brought to you by CORE

1	Bridging the gap between impact assessment methods and climate science
2	
3	Francesco Cherubini ^{a*} , Jan Fuglestvedt ^b , Thomas Gasser ^{c,d} , Andy Reisinger ^e , Otávio Cavalett ^f ,
4	Mark A. J. Huijbregts ^{g.h} , Daniel J.A. Johansson ⁱ , Susanne V. Jørgensen ^j , Marco Raugei ^k , Greg
5	Schivley ¹ , Anders Hammer Strømman ^a , Katsumasa Tanaka ^m , Annie Levasseur ⁿ
6	
7	^a Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of
8	Science and Technology (NTNU), Trondheim, Norway
9	^b Center for International Climate and Environmental Research – Oslo (CICERO), Oslo, Norway
10	^c Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Institut Pierre-Simon Laplace (IPSL), CEA-
11	CNRS-UVSQ, 91191 Gif-sur-Yvette Cedex, France
12	^d Centre International de Recherche sur l'Environnement et le Développement (CIRED), CNRS-PontsParisTech-
13	EHESS-AgroParisTech-CIRAD, 94736 Nogent-sur-Marne Cedex, France
14	^e New Zealand Agricultural Greenhouse Gas Research Centre, Palmerston North 4442, New Zealand
15	^f Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE/CNPEM), Campinas, São Paulo, Brazil
16	⁸ Department of Environmental Science, Institute for Water and Wetland Research, Radboud University,
17	Nijmegen, The Netherlands
18	^h Dutch Environmental Assessment Agency, Bilthoven, The Netherlands
19	ⁱ Division of Physical Resource Theory, Department of Energy and Environment, Chalmers University of
20	Technology, Gothenburg, Sweden
21	^j ALECTIA A/S, Virum, Denmark
22	^k Faculty of Technology, Design and Environment, Oxford Brookes University, Wheatley, UK
23	¹ Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
24	^m National Institute for Environmental Studies (NIES), Tsukuba, Japan
25	ⁿ Polytechnique Montréal, Department of Chemical Engineering, CIRAIG, Montréal, Canada
26	
21	* 2 1 1 1 1 0 1
28	Corresponding author: francesco.cherubini@ntnu.no
29	
30	
31	

32 Abstract

33 Life-cycle assessment and carbon footprint studies are widely used by decision makers to 34 identify climate change mitigation options and priorities at corporate and public levels. 35 These applications, including the vast majority of emission accounting schemes and policy 36 frameworks, traditionally quantify climate impacts of human activities by aggregating greenhouse gas emissions into the so-called CO_2 -equivalents using the 100-year Global 37 38 Warming Potential (GWP100) as the default emission metric. The practice was established 39 in the early nineties and has not been coupled with progress in climate science, other than 40 simply updating numerical values for GWP100. We review the key insights from the 41 literature surrounding climate science that are at odds with existing climate impact methods and we identify possible improvement options. Issues with the existing approach lie in the 42 use of a single metric that cannot represent the climate system complexity for all possible 43 research and policy contexts, and in the default exclusion of near-term climate forcers such 44 45 as aerosols or ozone precursors and changes in the Earth's energy balance associated with 46 land cover changes. Failure to acknowledge the complexity of climate change drivers and 47 the spatial and temporal heterogeneities of their climate system responses can lead to the deployment of suboptimal, and potentially even counterproductive, mitigation strategies. We 48 49 argue for an active consideration of these aspects to bridge the gap between climate impact methods used in environmental impact analysis and climate science. 50

51

52 Keywords: climate change; emission metrics; life cycle assessment (LCA); global warming
53 potential (GWP).

54 1. Introduction

Human activities perturb the climate system through a variety of forcing agents. Over the 55 56 industrial era, the total anthropogenic radiative forcing, a measure of the net energy imbalance of the Earth caused by a forcing agent, is 2.29 [1.13 to 3.33] W m⁻²[1]. The 57 58 major contributors are carbon dioxide (CO_2) and methane (CH_4) emissions, which are responsible for about 1.68 \pm 0.17 W m⁻² and 0.97 \pm 0.17 W m⁻², respectively [1]. The net 59 contribution from so-called Near-Term Climate Forcers (NTCFs), that is, species with an 60 61 atmospheric lifetime of less than about one year, is estimated to be a slight negative forcing (cooling) of -0.06 W m^{-2} [1], with large uncertainty bounds largely due to the lack of 62 63 scientific understanding of aerosol-cloud interactions [2]. The contributions from the direct forcing effect of single NTCFs range between -0.41 ± 0.20 W m⁻² for sulphur oxides (SO_x) 64 emissions and +0.64 [+0.25 to +1.09] W m⁻² for black carbon (BC) emissions [1]. The 65 radiative forcing values from historical land use changes for CO_2 and surface albedo (the 66 ratio between reflected and incident solar radiation at the surface) are of the same order of 67 magnitude but opposite sign, with a warming effect of 0.17 to 0.51 W m⁻² for CO₂ (1850– 68 2000) and a cooling effect of -0.15 ± 0.10 W m⁻² for surface albedo changes (1750–2011) 69 70 [1]. The net effect from changes in emissions of biogenic volatile organic compounds (BVOCs) associated with this land use change is estimated to be an additional cooling 71 contribution of -0.11 ± 0.17 W m⁻² (1850–2000) [3]. 72

Life cycle assessment (LCA) and carbon footprints are largely used to attribute climate change impacts to specific human activities like products, technological systems, or sectors [4]. Decision and policy makers widely rely on the outcomes from comparative climate impact analyses to promote mitigation options, and to design strategies for sustainable production and consumption at a public or corporate level. The most common approach is to aggregate emissions of well-mixed greenhouse gases to so-called " CO_2 -equivalents"

79 using the 100-year global warming potential (henceforth GWP100) as the default emission 80 metric. A similar procedure is frequently applied in international agreements, like the Kyoto 81 protocol, the Intended Nationally Determined Contributions (INDCs) for mitigation 82 obligations to 2030 and climate-oriented policy directives, such as those regulating the 83 climate impacts of specific sectors. This practice does not take into account the impacts from 84 emissions of NTCFs or biophysical factors arising from changes in land cover. It also overlooks the temporal and spatial heterogeneities of the climate system response to 85 86 different forcing agents, and the consideration of emission metrics alternative to GWP100. Studies that have explored the influence of NTCFs [5, 6], of changes in surface albedo [7, 8], 87 88 of temporal and spatial impact dynamics [9-11], and of metrics other than GWP100 [5, 12-89 15] on the climate impacts attributed to a specific human activity usually conclude that an international effort on improving existing methods is desirable to prevent the 90 91 implementation of suboptimal mitigation pathways. 92 The Life Cycle Initiative under the United Nations Environment Program (UNEP) and the 93 Society of Environmental Toxicology and Chemistry (SETAC) launched the Global Guidance 94 on Environmental Life Cycle Impact Assessment Indicators to revise existing standard methodologies used in environmental impact categories of LCA and footprint studies [16, 95 96 17], including climate change. Here, as part of the activities from the Global Warming Task Force, we identify key insights from the climate science related literature that are of 97

98 relevance for advancing climate impact assessment frameworks.

99

100 2. Life cycle impact assessment and emission metrics

101 The life cycle impact assessment phase consists in the conversion of different well-mixed

102 greenhouse gases (WMGHGs) to common units (kg CO_2 -eq) after multiplication of each

103 emission flow by the respective emission metric, [4]. Emission metrics, which in LCA are 104 usually referred to as characterization factors, are typically simplified measures of the 105 climate system response to forcing agents and are mostly based on outcomes from physical 106 models of varying complexity linking emissions to impacts [1]. Metrics can be formulated in 107 absolute terms, for instance based on the temporal evolution of a temperature impact, or in 108 relative terms after normalization to a reference gas, usually CO_2 [5, 18]. Different 109 emissions have different climate system responses, and a metric that establishes equivalence 110 with regard to one effect does not usually result in equivalence with regard to other effects. 111 GWP is an integrative measure defined as the integrated radiative forcing of a gas between 112 the time of emission and a chosen time horizon (TH) relative to that of CO_2 . The GWP was 113 introduced by the first IPCC assessment report in 1990 with illustrative purposes and, by its 114 own definition, it does not embed any climate system responses or direct link to policy goals 115 [1]. Despite the rather cautious introduction by the IPCC, the United Nations Framework 116 Convention on Climate Change, LCA and the majority of national and corporate emission 117 accounting frameworks started to use this metric without any substantial modifications, 118 with the exception of updating the GWP values according to the successive IPCC reports. 119 GWP is a metric that aligns well with the general principles of LCA. LCA privileges impacts 120 integrated over time and space under the objective of avoiding burden shifting of impacts 121 [4]. LCA also typically follows a "marginal change" approach, in the sense that an additional 122 amount of a certain pollutant is assumed to introduce very small changes on top of a 123 constant background. This approach allows the assessment of environmental impacts 124 associated with the life cycle impacts of a single unit of a product, which gives only a small 125 contribution to the total impact [19]. Common critiques to GWP concern the fact that, 126 despite its name, it does not equate climate forcing agents on the basis of their effects on 127 surface temperature, nor does it consider them under a specific climate policy target, such

128 as the goal to limit warming to 2 degrees above pre-industrial levels [18, 20-22]. The use of 129 a TH of 100 years seems to be the result of an "inadvertent consensus" [23] and it is not 130 directly linked to any particular climate policy objective. There are many emission metrics 131 available from the climate science literature that focus on different characteristics of the 132 climate system response to emissions [12, 18, 20, 21, 24–28]. By targeting different aspects 133 of the climate impact cause-effect chain, such as radiative forcing [29], temperature [26, 134 27], sea level rise [30], precipitation changes [31], or economic dimensions [28], these 135 metrics compare emissions on the basis of their instantaneous [26] or time integrated 136 impacts [25, 27]. They are computed under a constant [1, 24] or changing [18, 32] background climate and can be formulated around a fixed or a target-dependent TH [14, 137 138 18, 33, 34]. A common alternative to GWP is the Global Temperature Change Potential 139 (GTP), which is defined as the impact of a GHG emission pulse on global temperature at the 140 chosen TH, again relative to CO_2 [26]. With the exception of some gases with very short 141 lifetimes, values of GTP for a TH of about 40 years are usually similar to those of GWP100 142 [35]. Recently, GWP100 is shown to approximately equate a pulse emission of a cumulative 143 climate pollutant and an indefinitely sustained change in the rate of emission of short-lived 144 forcers, introducing a new application for GWP100 in comparing WMGHGs with different 145 lifetimes [36]. Within a context of emission accounting, some also argue against the practice 146 of aggregating all WMGHGs to common units [29, 37, 38] and instead explore a multi-147 basket approach in which gases with similar lifetimes are grouped together [29, 37-41]. 148 Metrics that are further down the cause effect chain produce outcomes that are more policy 149 relevant than those based on radiative forcing, but at the same time their embedded 150 uncertainties increase. For instance, uncertainties for GTP are larger than those for GWP, 151 because the latter does not embed the uncertainty of the climate system response. 152 Temperature-based metrics involve a climate model, which can be a simple energy balance

153 model [25, 26], a temperature response function [24], or more sophisticated climate models 154 [18, 24, 28, 42], and this generally makes results sensitive to the parameterization of the 155 climate system [1]. Multi-model means are frequently used to mitigate these concerns [24] 156 and to better understand uncertainties [42]. However, the subjective selection of a TH for the 157 different metrics remain the most important factor that determines metrics variability [24], 158 especially for the weight given to forcers with a relatively short lifetime, compared to forcers 159 with long lifetimes [18]. This choice dependence introduces a strong, but often inadvertent 160 and only implicit, value judgement that frequently makes results open to contrary outcomes [5, 15]. 161

162

163 **3. Well-mixed GHGs (WMGHGs)**

164 CO_2 , CH_4 , nitrous oxide (N₂O), and some groups of halogenated gases have atmospheric 165 lifetimes longer than the hemispheric mixing time (up to a few years). They are generally 166 considered well-mixed because their atmospheric concentration has sufficient time to 167 become nearly uniformly distributed in the troposphere and their radiative forcing patterns 168 are usually independent of the emission location [1]. Table 1 shows a classification of the 169 main WMGHGs grouped by lifetimes, with information about their atmospheric 170 concentration and radiative forcing in 2011, and their radiative efficiency per mass unit atmospheric burden (W $m^{-2} kg^{-1}$). For the purpose of a simple classification, we consider as 171 172 "short-lived" those WMGHGs, like methane and most hydrofluorocarbons (HFCs) or 173 hydrofluoroethers (HFEs), with atmospheric lifetimes shorter than the response timescale of 174 the climate system, which is typically from two to four decades [20, 43]. Gases with lifetimes 175 longer than about 50 years are sufficiently long-lived that the climate system has time to

fully respond to the perturbation, and their impact on temperature is more stronglycontrolled by the amount of cumulative emissions [35, 40, 44].

178 The atmospheric decay of non-CO₂ WMGHGs is governed by relatively well-known 179 chemical and physical processes and can be simply described with exponential decay 180 constants corresponding to the respective lifetimes of the gases [45]. The constant decay-181 time, however, remains an approximation since the lifetime of some gases is actually 182 affected by their own atmospheric concentration, and sometimes by that of other gases. For 183 instance, the atmospheric concentration of CH₄ or N₂O feeds back on their own respective 184 lifetimes [46], CO₂ can be produced after oxidation of other carbon-containing gases [1, 185 47], or ozone can cause changes to the global land-carbon sinks [48]. Some short-lived species are thus also responsible of long-term effects through the carbon cycle and climate 186 187 feedbacks [1, 47, 49, 50].

188Table 1 WMGHGs grouped by atmospheric lifetimes. For atmospheric concentrations and radiative forcing189only the gas listed in Table 8.2 of the WGI 5th IPCC Assessment Report [1] are considered. Information on190lifetimes of the gases, atmospheric concentration, radiative forcing and radiative efficiencies are from the 5th191IPCC Assessment Report[1].

Group of lifetimes	Gases	Lifetime (years)	Atmospheric concentrations in 2011	Radiative forcing in 2011 (W m ⁻²)	Radiative efficiency (W m ⁻² kg ⁻¹)
Years	Some HCFCs, HFCs, Halocarbons, and HFEs	Between 1 and 10	21.4 ± 0.1 ppt HCFC-141b	0.0034 HCFC- 141b	2.05E-11 HCFC-141b
Decades	CH_4 , CFC- 11, CFC-113, CCl_4 , some HCFCs, HFCs, and HFEs	Between 10 and 100	1803 ± 2 ppb CH ₄ , 238 ± 0.8 ppt CFC- 11	0.48 ± 0.05 CH ₄ , 0.062 CFC-11	4.65E-14 CH ₄ , 3.84E-11, CFC- 113
Centuries	N ₂ O, HFC- 23, HFC- 236fa, HFE- 125, NF ₃ , some CFCs	Between 100 and 1,000	324 ± 0.1 ppb N ₂ O, 528 ppt CFC-12	0.17 ± 0.03 N ₂ O, 0.17 CFC-12	3.84E-13 N ₂ O, 4.10E-11 CFC- 12
Millennials	Fluorinated	Between	79 ppt CF ₄	0.0041 SF ₆	7.3E-11 SF ₆

	gases (SF ₆ , CF₄, etc.),	1,000 and 50,000			
	CFC-115				
Indefinite	CO ₂	n.a.	391 ppm	1.82 ± 0.19	1.81E-15

192

193 Among WMGHGs, CO₂ represents a special case. Unlike most other agents, it does not 194 decompose through atmospheric chemical reactions, nor it is deposited on the Earth surface, 195 but it is removed from the atmosphere by a variety of processes with different timescales 196 influenced by multiple nonlinear dependencies [24, 51, 52]. For a 100 GtC emission pulse 197 added to a constant CO₂ concentration of 389 ppm, 15–35% of the perturbation is still 198 found in the atmosphere after a thousand of years; the ocean has absorbed 59 \pm 12% and the 199 land the remainder (16 \pm 14%) [24]. Thereafter CO₂ concentration is only removed by 200 ocean-sediment interactions and the weathering cycle through timescales of hundreds of 201 thousands of years [51, 53].

202 We show the normalized temporal evolutions of the responses to emissions of selected 203 WMGHGs in Figure 1. These responses, computed for both a pulse emission (Figure 1a,c) 204 and constant sustained emissions (Figure 1b, d), are simulated following the approach used in the 5th IPCC assessment report [1] (see Methods in the Supplementary Information for 205 206 details). The longer the lifetime of the gas, the higher the emission fraction remaining 207 airborne over time (Figure 1a). Under constant sustained emissions (Figure 1b), the 208 normalized increase in radiative forcing asymptotically tends towards a maximum that is 209 proportional to the product of the atmospheric lifetime of the gas, its radiative efficiency, 210 and the emission rate. The time taken to approach this maximum value is critically 211 dependent on the lifetime, because it determines how soon atmospheric concentrations 212 reach steady state. Short-lived species are near maximum within a few decades, while for 213 others the steady state will not be reached for centuries or millennia. The temperature 214 response to a pulse of short-lived emissions shows a roughly symmetric rise and fall (Figure 215 1c), because the climate system has insufficient time to fully respond before the perturbation 216 has disappeared [20]. On the other hand, gases with longer lifetimes are persistent enough 217 that the resulting long-term warming is governed by the equilibrium climate sensitivity [54] 218 and some do not dissipate even on millennial time scales [45, 53]. The result is that the 219 warming from long-lived GHGs remains almost constant or decreases only slowly after the 220 temperature peak or a hypothetical cessation of emissions, and for some gases it is nearly 221 irreversible over many human generations. In the case of CO_2 , the temperature does not 222 decrease significantly even if emissions cease entirely (Figure 1d). For extremely long-lived 223 gases like CF₄, the temperature continues to rise for a century or more following cessation of 224 emissions owing to the multi-century timescales of the ocean/atmosphere adjustments to 225 constant warming [37, 45].

226 Figure 1 Temporal evolutions of the normalized responses of the climate system to some WMGHGs. a) Fraction 227 of the gas remaining in the atmosphere following an emission pulse at year zero; b) normalized radiative 228 forcing under constant emission rates; c) normalized global average surface temperature response to an 229 emission pulse at year zero; d) normalized global average surface temperature response to constant emission 230 rates (dotted lines show the response to a sudden cessation of emissions at year 200). Each curve is normalized 231 to its maximum value in the one thousand year time interval in b) and c). The temperature responses are 232 normalized to the respective value at year 200 in d). The selected gases are those found in IPCC AR5 Table 8.7 233 [1], with the replacement of HFC-134a (a gas with lifetime similar to methane) with a gas with lifetime of a 234 few years (HCFC-122a).

235

236 As pointed out in the climate science literature [20, 23, 33] and reiterated in the last IPCC 237 5^{th} Assessment Report [1], the aggregation of WMGHGs to CO₂-equivalents is challenging because it groups together gases with lifetimes ranging from a few years to several 238 239 thousands of years. Mitigation of either short-lived species or CO₂ achieves different goals 240 that are not equivalent in terms of climate system responses. For mitigation actions taking 241 place today, or several decades before a targeted temperature peak, metrics like GWP100 242 overestimate the importance of short-lived gases but underestimate their impact on near-243 term change [18, 20, 33]. For example, HCFC-122a and N₂O have very different lifetimes (5 244 and 122 years, respectively) and temperature impact profiles. The temperature change from 245 N_2O is approximately 6.5 times larger than that from HCFC-122a 100 years after a pulse 246 emission, whereas the temperature change from HCFC-122a is about 1.5 times higher than 247 that from N_2O after 20 years from a pulse emission. Despite these differences, they are 248 considered as almost equal when converted to CO_2 -equivalents because they have relatively 249 similar GWP100 values, 265 for N₂O and 258 for HCFC-122a [1]. This example underlines 250 the extent to which the choice of a metric can skew the apparent importance of different gases, and why the use of a diverse array of metrics is desirable for matching specific policy 251

252 goals. The simple replacing of GWP100 with an alternative metric would not mitigate these 253 concerns because any choice that works for one dimension of the climate system, e.g. short-254 term impacts, inevitably risks overlooking others, e.g. long-term impacts.

255

256

4. Emissions and temperature peaks

257 There is a growing interest in the climate science community to infer simplified metrics and 258 climate policy frameworks from the relationships between temperature peaks and emissions 259 [40, 55-57]. In Figure 2, we show the temperature peak dynamics of different WMGHGs 260 following four idealized emission trajectories. These trajectories, modelled with a triangular 261 temporal distribution (Figure 2a), have either the same cumulative emissions and different 262 maximum emission rates (E1 and E2), or the same maximum emission rate and different 263 total emissions (E3 and E4). When the temperature responses to E1 and E2 are compared 264 (Figure 2b), gases with short lifetimes have different temperature peak values (e.g., up to 265 40% lower under E2 than E1 for HCFC-122a), whereas nearly identical maximum 266 temperatures are achieved by gases with longer lifetimes. Under constant cumulative 267 emissions, temperature changes from gases with short lifetimes are sensitive to the 268 maximum rate at which emissions occur, and the sensitivity gradually decreases while the 269 lifetime of the gas increases. Temperature changes from gases with longer lifetimes become 270 more sensitive than short-lived species to specific emission trajectories if total cumulative 271 emissions differ (Figure 2c). For instance, the temperature peak reached by CO_2 emissions is 272 about 30% lower under E4 than E3. We compare the effect of emission rates and cumulative 273 emissions on the temperature responses in Figure 2d, where the normalized temperature 274 peak differences are plotted against the lifetime of the gases. Gases in the top right corner $(CO_2 \text{ and } CF_4)$ have higher sensitivity to cumulative emissions, whereas if a gas lies in the 275

276top left corner (HCFC122a) has a strong sensitivity to emission rates. The temperature277increase from short-lived emissions thus primarily depends on today emissions, which278mainly affect the rate and magnitude of climate change over the next few decades [37, 38,27940, 58, 59]. On the other hand, the temperature impact from long-lived gases like CO_2 and280 CF_4 gradually accumulates over time and, rather than with the rate and timing of emissions,281it scales with the cumulative amount of emissions, including those occurred in the past [40,28253, 55, 60, 61].

283 Figure 2. Sensitivity of the temperature response of WMGHGs to emission rates. a) idealized emission rates 284 peaking and declining. E1 and E2 have the same amount of cumulative emissions but different maximum 285 emission rates (E1 > E2); E3 and E4 have the same maximum emission rate but different cumulative emissions 286 (E3 > E4); b) normalized temperature responses to E1 and E2; c) normalized temperature responses to E3 and 287 E4; d) normalized difference of the temperature peak (T_{max}) , computed from the responses in b) and c), for 288 each WMGHG as a function of the lifetime of the gas (logarithmic scale). The red dots indicate the normalized 289 differences in the temperature peak values of each WMGHG to emission scenarios E1 and E2 (Figure 2b). The 290 blue dots are for the normalized differences in T_{max} under emission scenarios E3 and E4 (Figure 2c). Values 291 close to 1 indicate high sensitivity of T_{max} to emission rates (red dots) or cumulative emissions (blue dots). The 292 profile for each gas in b) and c) is normalized to the respective maximum value from the emission scenario E1 293 and E3, respectively. For CF₄, the temperature at 200 years is taken as the normalizing factor.

294

295 The relationship between emissions and temperature peaks is used to produce simplified 296 emission metrics and approaches [37, 40, 55, 56]. If climate policy is focused on avoiding a 297 specific temperature threshold, its achievement largely depends on the cumulative emissions 298 of long-lived gases until the year of the peak, and on emission rates of short-lived species in 299 the one or two decades preceding the peak [40, 62, 63]. In such a context, emissions of 300 short-lived gases should be progressively more weighted as the temperature peak is 301 approached, and less if it is more distant. There are options to link metric values to the gradual approaching of climate targets, such as time dependent formulations of GWP or 302 303 GTP [18, 28, 33] and other metrics explicitly connected to a climatic threshold [14, 34]. 304 Another option that is gathering increasing interest is the "transient climate response to cumulative carbon emissions" (TCRE) [60], which is formally defined as the warming due to 305 306 one trillion ton of cumulative carbon emissions and is based on the linearity between 307 temperature peak and cumulative emissions [55, 61]. Earlier estimates of the TCRE 308 suggested an average value of 1.6 ± 0.5 °C per Tera ton carbon (TtonC) emitted [61], while 309 estimates from both observations and coupled models provide a wider range of 0.8-2.5 °C

310 per TtonC [60]. Although so far mainly validated for CO_2 , the concept of TCRE can also be 311 extended to other long-lived GHGs [44]. Similarly, the temperature contribution from short-312 lived gases can be approximated using scaling factors applied to the maximum emission 313 rates [37, 40, 58, 59]. The use of metrics based on temperature peak dependencies on either 314 emission rates or cumulative amounts within an LCA framework has not been explored yet. 315 On one hand, this approach would allow a multi-basket framework where the various 316 forcing agents are grouped together on the basis of their lifetimes, thus avoiding the practice 317 to group together species with very different lifetimes. On the other hand, different sets of 318 emission metrics would still be needed to aggregate emissions to common units, and the 319 selection of the metrics to be used in the different baskets would still remain based on value-320 laden choices, as it would be dependent on the preferred policy goal [41]. Still open is also 321 the question on how to weight one basket with respect to the other, with some arguing that 322 any trading between the different baskets should not be allowed [37, 38].

323

324 5. Near-term climate forcers (NTCFs)

325 In addition to emissions of WMGHGs, human activities perturb the climate system through 326 emissions of pollutants such as nitrogen oxides (NO_x) , carbon monoxide (CO), volatile 327 organic compounds (VOCs), black carbon (BC), organic carbon (OC), sulphur oxides (SO_x) , 328 and ammonia (NH₃). Some of these pollutants are precursors to the formation of 329 tropospheric ozone (NO_x , CO, VOCs), others are primary aerosols (BC, OC) or precursors to 330 secondary aerosols (NO_x , SO_x , NH_3). These species have lifetimes shorter than the hemispheric mixing time and are usually called near-term climate forcers (NTCFs). The 331 332 atmospheric concentrations of NTCFs are very heterogeneous, with high concentrations around the emission source, and therefore the resulting impact largely depends on the 333

source region [64–67]. Although short-lived GHGs like CH_4 are sometimes referred to as NTCFs, we here restrict this definition to species with inhomogeneous atmospheric concentrations that are not well-mixed.

337 The considerations above associated with the characteristics of the temperature response to 338 short-lived species also apply to NTCFs. Emissions of NTCFs may also have an effect on 339 precipitation patterns through changes in cloud formation processes and cover [2], which 340 have recently been quantified in terms of emission metrics [31]. In general, the confidence level in the predicted climate impacts from NTCFs is lower than that for WMGHGs. 341 342 especially in the cases in which aerosol-cloud interactions are important (see section 8.5.1 343 in ref. [1] and the latest specific IPCC chapter on the matter [2]). These emissions are 344 coupled to the hydrological cycle and atmospheric chemistry and involve highly complex 345 processes that are challenging to validate. The net climate impacts of NTCFs are the result of 346 many opposing effects with different temporal evolutions at play. NO_x species are very 347 reactive and affect climate through many nonlinear chemical interactions with various 348 timescales [21, 46], including nitrate and ozone formation, changes in CH₄ concentration 349 and thereafter stratospheric water vapour [46, 50]. NO_x also influences CO_2 and the global 350 carbon cycle through the fertilization effect of nitrogen depositions. Other ozone precursors 351 are CO and VOCs, which increase the concentration of ozone on short time scales and by 352 affecting the levels of hydroxyl (OH) radical, and thereby of CH₄, they also initiate a net 353 positive long-term ozone effect [3, 65]. Aerosol species influence the climate mainly through 354 absorption (BC) or scattering (OC, sulphate and nitrate) of solar radiation and other indirect 355 effects, like deposition of BC on snow. Aerosols are either directly emitted from sources 356 (primary aerosols, like BC and OC), or they are formed in the atmosphere via several 357 processes (secondary aerosols, like sulphate after oxidation of SO₂, and OC from 358 condensation of organic compounds).

Figure 3 Global and regional normalized temperature responses to pulse emissions of selected NTCFs (SO_x , BC, CO and OC) located in the northern or southern hemisphere. The responses to emissions in the northern hemisphere (NH) are shown with solid lines, those to emissions from the southern hemisphere (SH) with dashed lines. The temperature response is averaged globally and over the land and oceans of NH and SH. For each specie, curves are normalized to the maximum (for BC and CO) or minimum (for SO_x and OC) value of all the responses.

365

366 Figure 3 shows the normalized temperature effects from pulse emissions of three aerosol

367 species (SO_x, BC and OC) and one ozone precursor (CO). Emissions are located in the

368 northern or southern hemisphere, and the temperature response is averaged both globally 369 and over macro regions like the land and oceans of the northern and southern hemispheres. 370 The responses, which merely have illustrative purposes, are computed using the simplified 371 climate model MAGICC6 [68], a model widely used in the climate science community (see 372 Methods in the Supplementary Information). Emissions from different regions have different 373 lifetimes and the responses are regionally dependent. The global averaged temperature has 374 significant variations with respect to the regional trends. The climate impact response to an 375 emission pulse is generally higher in the northern hemisphere, where there is the strongest 376 sensitivity to forcing, and over the land than the oceans, due to differences on evaporation 377 [69]. Emissions of BC have the largest impact on regional average temperature change when 378 located in the northern hemisphere, because BC can be easily transported to the white 379 surfaces of the arctic and thereby decrease albedo. The response to CO and VOCs are less 380 heterogeneous because they have longer lifetimes (from one to three months) and are 381 approximately well-mixed on a hemispheric spatial scale. As discussed elsewhere [20, 66, 382 70], they are less dependent on emission location and model configurations, although the 383 consideration of vegetation effects of ozone and aerosol responses can increase variability 384 [48].

385 Climate impacts from NTCFs are currently excluded from LCA studies, carbon footprints, or 386 international global climate agreements. Their possible inclusion has been debated [3, 5, 65, 387 70, 71] and, in some cases, explicitly argued [3, 5, 71]. However, the characterization of NTCFs to CO₂ equivalents is even more difficult than it is for short-lived gases because of 388 389 the very short lifetime of the forcing, its spatial heterogeneity, and the larger uncertainty. 390 Global metrics like GWP normally use globally-averaged inputs to produce globally-391 averaged measures and give no information about the spatial variability of the impact. 392 Global metrics available in the literature for NTCF emissions located in different regions are presented and discussed in the 5th IPCC assessment report [1]. There is not a robust
relationship between the region of the emission and the metric value [20], and the intermodel variability is sometimes larger than the variability between emission regions [50, 72].
Measures that rely on global averages or long integration times do not fully represent the
temporal and spatial characteristics of the responses [73, 74]. The application of a metric
that is first calculated locally and then averaged globally could be one way of capturing a
more complete and informative signal than one that uses global mean outputs [73].

400 Regional specific responses and emission metrics for NTCFs are also available [50, 64, 74, 401 75]. Absolute Regional Temperature Potentials (ARTP) are computed using fully coupled 402 atmosphere-ocean climate models and approximate the time-dependent temperature 403 response at four latitude bands as a function of the regional forcing imposed by various 404 climate pollutants in all bands [75]. These metrics allow the assessment of the climate effects 405 from NTCFs with some regional resolution without coupling the analysis with sophisticated 406 climate models. However, additional studies are required to determine the robustness of 407 ARTPs and explore their feasibility for life cycle impact assessment methods. Existing climate 408 impact frameworks rely on the assumption that the emission location does not affect the 409 response of the climate system and the climate change impact category has a global scale. 410 These assumptions hold for WMGHGs but not for all NTCFs. Species like NO_x, SO_x, BC and 411 OC would ideally require the formulation of sub-global emission locations and impact 412 categories for using the corresponding regional metrics.

There are other important caveats associated with the accounting of the climate impacts
from NTCFs. As they can have significant contributions to global warming, their inclusion in
LCA can make their mitigation an attractive proposition to achieve multiple environmental
goals at the same time [76], because these species have adverse effects in other
environmental impact categories than climate change, like human and ecosystem health .

418 On the other hand, some NTCFs have cooling effects, and their accounting may result in a 419 partial offsetting of the warming effect of the total aggregated emissions. This would result in the attribution of climate benefits to species which are responsible of air pollution and 420 421 damage to ecosystems. LCA methodology includes many environmental impact categories 422 and is by definition well suited to inform about the possible shifts of impacts across 423 categories. However, risks of this type are higher in carbon footprint studies or other 424 applications where the goal is limited to the assessment of climate change impacts only. 425 Accounting for NTCFs using metrics like the GWP100 would bring to common unit species 426 with very different climate impact profiles and expand the abatement options available. 427 Decision-makers could for instance prioritize mitigation of NTCFs and delay reductions in 428 long-lived species like CO₂, thereby causing irreversible long-term warming for the sake of 429 reducing near-term rate of warming. Another important aspect is the consideration that 430 NTCFs are frequently co-emitted, and this has implications for the benefits that can be achieved by their mitigation [62, 63]. For instance, with approximately 0.64 W m^{-2} , BC is 431 432 the third largest radiative forcing component for the period 1750-2011 after CO₂ and CH₄ [1]. One can therefore argue that a reduction in BC emissions will bring considerable 433 434 benefits for the climate. However, the benefits from a decrease in BC emissions are dampened by the simultaneous reduction of emissions of species like SO_x and OC, which 435 436 have cooling contributions [62, 63].

437

438 6. Land use and land cover change (LULCC)

Climate impacts from a change in land use or management are frequently associated to emission or removal of WMGHGs like CO_2 , N_2O and CH_4 . Direct GHG emissions from land use changes such as deforestation or afforestation, as well as those from changes in above442 ground or soil carbon content after a change in management, are usually accounted for in 443 LCA, when data are available [4, 77]. The consideration of possible emissions associated with 444 indirect land use changes via market-mediated effects, that is the change in land use in one 445 place caused by a change in production in another place, is widely debated [78, 79]. Land 446 use without land-cover change (e.g., managed or harvested forests) have traditionally been 447 treated under a default carbon neutrality assumption [80], thus ignoring the temporal 448 asymmetry between CO_2 emission and uptake fluxes, which can be rather significant for 449 forests. Recent studies show how the climate forcing impact from this asymmetry can be 450 assessed through site-specific emission metrics that embed post-disturbance carbon dynamics [81]. Emission metrics or temporally differentiated emission inventories are also 451 452 used to compute the climate change implications of anthropogenic carbon sequestration and 453 storage in products [11, 82-84].

454 Relatively more challenging and less common is the quantification of the biogeophysical 455 effects following a change in land use or land cover. Modifications of the surface energy 456 balance through changes in surface albedo, evapotranspiration (the fluxes of heat and water 457 between the vegetation and the atmosphere), and surface roughness (the aerodynamics of the vegetation cover), can have implications for the local [85-87] and global [88-90] 458 459 climate, either directly or indirectly [89, 91]. The global temperature impact from these 460 effects can be of the same order of magnitude as the impact associated with CO₂ emission or 461 removal fluxes [88, 90, 92, 93], whether or not the land cover change is long lasting, such 462 as in afforestation or deforestation [90, 94], or transient, such as in forest management or 463 post-fire forest recovery [7, 95]. Nevertheless, accounting for changes in albedo and other 464 biogeophysical properties is not currently required in the formal rules for quantifying the 465 climate effects of land use activities [96]. This is despite the large evidence from climate 466 simulation studies [88, 90, 96-98] or empirical observations [86, 99], where the importance

to go beyond a simple carbon accounting framework when assessing the impacts of LULCC
activities on climate is frequently highlighted [7, 92, 96–98]. It has been explicitly argued
that "ignoring biophysical interactions could result in millions of dollars being invested in
some mitigation projects that provide little climate benefit or, worse, are counterproductive" [96].

472 Biogeophysical properties vary with surface cover and have high spatial and seasonal 473 variations. There are differences between summer and winter, especially in areas affected by 474 seasonal snow cover. For instance, forests usually have lower albedo than open lands such as 475 grassland or cropland, especially during snow covered periods. Biogeochemical effects 476 following a change in forest cover usually dominate at low latitudes, while biogeophysical 477 contributions are stronger at high latitudes [88–90, 100]. Biogeophysical effects are 478 significant also when changes in management occur on the same land use type, such as 479 irrigation, crop rotation, and forestry [7, 98, 99]. In general, climate impacts vary in spatial 480 scale and depend on complex, and often nonlinear, mechanisms. Compared to grass, trees 481 are generally more efficient in transferring water from the soil to the atmosphere because of 482 their deeper roots and larger leaf area, and forests thus tend to maintain a cooler local 483 surface temperature by releasing more energy in the form of latent heat than sensible heat. 484 Hence, conversion from forest to grassland tends to warm the local surface, and it also tends 485 to reduce the roughness of the landscape and thus to reduce the turbulence in the boundary 486 layer. However, it is difficult to predict the effect that this reduction may have on surface 487 temperature, because the reduction of heat and water vapour transport associated with 488 reduced turbulence may be compensated by greater gradients of humidity and temperature 489 between the surface and the atmosphere [89, 96].

Biogeophysical effects differ in nature. Changes in surface albedo and emissivity modifiesglobal temperature by directly altering the Earth's radiative balance, while changes in

492 evapotranspiration and surface aerodynamics do not imply any direct perturbation to the 493 earth's radiative balance [89]. The quantification of the climate change effects from 494 evapotranspiration and surface roughness is complex. The attribution of regional and global 495 climate change effects to these forcing agents is highly uncertain and limited in evidence, owing to a wide spread in model estimates and differences between observations and model 496 497 results [87, 91, 101]. Modelling changes in evapotranspiration and surface roughness also 498 requires knowledge of numerous vegetation structural, physiological, and environmental 499 parameters [97, 101], posing formidable challenges for the accounting of these effects in climate impact assessment studies. On the other hand, changes in surface albedo are rather 500 more certain and less challenging to quantify. The 5th IPCC assessment report classified the 501 502 radiative forcing estimates from surface albedo changes with a high confidence level, as it 503 has robust evidence with well documented high precision measurements [1]. Surface albedo 504 is also the most important biogeophysical mechanism influencing the global climate in 505 extra-tropical regions, especially in areas experiencing seasonal snow cover [88, 90, 98]. 506 Because they can be measured in terms of radiative forcing, impacts from changes in 507 surface albedo are frequently converted to CO_2 equivalents using either carbon equivalent 508 factors [97, 102] or more conventional emission metrics like GWP or GTP [13]. However, 509 because of the non-linear and high spatial heterogeneity of the climate forcings from land-510 atmosphere perturbations as well as the different temporal behaviour, the development and 511 possible routine applications of climate metrics for LULCC in LCA need to be land cover-512 and location-specific. Like for NTCFs, radiative forcing from albedo changes located in 513 different regions affect climate heterogeneously [89, 90], with radiative forcings at high 514 latitudes being more effective in changing global temperature than radiative forcing at low 515 latitudes [103]. Because changes in land surface aerodynamic and physiological properties 516 often dampen the radiative temperature change at the local surface [89], global radiative

forcings from WMGHGs, like CO_{2} , and LULCC do not produce the same global mean temperature response when added together, and more accurate estimates are achieved when the individual climate responses are used [104]. However, the lack of regional temperature response functions and metrics for radiative forcings originated from changes in biogeophysical effects at various locations has so far limited the possibilities to perform temperature-based analyses without coupling the study with global climate models.

523 In addition to WMGHGs and surface albedo, changes in land cover have a third direct effect 524 on the global radiation balance by altering emissions of biogenic VOCs (BVOCs), which 525 rapidly oxidize in the atmosphere generating multiple warming and cooling climate 526 pollutants like ozone and biogenic secondary organic aerosols [3, 105]. The photochemical 527 processing of BVOC emissions influences the oxidation capacity of the atmosphere, which affects the lifetime of CH₄ and the production of other secondary aerosols (sulphate and 528 529 nitrates). Even if BVOC emissions are formally quantified as a terrestrial biogeochemical 530 feedback that responds to anthropogenic climate change [52], we briefly discuss them here 531 given the strict link they have with LULCC. As for the other NTCFs, the net radiative patterns 532 are highly spatially inhomogeneous. The net radiative forcing from historical BVOC 533 emission reductions from expansion of agricultural areas is estimated in a negative (cooling) 534 contribution [3]. Conversely, increasing BVOC emissions following LULCC involving 535 reforestation or afforestation strategies cause a positive radiative forcing [71]. Despite 536 relevant recent progress, important uncertainties still persist. Current generation models 537 underestimate the amount of organic aerosols in the atmosphere and are unable to fully 538 reproduce the variability found in the measurements [1]. As NTCFs, BVOC oxidation 539 products are also important for the growth of newly formed particles up to cloud 540 condensation, so they indirectly influence climate through changes in cloud albedo [106]. 541 These atmospheric aerosol processes changing cloud droplet concentrations and radiative

properties are among the least understood in climate research, and their contributions to the global radiation budget are considered as one of the largest source of uncertainty in the estimation of radiative forcing over the industrial period [106]. Results are not consistent across models, with estimates ranging between +0.23 W m⁻² and -0.77 W m⁻² [3]. All these aspects make a possible consideration of the contributions from aerosol-cloud effects in LCA and similar studies unrealistic for the short and medium term.

548

549 7. The way forward

550 Anthropogenic global warming is caused by a variety of forcing agents with different 551 physical properties and lifetimes ranging from few days, like black carbon, to several 552 thousands of years, like CF_4 . Climate impact methods used in LCA are challenged when it comes to dealing with aspects like the various timescales of the responses to different GHGs, 553 impacts from NTCFs and LULCC, and their temporal and spatial variability. Emissions can 554 also be aggregated by metrics other than GWP100. Alternative metrics would allow the 555 556 representation of different dimensions of climate change impacts, but would not sidestep the value-laden considerations of the relative weighting. Value judgements are embedded in 557 558 metric formulations, most notably through the choice of time horizon, of climate impact 559 parameters, and by whether the indicator refers to a time-integrated or instantaneous 560 quantity. Any preference of one metric over another arguably favours the representation of 561 some aspects of the climate system response and at the same time discount others. 562 There are considerable uncertainties in the attribution of climate impacts to specific forcing 563 agents. Scientific uncertainties are larger for temperature-based metrics than for those based on radiative forcing, and for NTCFs, BVOCs, or non-radiative LULCC mechanisms 564

than for WMGHGs or changes in surface albedo following LULCC. The presence of

566 uncertainties should not *per se* be an overriding constraint for using metrics and modelling 567 impacts [20]. If the main policy goal is to keep global temperature below a certain threshold, 568 the uncertainties and timing of political choices (i.e. a delay in action) are often those with 569 the largest cost-risk distributions, and may actually swamp the uncertainties associated with 570 the parameterization of the climate system [107].

571 Concerning the aggregation to common units, it is impossible to identify a single metric that 572 can produce a balanced representation of the overall climate impact from such a diversity of 573 forcing agents. Different climate policy goals may lead to different conclusions about what 574 is the most suitable metric to assess that policy. For instance, the use of GWP100 in LCA has 575 the inadvertent consequence of assessing emissions for their contributions to global 576 temperature over a timeframe of about four decades [35, 36], with no direct connections to 577 peak warming. GWP100 only becomes an indication of the contributions to peak warming 578 under the arguably optimistic assumption that global CO₂ emissions will approach zero 579 within about 40 years, so that the global temperature will approach stabilization. The 580 characterization of different emissions to CO₂-equivalents implicitly suggests that one can 581 freely choose which emissions to reduce in order to achieve the same improvement in the 582 climate system performance of a product. However, the same net reduction of the total 583 aggregated emissions in CO₂-equivalents will have different climate effects at different 584 times, depending on whether it is obtained through a reduction in long-lived or short-lived 585 species. If emissions of long-lived gases continue to rise, the mitigation of short-lived species 586 would temporarily reduce the rate of warming but cannot avoid the risk of passing 587 warming thresholds, because as long as the concentration of CO_2 is allowed to keep 588 growing, the reaching of those thresholds is only temporally postponed. Any delay in 589 mitigation of CO₂ emissions will lead to nearly irreversible warming. Within the global 590 policy goal of limiting warming to 2°C above pre-industrial levels, mitigation of CO₂

emissions is thus identified as a non-negotiable objective in strategies aiming at constraining
maximum temperature [35, 37, 44, 55, 57, 63], because any deferral in mitigating longlived emissions progressively closes the door for achieving ambitious peak temperature
targets.

595 Bridging life cycle impact assessment methods with climate science is essential to provide 596 decision makers with more robust climate change impact studies that acknowledge the 597 variety of forcing agents at play and the caveats of their aggregation. There are metrics other 598 than GWP100 and climate forcing agents other than WMGHGs. Explicit consideration of 599 alternative metrics by LCA practitioners would allow the characterization of climate change 600 impacts over multiple timescales and with regard to diverse and contrasting policy goals. 601 For instance, the use of metrics like GWP20 or GWP100 can provide information about the 602 time-integrated contributions to global warming in a short/medium term, whereas GTP100 603 provides information about the instantaneous contributions to global warming on a longer 604 timeframe. If GWP aligns well with the LCA ambition to prefer integrated impacts, GTP 605 provides the possibility to explicitly link global warming contributions to a climate target, 606 based on planetary boundary and/or policy considerations. In general, the utilization of 607 multiple metrics provides complementary information on the implications of mitigating 608 gases with varying lifetimes, and shows the extent to which results are sensitive to the 609 choice of metric or robust across a range of choices. The inclusion in existing LCA databases 610 and impact assessment methods of the spectrum of the metrics available in the latest IPCC 611 assessment report will facilitate their application by LCA practitioners.

612 The consideration of NTCFs in LCA presents challenges at an inventory and characterization 613 level. Most of the NTCFs are already tracked by the majority of the life-cycle inventory 614 databases, as they contribute to other environmental impact categories, except for BC and 615 OC emissions. Although they can be indirectly quantified from emissions of particulate

matter, their explicit inclusion in emission inventories is desirable to facilitate applications.
Characterization of their impacts on climate should consider the higher level of
uncertainties associated with metrics for NTCFs, and ideally consider the range of possible
metric values summarized in the latest IPCC report. The LCA community should closely
follow updates on quantification of impacts from NTCFs as the climate science community is
continuously improving the robustness of characterization factors for NTCFs.

Regional climate change categories can also be formulated in the future when robust
estimates of metric values for regional responses to NTCFs become available. Inventory
databases should already be adapted by elaborating spatial-explicit emission inventories
that keep track of emission regions.

626 The time is ripe for the LCA community to consider the complexity of climate science and 627 gain insights on the implications associated with the selection of emission metrics for the 628 intended goal of the analysis. Rather than using a single default metric for WMGHGs in all 629 applications, analysts should acknowledge the various forcing agents and the caveats 630 associated with the aggregation of species with different lifetimes to common units. The 631 sensitivity of the results to the type of metric used should be explored. When a choice is to 632 be made, this can be done consistently with the aspects of climate change that are most 633 relevant for the particular application. In any case, it is important to be aware and 634 transparent about the choice of metric, its meaning, and the inherent value judgments it 635 entails when interpreting and communicating results. A continuous bridge between the two 636 communities is desirable in the future to keep LCA methods up-to-date with the latest 637 developments in climate science, and simultaneously engage climate scientists to shape 638 emission metrics and approaches to fit environmental impact assessment frameworks.

639 References

- Myhre, G., et al., Anthropogenic and Natural Radiative Forcing, in Climate Change
 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
 Assessment Report of the Intergovernmental Panel on Climate Change T.F. Stocker, et
 al., Editors. 2013, Cambridge University Press: Cambridge, United Kingdom and New
 York, NY, USA.
- 645 2. Boucher, O., et al., *Clouds and Aerosols*, in *Climate Change 2013: The Physical*646 *Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the*647 *Intergovernmental Panel on Climate Change* T.F. Stocker, et al., Editors. 2013,
- 648 Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA.
- 649 3. Unger, N., *Human land-use-driven reduction of forest volatiles cools global climate.*650 Nature Clim. Change, 2014. advance online publication.
- 4. Hellweg, S. and L. Milà i Canals, *Emerging approaches, challenges and opportunities in life cycle assessment.* Science, 2014. **344**(6188): p. 1109–1113.
- 653 5. Peters, G.P., et al., *Alternative "Global Warming" Metrics in Life Cycle Assessment: A*654 *Case Study with Existing Transportation Data.* Environmental Science & Technology,
 655 2011. 45(20): p. 8633–8641.
- 6566.Tsao, C.C., et al., Increased estimates of air-pollution emissions from Brazilian sugar-657cane ethanol. Nature Clim. Change, 2012. 2(1): p. 53–57.
- 658 7. Cherubini, F., R.M. Bright, and A.H. Strømman, *Site-specific global warming*659 *potentials of biogenic CO 2 for bioenergy: contributions from carbon fluxes and*660 *albedo dynamics.* Environmental Research Letters, 2012. 7(4): p. 045902.
- 661 8. Caiazzo, F., et al., *Quantifying the climate impacts of albedo changes due to biofuel*662 *production: a comparison with biogeochemical effects.* Environmental Research
 663 Letters, 2014. 9(2): p. 024015.
- 664 9. Levasseur, A., et al., *Considering Time in LCA: Dynamic LCA and Its Application to*665 *Global Warming Impact Assessments.* Environmental Science & Technology, 2010.
 666 44(8): p. 3169–3174.
- Lund, M.T., T.K. Berntsen, and J.S. Fuglestvedt, *Climate Impacts of Short-Lived Climate Forcers versus CO2 from Biodiesel: A Case of the EU on-Road Sector.*Environmental Science & Technology, 2014.
- 670 11. Cherubini, F., G. Guest, and A.H. Strømman, *Application of probability distributions*671 *to the modeling of biogenic CO2 fluxes in life cycle assessment.* GCB Bioenergy,
 672 2012. 4(6): p. 784–798.
- Reisinger, A. and S. Ledgard, *Impact of greenhouse gas metrics on the quantification of agricultural emissions and farm-scale mitigation strategies: a New Zealand case study.* Environmental Research Letters, 2013. 8(2): p. 025019.
 - 29

- 676 13. Cherubini, F., R.M. Bright, and A.H. Strømman, *Global climate impacts of forest*677 *bioenergy: what, when and how to measure?* Environmental Research Letters, 2013.
 678 8(1): p. 014049.
- Edwards, M.R. and J.E. Trancik, *Climate impacts of energy technologies depend on emissions timing.* Nature Clim. Change, 2014. 4(5): p. 347–352.
- 15. Ledgard, S.F. and A. Reisinger, *Implications of alternative greenhouse gas metrics for life cycle assessments of livestock food products*, in *9th International Conference LCA of Food.* 2014: 8–10 October 2014, San Francisco, USA.
- Iolliet, O., et al., *Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase.* The International Journal of Life Cycle
 Assessment, 2014. 19(4): p. 962–967.
- Frischknecht, R., et al., *Global guidance on environmental life cycle impact assessment indicators: progress and case study.* The International Journal of Life
 Cycle Assessment, 2016. 21(3): p. 429–442.
- Tanaka, K., et al., *Emission metrics under the 2 °C climate stabilization target.*Climatic Change, 2013. 117(4): p. 933–941.
- Huijbregts, M.A.J., S. Hellweg, and E. Hertwich, *Do We Need a Paradigm Shift in Life Cycle Impact Assessment?* Environmental Science & Technology, 2011. 45(9): p.
 3833–3834.
- Fuglestvedt, J.S., et al., *Transport impacts on atmosphere and climate: Metrics.*Atmospheric Environment, 2010. 44(37): p. 4648–4677.
- Tanaka, K., G.P. Peters, and J.S. Fuglestvedt, *Policy Update: Multicomponent climate policy: why do emission metrics matter?* Carbon Management, 2010. 1(2): p. 191–
 197.
- Tol, R.S.J., et al., *A unifying framework for metrics for aggregating the climate effect of different emissions.* Environmental Research Letters, 2012. 7(4): p. 044006.
- Shine, K., *The global warming potential—the need for an interdisciplinary retrial.*Climatic Change, 2009. 96(4): p. 467–472.
- Joos, F., et al., *Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis.* Atmos. Chem. Phys.,
 2013. 13: p. 2793–2825.
- Peters, G.P., et al., *The integrated global temperature change potential (iGTP) and relationships between emission metrics.* Environmental Research Letters, 2011. 6(4):
 p. 044021.
- Shine, K., et al., *Alternatives to the Global Warming Potential for Comparing Climate Impacts of Emissions of Greenhouse Gases.* Climatic Change, 2005. 68(3): p. 281–
 302.

713 27. Azar, C. and D.J.A. Johansson, On the relationship between metrics to compare 714 greenhouse gases - the case of IGTP, GWP and SGTP. Earth Syst. Dynam., 2012. 3: p. 715 139 - 147. 716 28. Johansson, D., Economics- and physical-based metrics for comparing greenhouse 717 gases. Climatic Change, 2012. 110(1): p. 123-141. 718 29. Unger, N., Short-lived non-CO2 pollutants and climate policy: fair trade? 719 Environmental Science & Technology, 2010. 44(14): p. 5332-5333. 720 30. Sterner, E., D.A. Johansson, and C. Azar, Emission metrics and sea level rise. Climatic 721 Change, 2014: p. 1-17. 722 Shine, K.P., et al., *Metrics for linking emissions of gases and aerosols to global* 31. 723 precipitation changes. Earth Syst. Dynam. Discuss., 2015. 6(1): p. 719-760. Reisinger, A., M. Meinshausen, and M. Manning, *Future changes in global warming* 724 32. 725 potentials under representative concentration pathways. Environmental Research 726 Letters, 2011. 6(2): p. 024020. 727 33. Shine, K.P., et al., *Comparing the climate effect of emissions of short- and long-lived* 728 climate agents. Philosophical Transactions of the Royal Society A: Mathematical, 729 Physical and Engineering Sciences, 2007. 365(1856): p. 1903-1914. 730 34. Jørgensen, S., M. Hauschild, and P. Nielsen, Assessment of urgent impacts of 731 greenhouse gas emissions—the climate tipping potential (CTP). The International 732 Journal of Life Cycle Assessment, 2014. **19**(4): p. 919–930. 733 Allen, M., Short-Lived Promise? The Science and Policy of Cumulative and Short-35. 734 Lived Climate Pollutants, in Oxford Martin Policy Paper. 2015. p. 735 26; http://www.oxfordmartin.ox.ac.uk/publications/view/1960. 736 36. Allen, M.R., et al., New use of global warming potentials to compare cumulative and 737 short-lived climate pollutants. Nature Clim. Change, 2016. advance online 738 publication. 739 37. Pierrehumbert, R.T., Short-Lived Climate Pollution. Annual Review of Earth and 740 Planetary Sciences, 2014. 42(1): p. 341-379. 741 38. Shoemaker, J.K., et al., What Role for Short-Lived Climate Pollutants in Mitigation 742 Policy? Science, 2013. 342(6164): p. 1323-1324. 743 Fuglestvedt, J.S., et al., Climate implications of GWP-based reductions in greenhouse 39. 744 gas emissions. Geophysical Research Letters, 2000. 27(3): p. 409–412. 745 40. Smith, S.M., et al., Equivalence of greenhouse-gas emissions for peak temperature 746 limits. Nature Clim. Change, 2012. 2(7): p. 535-538. 747 41. Daniel, J., et al., *Limitations of single-basket trading: lessons from the Montreal* 748 Protocol for climate policy. Climatic Change, 2012. 111(2): p. 241-248. 749 42. Reisinger, A., et al., Uncertainties of global warming metrics: CO2 and CH4. 750 Geophysical Research Letters, 2010. 37(14): p. L14707.

- Randall, D.A.e.a., *Climate Models and Their Evaluation* Climate Change 2007. The
 Physical Science Basis, ed. S.S.e. al. 2007, Cambridge, United Kingdom and New York,
 NY, USA: Cambridge University Press.
- Allen, M.R. and T.F. Stocker, *Impact of delay in reducing carbon dioxide emissions.*Nature Clim. Change, 2014. 4(1): p. 23–26.
- Solomon, S., et al., *Persistence of climate changes due to a range of greenhouse gases.*Proceedings of the National Academy of Sciences, 2010. 107(43): p. 18354–18359.
- 46. Shindell, D.T., et al., *Improved Attribution of Climate Forcing to Emissions.* Science,
 2009. **326**(5953): p. 716–718.
- For the potential due to methane oxidation. Environmental Research Letters, 2009.
 4(4): p. 044007.
- 763 48. Sitch, S., et al., *Indirect radiative forcing of climate change through ozone effects on*764 *the land-carbon sink*. Nature, 2007. 448(7155): p. 791–794.
- Gillett, N.P. and D.H. Matthews, *Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases.* Environmental
 Research Letters, 2010. 5(3): p. 034011.
- 76850.Collins, W.J., et al., Global and regional temperature-change potentials for near-term769climate forcers. Atmos. Chem. Phys., 2013. 13(5): p. 2471-2485.
- Archer, D. and V. Brovkin, *The millennial atmospheric lifetime of anthropogenic CO2.* Climatic Change, 2008. **90**(3): p. 283–297.
- Ciais, P., et al., *Carbon and other biogeochemical cycles*, in *Climate Change 2013*. *The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change*, T.F. Stocker, et al., Editors.
- 2013, Cambridge University Press: Cambridge, U.K., and New York, NY, USA.
- 53. Eby, M., et al., *Lifetime of Anthropogenic Climate Change: Millennial Time Scales of Potential CO2 and Surface Temperature Perturbations.* Journal of Climate, 2009.
 22(10): p. 2501–2511.
- Johansson, D.J.A., et al., *Equilibrium climate sensitivity in light of observations over the warming hiatus.* Nature Clim. Change, 2015. 5(5): p. 449–453.
- Friedlingstein, P., et al., *Persistent growth of CO2 emissions and implications for reaching climate targets.* Nature Geosci, 2014. advance online publication.
- Frame, D.J., A.H. Macey, and M.R. Allen, *Cumulative emissions and climate policy*.
 Nature Geosci, 2014. 7(10): p. 692–693.
- 57. Stocker, T.F., *The Closing Door of Climate Targets.* Science, 2013. **339**(6117): p. 280282.
- 78758.Bowerman, N.H.A., et al., The role of short-lived climate pollutants in meeting788temperature goals. Nature Clim. Change, 2013. 3(12): p. 1021–1024.

789	59.	Cherubini, F., et al., Linearity between temperature peak and bioenergy CO2
790		emission rates. Nature Clim. Change, 2014. 4: p. 983–987.
791	60.	Gillett, N.P., et al., Constraining the Ratio of Global Warming to Cumulative CO2
792		<i>Emissions Using CMIP5 Simulations*.</i> Journal of Climate, 2013. 26 (18): p. 6844–
793		6858.
794	61.	Matthews, H.D., et al., The proportionality of global warming to cumulative carbon
795		<i>emissions.</i> Nature, 2009. 459 (7248): p. 829–832.
796	62.	Smith, S.J. and A. Mizrahi, Near-term climate mitigation by short-lived forcers.
797		Proceedings of the National Academy of Sciences, 2013. 110(35): p. 14202-14206.
798	63.	Rogelj, J., et al., Disentangling the effects of CO2 and short-lived climate forcer
799		mitigation. Proceedings of the National Academy of Sciences, 2014. 111(46): p.
800		16325-16330.
801	64.	Shindell, D. and G. Faluvegi, <i>Climate response to regional radiative forcing during</i>
802		the twentieth century. Nature Geosci, 2009. 2(4): p. 294-300.
803	65.	Fry, M.M., et al., The influence of ozone precursor emissions from four world regions
804		on tropospheric composition and radiative climate forcing. Journal of Geophysical
805		Research: Atmospheres, 2012. 117 (D7): p. D07306.
806	66.	Berntsen, T., et al., Abatement of Greenhouse Gases: Does Location Matter? Climatic
807		Change, 2006. 74(4): p. 377-411.
808	67.	Aamaas, B., et al., Regional emission metrics for short-lived climate forcers from
809		<i>multiple models.</i> Atmos. Chem. Phys., 2016. 16(11): p. 7451–7468.
810	68.	Meinshausen, M., S.C.B. Raper, and T.M.L. Wigley, Emulating coupled atmosphere-
811		ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model
812		description and calibration. Atmos. Chem. Phys., 2011. 11: p. 1417-1456.
813	69.	Joshi, M.M., F.H. Lambert, and M.J. Webb, An explanation for the difference between
814		twentieth and twenty-first century land-sea warming ratio in climate models.
815		Climate Dynamics, 2013. 41 (7–8): p. 1853–1869.
816	70.	Rypdal, K., et al., Tropospheric ozone and aerosols in climate agreements: scientific
817		and political challenges. Environmental Science & Policy, 2005. 8(1): p. 29-43.
818	71.	Unger, N., On the role of plant volatiles in anthropogenic global climate change.
819		Geophysical Research Letters, 2014. 41(23): p. 2014GL061616.
820	72.	Yu, H., et al., A multimodel assessment of the influence of regional anthropogenic
821		emission reductions on aerosol direct radiative forcing and the role of
822		intercontinental transport. Journal of Geophysical Research. Atmospheres, 2013.
823		118(2): p. 700–720.
824	73.	Lund, M.T., et al., How much information is lost by using global-mean climate
825		<i>metrics? an example using the transport sector.</i> Climatic Change, 2012. 113 (3–4): p.
826		949-963.

- 827 74. Bond, T.C., et al., *Quantifying immediate radiative forcing by black carbon and*828 *organic matter with the Specific Forcing Pulse.* Atmos. Chem. Phys., 2011. 11(4): p.
 829 1505–1525.
- 830 75. Shindell, D.T., *Evaluation of the absolute regional temperature potential.* Atmos.
 831 Chem. Phys., 2012. 12(17): p. 7955–7960.
- 832 76. Shindell, D., et al., *Simultaneously Mitigating Near-Term Climate Change and*833 *Improving Human Health and Food Security.* Science, 2012. 335(6065): p. 183–189.
- 834 77. Elshout, P.M.F., et al., *Greenhouse-gas payback times for crop-based biofuels*. Nature
 835 Clim. Change, 2015. 5(6): p. 604–610.
- 836 78. Finkbeiner, M., *Indirect land use change Help beyond the hype?* Biomass and
 837 Bioenergy, 2014. 62(0): p. 218–221.
- Schmidt, J.H., B.P. Weidema, and M. Brandão, *A framework for modelling indirect land use changes in Life Cycle Assessment.* Journal of Cleaner Production, 2015.
 99(0): p. 230–238.
- 841 80. Searchinger, T.D., et al., *Fixing a Critical Climate Accounting Error.* Science, 2009.
 842 **326**(5952): p. 527–528.
- 843 81. Cherubini, F., et al., *Global spatially explicit CO2 emission metrics for forest*844 *bioenergy*. Scientific Reports, 2016. 6. p. 20186.
- 845 82. Levasseur, A., et al., *Biogenic Carbon and Temporary Storage Addressed with*846 *Dynamic Life Cycle Assessment*. Journal of Industrial Ecology, 2013. 17(1): p. 117–
 847 128.
- 848 83. Guest, G., F. Cherubini, and A.H. Strømman, *Global Warming Potential of Carbon*849 *Dioxide Emissions from Biomass Stored in the Anthroposphere and Used for*850 *Bioenergy at End of Life*. Journal of Industrial Ecology, 2013. 17(1): p. 20–30.
- 851 84. Jørgensen, S., M. Hauschild, and P. Nielsen, *The potential contribution to climate*852 *change mitigation from temporary carbon storage in biomaterials.* The International
 853 Journal of Life Cycle Assessment, 2015. 20(4): p. 451–462.
- 854 85. Georgescu, M., D.B. Lobell, and C.B. Field, *Direct climate effects of perennial bioenergy crops in the United States.* Proceedings of the National Academy of
 Sciences, 2011.
- 857 86. Lee, X., et al., *Observed increase in local cooling effect of deforestation at higher*858 *latitudes.* Nature, 2011. 479(7373): p. 384–387.
- 859 87. Juang, J.-Y., et al., Separating the effects of albedo from eco-physiological changes on
 860 surface temperature along a successional chronosequence in the southeastern United
 861 States. Geophysical Research Letters, 2007. 34(21): p. L21408.
- 862 88. Bathiany, S., et al., Combined biogeophysical and biogeochemical effects of large-
- scale forest cover changes in the MPI earth system model. Biogeosciences 2010. 7: p.
 1383–1399.

865 Davin, E.L. and N. de Noblet-Ducoudré, Climatic Impact of Global-Scale 89. 866 Deforestation. Radiative versus Nonradiative Processes. Journal of Climate, 2010. **23(**1): p. 97–112. 867 868 90. Bala, G., et al., Combined climate and carbon-cycle effects of large-scale 869 deforestation. Proceedings of the National Academy of Sciences, 2007. 104(16): p. 870 6550-6555. 871 91. Swann, A.L., et al., *Changes in Arctic vegetation amplify high-latitude warming* 872 through the greenhouse effect. Proceedings of the National Academy of Sciences, 873 2010. **107**(4): p. 1295–1300. 874 92. O'Halloran, T.L., et al., *Radiative forcing of natural forest disturbances*. Global 875 Change Biology, 2012. 18(2): p. 555-565. Simmons, C.T. and H.D. Matthews, Assessing the implications of human land-use 876 93. 877 change for the transient climate response to cumulative carbon emissions. 878 Environmental Research Letters, 2016. 11(3): p. 035001. 879 94. Arora, V.K. and A. Montenegro, *Small temperature benefits provided by realistic* 880 afforestation efforts. Nature Geosci, 2011. 4(8): p. 514-518. 881 95. Randerson, J.T., et al., The Impact of Boreal Forest Fire on Climate Warming. Science, 882 2006. **314**(5802): p. 1130–1132. 883 96. Jackson, R.B., et al., Protecting climate with forests. Environmental Research Letters, 884 2008. **3**(4): p. 044006. 885 97. Zhao, K. and R.B. Jackson, *Biophysical forcings of land-use changes from potential* 886 forestry activities in North America. Ecological Monographs, 2014. 84(2): p. 329-887 353. 888 98. Mahmood, R., et al., Land cover changes and their biogeophysical effects on climate. 889 International Journal of Climatology, 2013. In Press. p. doi:10.1002/joc.3736. 890 99. Luyssaert, S., et al., Land management and land-cover change have impacts of similar 891 magnitude on surface temperature. Nature Clim. Change, 2014. 4(5): p. 389-393. 892 100. Li, Y., et al., Local cooling and warming effects of forests based on satellite 893 observations. Nat Commun, 2015. 6. 894 101. Baldocchi, D. and S. Ma, How will land use affect air temperature in the surface 895 boundary layer? Lessons learned from a comparative study on the energy balance of an oak savanna and annual grassland in California, USA. Tellus B, 2013. 65. 896 897 102. Betts, R.A., Offset of the potential carbon sink from boreal forestation by decreases in 898 surface albedo. Nature, 2000. 408(6809): p. 187-190. 899 103. Shindell, D.T., et al., Spatial patterns of radiative forcing and surface temperature 900 response. Journal of Geophysical Research-Atmospheres, 2015. 120(11): p. 5385-901 5403.

- 902 104. Jones, A.D., W.D. Collins, and M.S. Torn, *On the additivity of radiative forcing*
- 903 *between land use change and greenhouse gases.* Geophysical Research Letters, 2013.
 904 40(15): p. 4036–4041.
- 905 105. Arneth, A., et al., *From biota to chemistry and climate: towards a comprehensive*906 *description of trace gas exchange between the biosphere and atmosphere.*907 Biogeosciences, 2010. 7(1): p. 121–149.
- 908 106. Carslaw, K.S., et al., *Large contribution of natural aerosols to uncertainty in indirect*909 *forcing.* Nature, 2013. **503**(7474): p. 67–71.
- 910 107. Rogelj, J., et al., *Probabilistic cost estimates for climate change mitigation*. Nature,
 911 2013. 493(7430): p. 79-83.

912