11 176.74 

5Ct  2.57 30.87 46.6 93.47 

 
Second 
Mode 

Translational 
Rotational 

Flexibility tC 

0Ct  1.35 1.476 1 2.468 

5.0Ct  0.61 8.7 9.44 9.54 

1Ct  0.51 4.9 16.46 24.225 

5Ct  0.44 5.11 34.0 209.9 

 
Third 
Mode 

Translational 
Rotational 

Flexibility tC 

0Ct  2.95 2.48 2.4697 2.468 

5.0Ct  1.63 1.80 1.40 1.28 

1Ct  1.63 1.78 1.35 1.22 

5Ct  1.63 1.76 1.32 1.19 

 
 

As an example and to shed more light on the nonlinear dynamics of a tapered beam, results for 

forced vibration are obtained and presented in Figure 2 for selected values of the physical 

parameters rC , tC ,   and  . In Figure 2(a), results of the steady state frequency response are 

obtained for the first mode of vibration for 0tC  , 0.1  , 0.1   and for the indicated values of 

rC . These results show that the frequency response of the first mode is bent towards the right, i.e. 

the frequency exhibits a hardening behaviour, when the value of 0rC  , and the frequency exhibits 

a softening behaviour “ bend to the left” for other values of rC . This is due to the fact that when 

1 2/     1.6    the behaviour is of hardening type and when 1 2/     1.6    is of a softening type 

[16, 18]. For the second mode, the behaviour is of hardening type for all values of rC  except the 

case 10rC  (see Figure 2(b)). In Figure 2(c) the behaviour of the third mode is of softening type, 

for all values of rC  and tC . Note that in this case the curves for 1, 5 and 10r r rC C C    have 

coalesced onto the same curve.                                                                                                                
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                        (a)  First mode                                                (b) second mode 
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(c) Third mode 

Figure 2.  Steady state frequency responses for 0.1, 0 and 0,1,5,10t rC C    
                       ,       

( 0rC                      , 1rC                    , 5rC                     and 10rC                   ) 

The stability analysis of the nonlinear oscillator described in Eq. (9) was verified near the principal 

resonance zone for selected values of system parameters 0F , 1 , 1  and  , using computer 

simulation and with the aid of Time histories, Phase Plane, Poincare Map and Fast Fourier 

Transforms (FFT). 

 



Results for a softening type oscillators, i.e. 6.121  , are presented in Figure 3 with the 

parameters 0F , rC , tC ,   and  chosen to be 5, 0.5, 10, 0.1 and 0.1 respectively of the second 

mode of vibration of the elastically restrained tapered beam. 
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Figure 3: Steady State Frequency Response (SSFR), First Order Stability (1st Stab.), Second order 

Stability (2nd Stab.), Biased Solution and Its Stability.      0 5F  , 5.0Ct  , 10Cr   and 1.0   for 

the second mode: 

( SSFR                  ,  1st Stab.                  , 2nd Stab.                , Ao                   , A1 

and ○○○○○○○○ unstable Ao and A1) 

 

In Figure 3, using the HB method, the steady state response first and second order unstable regions 

are obtained using a single term only, in addition to the biased solution and its stability given in Eq. 

(24). It is known that the first order unstable region intersects the steady state response curve at the 

vertical tangency point. In the same figure the biased solution and its stability are also shown. The 

dynamics behaviour was verified numerically and steady state numerical solutions were obtained in 

the resonance area. The steady state response curve enters the second unstable region at 4.1 , 

and the biased solution is unstable at 06.178.0  , at which there is a possibility of period 

doubling bifurcation PDB, i.e. the PDB can occur also for 40.1  in addition to range predicted 

by the stability analysis of the biased solution. Numerical simulations have shown that, by 

increasing the frequency, the PDB is first observed at 99.0  followed by T3  and T9  attractors 



at 04.1  and 055.1  respectively, and they develop into chaos at 11.1 . The first chaotic 

zone observed is in the range 29.111.1   and then ends by a T3  attractor. The T3  attractor 

disappears and chaos returns in the range 15.209.2  , followed by period doubling at 3.2   

and higher period doubling, i.e. T4  at .35.2  These period doublings do not develop into chaos. 

Further investigations showed that a PDB was observed in the range 05.395.2   and the 

periodicity returns to the system for 1.3 . In Figures 4-9 the time histories, phase planes, 

Poincare maps and FFT are shown for different values of   and for the parameters 

( o 5, 0.5, 10, 0.1, 0.1t rF C C       ).  
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                            (c) Poincare map                                          (d) Fast Fourier Transform 

 

Figure 4. Time history, Phase Plane, Poincare map and Fast Fourier Transform (FFT).      0 5F  , 

5.0Ct  , 10Cr  , 1.0    and 1.3  periodic (1T) for the second mode 
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                                (a) time history                                          (b) Phase Plane 
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                           (c) Poincare map                                    (d) Fast Fourier Transform 

 

Figure 5. Time history, Phase Plane, Poincare map and Fast Fourier Transform (FFT).      0 5F  , 

5.0Ct  , 10Cr  , 1.0    and 1.0  periodic doubling (2T) for the second mode 
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                                (a) time history                                      (b) Phase Plane 
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                           (c) Poincare map                                       (d) Fast Fourier Transform 

Figure 6. Time history, Phase Plane, Poincare map and Fast Fourier Transform (FFT).      0 5F  , 

5.0Ct  , 10Cr  , 1.0    and 9.1  higher period doubling (4T)  for the second mode 
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                             (a) time history                                      (b) Phase Plane 
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                           (c) Poincare map                                      (d) Fast Fourier Transform 

 

Figure 7. Time history, Phase Plane, Poincare map and Fast Fourier Transform (FFT).      0 5F  , 

5.0Ct  , 10Cr  , 1.0    and 08.1  (3T attractor) for the second mode 
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                        (a) time history                                            (b) Phase Plane 
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                                    (c) Poincare map                             (d) Fast Fourier Transform 

 

Figure 8. Time history, Phase Plane, Poincare map and Fast Fourier Transform (FFT).      0 5F  , 

5.0Ct  , 10Cr  , 1.0    and 1.1  (6T attractor) for the second mode 
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    (c) Poincare map                                        (d) Fast Fourier Transform 

 

Figure 9. Time history, Phase Plane, Poincare map and Fast Fourier Transform (FFT).      0 5F  , 

5.0Ct  , 10Cr  , 1.0    and 29.1  (Chaotic behaviour) for the second mode  

 

Results presented in Figure 3 and with the aid of computer simulations (Figures 4-9) show that, as 

one may expect, the resonance curves of the asymmetric solution intersect those of the symmetric 

solution near the region of chaotic motion, which lies in the zone where the principal resonance 

curves of the symmetric solution may enter the second unstable region. Results for a hardening type 

oscillator, i.e. 1 2 < 1.6  , are presented in Figure 10 with the parameters 0 35F  , 5rC  , 1tC  , 

0.1   and 0.1  , for the third mode of vibration of the tapered beam under consideration. In 



this figure, the steady state response, first order and second unstable boundaries, biased solution and 

stability of the biased solution ”Asymmetric” are also presented for the nonlinear oscillator with 

hardening characteristics. The first order unstable region intersects the response curve at the point 

of vertical tangency and the second unstable region has two boundaries; the first one is located at 

the super-harmonic resonance zone at 635.06.0   and the second intersects with the response 

curves at 42.2 . From the figure, the asymmetric solution intersects with symmetric one at 

60.1 , i.e. before the steady state response enters the second boundary of the second unstable 

region. In addition the biased solution is unstable at 19.291.1  , at which there is a possibility 

of period doubling bifurcation (PDB). Results obtained, but not shown for the sake of brevity, 

indicated that the PDB and chaos may occur inside the regions 635.06.0  , 42.2  and 

19.291.1  , at which the PDB may develop into higher period doublings and then culminates 

into chaos.  
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Figure 10: Steady State Frequency Response (SSFR), First Order Stability (1st Stab.), Second order 

Stability (2nd Stab.), Biased Solution and Its Stability.  3    0 5F  , 1Ct  , 5Cr   and 02.0   for 

the third mode: Steady State Frequency Response (SSFR), First Order Stability (1st Stab.), Second 

order Stability (2nd Stab.), 

( SSFR                  ,  1st Stab.                  , 2nd Stab.                , Ao                   , A1 

and ○○○○○○○○ unstable Ao and A1) 



6.  CONCLUSIONS 

 

The present work has studied the steady state frequency response of an elastically restrained 

cantilever tapered beam. The nonlinear uni-modal equation of motion was taken from [14]. The 

steady state responses under a sinusoidal excitation were obtained for different values of physical 

parameter; rotational flexibility rC , translational flexibility tC , taper ratio  , damping   and 

excitation level 0F . The steady state frequency response curves are presented for the first three 

modes of vibration using the method of harmonic balance. 

 

It was shown that the variation of rC  and tC  is associated with a qualitative change in the dynamics 

behaviour of the steady state response. 

 

It has been shown that the frequency response curves of the asymmetric solution intersect those of 

the symmetric solution before the symmetric solutions penetrate into the second unstable region, 

regardless the characteristic type of the nonlinear equation of motion, i.e. softening or hardening. In 

addition, it has been shown that at the point of intersection between asymmetric and symmetric 

solutions, i.e. when 0A  in the biased solution has non-zero real value, the symmetric solution 

bifurcates into an asymmetric one and the PDB appears in this area and in some cases the PDB 

developed into chaos. 
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