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Abstract—Load balancing plays a crucial role in realising the
benefits of microservices, especially to achieve elastic scalability
and performance optimisation. However, it is different from
load balancing for virtual machines, because workloads on
microservices are harder to predict and the number of services
in the systems is large. In this paper, we formalise load balance
as an emergent property of the microservices ecosystem, and
employ scenario calculus to formally analyse the impact of
scheduling on service capability and scalability. We discovered
that elastic round robin scheduling is highly scalable but the
service capability is limited by the slowest microservice instance.
In contrast, shortest waiting queue scheduling is less scalable,
but the service capability is higher.

Index Terms—cloud computing; microservices; load balance;
scheduling policies; scalability; service capability; scenario cal-
culus

I. INTRODUCTION

The microservices architecture has been widely adopted by
the IT industry for cloud native applications [1]. A software
application in this architecture is an ecosystem of micro-scale
services [2], [3], in which, ideally, services in high demand
would have more instances than those in low demand. Services
running on nodes with a heavy workload would migrate
to less busy nodes in order to achieve high performance.
Both of these optimisations can be achieved by employing
load balancers [4], [5]. They are implemented as a part of
container orchestration platforms. Commercial products such
as Docker Swarm, Kubernetes and NGiNX commonly provide
a number of different strategies for each of these functions [6],
[7]. However, their effectiveness and efficiency are not well
understood. What makes load balancers more complex for the
microservices is that multiple load balancers are required, each
managing a large number of instances of a microservice. The
workload on each microservice is far less predictable [8].

In this paper, we regard load balance as an emergent
behaviour of a microservices ecosystem. We will employ
scenario calculus [9] to formally analyse load balance in
microservices. In order to provide guidance on the choice of
load balance strategies, we study the impact of scheduling
policy on service capability and scalability. For the sake of
space, formal proofs of theorems are omitted.

II. OVERVIEW OF SCENARIO CALCULUS

Scenario calculus is a formal method developed for rea-
soning about emergent behaviours in systems that consist of
multiple active components, such as services [9], [10].

A. Microservices

A cloud native application in microservices architecture
consists of a number k > 0 of services C1, · · · , Ck. At each
time moment t, for each service Ci, where i = 1, · · · , k,
there is a variable, but finite, number ni of service instances
Ai,1, · · · , Ai,ni

running in the system. The number of in-
stances may change with time because new instances can be
created and existing ones can be terminated at runtime. An
instance of a service is called an “agent”, while the abstract
service is called a “caste”, which is a template from which
agents can be instantiated. If a container technology such as
Docker is used for the implementation then the abstract service
(caste) is packed into a container image and instances (agents)
of that service are deployed as containers.

Each service C defines a set of messages fi(a1, · · · , an),
i = 1, · · · ,mi, that can be sent to other services. Here, fi is
the name of the message and a1, · · · , an are its parameters.
They can be a request for a service, or a response to a
service request. When an agent sends a message f , we say
it takes action f . Each service C may also define a set of
state variables {vi : Ti|i = 1, · · · , li, li ≥ 0}, where each vi is
a variable and Ti is its data type. An agent behaves according
to a set of rules, which determine how to process a message,
how to change its state, and when to send a message.

B. Scenarios

A scenario is a linear sequence of actions taken by agents
in the system. Let At be the set of agents in the system at
time t. The basic form of scenarios is [A1 : α1|p1, · · · , An :
αn|pn], where for each i = 1, · · · , n, n ≥ 0, Ai ∈ Ati , αi

is an action that Ai performed at time ti, pi is a predicate
on the state of agent Ai at time ti. It represents the situation
that agents Ai(i = 1, · · · , n, n ≥ 0) in that order each take
action αi and in a state satisfying predicate pi. When for all
i = 1, · · · , n,Ai = A, we write A : [α1|p1, · · · , αn|pn] as an
abbreviation. When pi is true, we simply omit the predicate.
We also write A : |p to represent the assertion that the state
of A satisfies predicate p.

Scenarios can be combined together by using logic connec-
tions ∧, ∨ and ¬, and qualifiers ∀x ∈ C.S and ∃x ∈ C.S,
where S is a scenario, C is a caste, x is a free agent variable
in S. They can also be combined with predicates about agents,
such as an equality x = A for agent variable x and agent A, a
set membership A ∈ C, etc. When at a time t in an execution
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of a system π, a scenario is evaluated to true, we say that
system π is in scenario S at time t, and write π |=t S.

C. Modelling Behaviours by Collections of Scenarios

The dynamic behavior of a system can be modelled by a
collection of scenarios that are complete (covering all possible
states of the system) and orthogonal (disjoint, thus the system
can be in only one scenario at any time moment). There
may be many such models, which can be composed through
Cartesian product of the models as follows.

Theorem 1: Let S1 and S2 be two complete and orthogonal
sets of scenarios for a system π. The set S1 × S2 = {s1 ∧
s2|s1 ∈ S1, s2 ∈ S2} is also a complete and orthogonal set of
scenarios for system π. ut

Let S be a scenario in S for a given system π. It is an
initial scenario, written π |=0 S, if π can be in the scenario at
start time. A binary relation → on S is a scenario transition
relation, if for all S and S′ in S, S → S′ implies that the
system π can evolve from a state in S to a state in S′. S is
reachable, written π  S, iff there exists an initial scenario
S0 in S such that S0 → S. The system π always reaches S,
written π� S, if and only if for every initial state and every
execution of the system, the system will reach S. Scenario
S is stable for system π, written π@S, if and only if for all
executions of the system, the system will remain in S once it
is reached. The system π converges to S, written π # S, if
and only if S is always reachable and is stable, i.e. π � S
and π@S.

Theorem 2 below states that removing non-reachable sce-
narios from a complete and orthogonal set of scenarios will
affect neither the validity of the model, nor the reachability,
stability and convergence of any scenario.

Theorem 2: Let P (x) be a predicate on scenarios in S.

1) If ∀x ∈ S.((π  x) ⇒ P (x)), then SP = {x ∈
S|P (x)} is also a complete and orthogonal set of
scenarios of π.

2) For any given scenario x ∈ S, any of the statements
(π  x), (π� x), (π@x) and (π # x) is true in S, if
and only if the corresponding statement is true in SP .

ut

III. ANALYSIS OF LOAD BALANCING ALGORITHMS

A. Scheduling Strategy and Service Processing Capability

We consider task scheduling first without horizontal scaling,
which is added in the next subsection.

1) General Model of Load Balancing: In general, a mi-
croservices system consists of many services, each with several
instances running and with several load balancers managing
these instances. We focus on the simple case of one service
with several instances managed by one load balancer. The
results below can be generalized. The service receives requests
from several sources, called service requestors below, and
the load balancer distributes these requests to the pool of
service instances, which are called workers. The following sets

of scenarios model the service requestors, load balancer and
workers, respectively.

Req(n) , {[R1 : reqServ(r1), · · · , Rn : reqServ(rn)]}
LB(n) , {LB : [alJob(w1, r1), · · · , alJob(wn, rn)]}
Wm(n) , {wm : [jobDone(ri1), , jobDone(rin)]}

where R1, · · · , Rn are requestors, w1, · · · , wn are workers,
r1, · · · , rn are requests, reqServ(r) is the requestor’s action
of submitting a service request r to the system, alJob(wi, ri)
is the load balancer’s action of assigning a request ri to
worker wi for processing, jobDone(r) is the worker’s action
of completing the service request r.

It is easy to see that Req ,
⋃∞

n=0Req(n), LB ,⋃∞
n=0 LB(n) and W ,

∧∞
m=1(

⋃∞
n=0Wm(n)) are all com-

plete and orthogonal. Thus, from Theorem 1, we have:
Theorem 3: Sc , Req × LB × W is complete and

orthogonal. Every scenario S ∈ Sc is in the form of

Req(n) ∧ LB(m) ∧W1(d1) ∧ · · · ∧Wk(dk)

for some n,m ≥ 0, k > 0, di ≥ 0, which is denoted by
Sc(n,m, 〈d1, · · · dk〉) in the sequel. ut

We say that an execution of the system has a clean start
with k workers, if the initial state of the system is Init(k) =
Sc(0, 0, 〈0, · · · , 0〉︸ ︷︷ ︸

k

), where k > 0.

Let Normalk(S) denote the condition on scenarios S such
that it is reachable from a clean start with k > 0 workers,
each request is assigned to one and only one worker on a
first-come/first-served basis, and every worker only processes
the service requests assigned to it, also in a first-come/first-
served manner. Its formal definition is omitted for the sake of
space. Then, by Theorem 2, we have:

Theorem 4:
−→
Sck , {S|S ∈ Sc∧Normalk(S)} is complete

and orthogonal for a system that has a clean start with k
workers. ut

2) Models of Scheduling Strategies: In
−→
Sck, only a subset

of scenarios are actually reachable. These depend on the choice
of scheduling strategy. We will compare two policies, round-
robin and shortest waiting queue, and define the reachable
subset of

−→
Sck for each of them based on how requests are

assigned to the workers. Let w1, · · · , wn be the sequence of
workers that the load balancer assigns the requests to.

For the round-robin policy, requests r1, r2, · · · , rk are as-
signed to worker 0, 1, · · · , k − 1 and then request rk+1 is
assigned to worker 0, again, and so on. Thus, if the system is
in scenario S = Sc(n,m, 〈d1, · · · , dk〉) ∈

−→
Sck , we have

w0 = 0, wi+1 = wi+1 mod ki, where ki is the number
of workers when the action alJob(wi, ri) takes place, and
k0 = k. Let RoundRobink(S) denote these conditions, and−→
SckRR , {S ∈

−→
Sck|RoundRobink(S)}. Then, we have the

following.
Theorem 5:

−→
SckRR is complete and orthogonal for a mi-

croservices system in which the load balancer employs round-
robin scheduling and has a clean start with k workers. ut



For the shortest waiting queue policy, wi is the worker
whose waiting queue is minimal among all workers at
the time when the action alJob(wi, ri) takes place. Let
QLengtht(w) be the length of the waiting queue for worker
w at time t. Let ShortestQueuek(S) be a predicate that
for all S = Sc(n,m, 〈d1, · · · , dk〉) ∈

−→
Sck, the predicate is

true, if and only if for all i = 1, · · · ,m, QLengtht(wi) ≤
QLengtht(w) for all workers w in the system at the time
when the action alJob(wi, ri) takes place. Let

−→
SckLW , {S ∈−→

Sck|ShortestQueuek(S)}. Then, we have:
Theorem 6:

−→
SckLW is complete and orthogonal for a mi-

croservices system that employs the shortest waiting queue
scheduling policy and has a clean start with k workers. ut

3) Analysis of Service Processing Capability: The capa-
bility of a service-oriented system is the maximal service
request rate at which the number of service requests waiting
for processing will not increase indefinitely. It is determined
by three factors: (a) the throughput of the individual workers,
(b) how requests are distributed to them, and (c) the throughput
of the load balancer itself.

Let δ(k) denote the load balancer’s throughput for k work-
ers, i.e. the maximal number of requests that the load balancer
can assign to k workers per second. The length of waiting
queue for a load balancer to distribute the service requests to
k workers will increase indefinitely if the service request rate
ρ is greater than the throughput δ(k) of the load balancer, i.e.
when ρ > δ(k).

At time t, the length of waiting queue for worker w depends
on not only the scheduling strategy but also the worker’s
throughput, i.e. the number of requests that can be handled
per second, which we assume is constant for a given worker.

For the shortest waiting queue policy, the waiting queue
for the system as a whole will increase indefinitely only
when all the individual workers’ waiting queues do so. Thus,
the system’s capability is Min(δ(k),

∑k
i=1 θi), assuming that

the system has k workers w1, · · · , wk whose throughputs are
θi, i = 1, · · · , k. Note that

∑k
i=1 θi is the maximal possible

capability of a set of workers.
For the round-robin policy, we have that the length of the

waiting queue for a worker with throughput θ will increase
indefinitely iff ρ > k ·θ. The total length of the waiting queues
for the whole system will increase indefinitely if one of the
workers do so, i.e. iff ρ > k · θmin, which is the minimum
throughput of the workers.

Consequently, in a load balanced system with round robin
scheduling policy, and a variable service request rate ρ(t) with
ρ(t) < k ·θmin at all times t, then the waiting queue length for
any worker remains no more than one at any time moment,
provided that the system had a clean start. This means that
we can always reach a stable scenario in which every worker
has a waiting queue length of zero (in which the worker is
idle) or one (in which no more requests have been assigned
to it) provided that the service request rate does not exceed
the system’s capability. Moreover, the system will return to
this scenario if a surge in service request rate takes it away

from that. In other words, the capability of the microservice
system using round-robin scheduling policy equals Min(δ, k ·
θmin). If all workers are of the same throughput θ, the system’s
capability is Min(δ, k · θ).

B. Capability Management and Horizontal Scalability

The analysis in the previous subsection reveals that a
system’s capability is affected by the number k of workers and
their throughputs θi. In practice, the load balancer changes the
values of k and/or θ′i to new values k′ and θ′i to ensure that
the system’s capability stays above ρ. Running a service on a
more powerful node so that θi increases is known as vertical
scaling. Varying k is known as horizontal scaling and is the
subject of this section.

1) Model of Horizontal Scaling: A load balancer performs
two actions to achieve horizontal scaling:

1) addWorker(), which creates a new worker and adds it
to the set of service provider instances so that jobs can
be allocated to it;

2) removeWorker(), which terminates a worker and re-
moves it from the set of service provider instances so
that no more jobs can be allocated to it.

The set of scenarios for an elastic load balancer that has
added a workers, removed r workers and allocated m jobs is
given by the following.

LBE(a, r,m) , {LB : [χ1, · · · , χn]}

where n = a+r+m, and for each i = 1, · · · , n, χi is an action
of alJob(w, r), addWorker() or removeWorker(). It is easy
to see that LBE ,

⋃
a,r,m≥0 LBE(a, r,m) is orthogonal and

complete for any elastic horizontal scaling load balancer.
In such a system, the behaviours of workers and service

requesters are exactly the same as before. Thus, ScE ,
Req× LBE ×W is orthogonal and complete for the elastic
load balancing system. Again, the elements in ScE are in the
form of Req(n) ∧ LBE(a, r,m) ∧ W1(d1) ∧ · · · ∧ Wk(dk),
which we shall write as ScE(n, 〈a, r,m〉 , 〈d1, · · · , dk〉). Let
ElasticK(S) be the predicate on scenarios of ScE such that
for all scenarios S = ScE(n, 〈a, r,m〉 , 〈d1, · · · , dk〉) ∈ ScE ,
the predicate is true, if k = K + a − r, and if the last
action of the load balancer in scenario S is addWorker() or
removeWorker(), then dk = 0, and the waiting queue length
for worker k is 0. Let

−→
SckE = {S ∈ ScE |Elastick(S)}. Then,−→

SckE is complete and orthogonal for normal microservices
systems with horizontal elastic scaling that have a clean start
with k workers.

It is worth noting that the definitions of predicates
RoundRobin(S), ShortestQueue(S) given in the previous
subsection can be easily generalized to

−→
SckE for elastic

scheduling. The analysis given in the previous section also
holds for systems with horizontal elastic scaling. Details are
omitted for the sake of space.

2) Analysis of Horizontal Scalability: A key question about
load balancing algorithms is whether there is an upper limit in
the number of workers above which adding more workers will



not improve the systems capability. We call this upper limit
the scalability of the system.

Let δ be the throughput of the load balancer, and θmin > 0
be the minimal throughput of the workers in the system. We
have the following.

Theorem 7: For round robin scheduling, the scalability is
given by Kmax = dρ/θmine. ut

In particular, when all workers have the same throughput
θ, then the scalability of a system that uses round-robin
scheduling policy is dδ/θe.

For shortest queue scheduling, in contrast, the selection of
a worker takes time at least O(log k). Even for small values
of k, its throughput is smaller than that of round robin.

Theorem 8: Let 0 < θ1 ≤ · · · ≤ θn ≤ · · · be the
throughputs of the workers in the system. For the shortest
queue scheduling policy, the system’s scalability is upper
bounded by Kmax =Maxk(Min{δ(k),

∑k
i=1 θi}). ut

In particular, if all workers in the system have the same
throughput θ, and assuming the scheduling policy has a
computational complexity of C · log(k), then the scalability
of the system is the value k such that k/log(k) = C/θ.

From the above, we can conclude that round robin is more
horizontally scalable than the shortest queue policy.

IV. CONCLUSION

A. Related Work

Load balancing has long been studied intensively, originally
for distributed computing [11] and more recently for cloud
computing, leading to a large number of proposed scheduling
strategies and techniques; see [12], [13] for surveys. Exist-
ing work can be classified into two categories: (a) devising
workload models for task scheduling and service capability
management, and (b) allocating virtual machines to physical
machines to optimise performance and resource usage. As
Fazio et al. pointed out [7], it is difficult to build workload
prediction models for microservices. It is also infeasible to
use them because each application may have thousands of
microservices. Monitoring a large number of microservices
will cause an overhead too high to be practical. Theoreti-
cally speaking, the works on virtual machine allocation and
migration are applicable to container/microservices allocation
and migration. But, again, it will be too costly to perform
optimisation each time a microservice is created, since the
creation and termination of microservices are much more
frequent than virtual machines. After all, for microservices
architecture, scalability is a main concern, which has not been
addressed in existing work on load balance.

B. Main Contributions of the Paper

In this paper, we presented a formal analysis of load bal-
ancing algorithms in microservices with focus on the impact
of scheduling policies on service capability and scalability.
First, we proved that round-robin scheduling policy has better
scalability than the workload aware policy of shortest waiting
queue, while the latter achieves a higher processing capability.

These results have not been reported in the literature as far as
we know.

Secondly, we have used scenario calculus to analyse the
properties of microservices systems, which is a novel ap-
proach for studying distributed systems. In this approach, we
regard a microservices system as an ecosystem in which a
large number of instances of microservices are dynamically
created and terminated. They communicate and collaborate
with each other to achieve designed emergent properties and
demonstrate emergent behaviour. Scenarios and the transition
relations between the scenarios provides a model of the
system’s behaviour at a very high level of abstraction. This
enables us to deal with the high complexity of the dynamic
concurrent executions of the system. This paper demonstrates
that the use of scenario calculus for microservices is feasible.
Existing formal methods, such as Petri-nets, process algebra,
labeled transition systems, etc., cannot be applied to systems of
microservices due to its dynamic ecosystem features. Existing
evaluations of load balancing algorithms have been empirical
and/or simulation-based. No formal method has been applied
to such analyses as far as we know.

C. Future work

We are also applying the scenario calculus to other strategies
of load balancing. It is worth noting that load balancing can be
combined with fault-tolerance techniques in cloud computing.
This is worth further investigation.
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