

RADAR

w
w

w
.b

ro
ok

es
.a

c.
uk

/g
o/

ra
da

r

Oxford Brookes University – Research Archive and
Digital Asset Repository (RADAR)

Directorate of Learning Resources

Zhu, H
Algebraic specification of web services

Zhu, H and Yu, B (2010) Algebraic specification of web services. In: Proc. of the 10th
International Conference on Quality Software (QSIC 2010), IEEE CS Press. pp. 457‐464.
Doi: 10.1109/QSIC.2010.47

This version is available: http://radar.brookes.ac.uk/radar/items/e2409705‐076d‐9035‐5789‐8d93dfdd97ed/1/

Available on RADAR: November 2010
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be
downloaded for personal non‐commercial research or study, without prior permission or charge. This item cannot
be reproduced or quoted extensively from without first obtaining permission in writing from the copyright
holder(s). The content must not be changed in any way or sold commercially in any format or medium without the
formal permission of the copyright holders.

This document is the published version of the conference paper. Some differences between the published version
and this version may remain and you are advised to consult the published version if you wish to cite from it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/220156563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://radar.brookes.ac.uk/radar/items/e2409705-076d-9035-5789-8d93dfdd97ed/1/

Algebraic Specification of Web Services

Hong Zhu
Department of Computing and Electronics,

Oxford Brookes University,
Oxford OX33 1HX, UK, Email: hzhu@brookes.ac.uk

Bo Yu
Department of Computer Science,

National University of Defense and Technology,
Changsha 410074, China, Email: hnaxdsjk@163.com

Abstract—This paper presents an algebraic specification
language for the formal specification of the semantics of
web services. A set of rules for transforming WSDL into
algebraic structures is proposed. Its practical usability is also
demonstrated by an example.

Keywords-Web Services, Algebraic specification, WSDL, For-
mal methods, Specification language.

I. INTRODUCTION

Formal specification of software systems has been a
significant challenge to both communities of formal methods
and software engineering for at least the last three decades
[1]. More recently, the advent of service oriented computing
raises the stakes: can we specify services with high flexibil-
ity to support the dynamic discovery and composition of
services? In particular, we are concerned with specifications
of services in a modular and composable manner without
releasing internal design and implementation details because
services are often owned and operated by different vendors.

Algebraic specification was first proposed in the 1970s as
an implementation independent specification technique for
abstract data types [2], [3]. In the past three decades, it has
developed into a systematic formal methodology that can be
applied to various types of software systems. In particular,
by applying the theories of behavioral algebra [4] and co-
algebra [5], [6], [7], [8] developed recently, concurrent
systems, state-based systems and software components can
be specified in a modular, composable and implementation
independent manner at a very high level of abstraction. Thus,
it is very suitable for the specification of web services. More-
over, as a formal method, techniques and tools have been
developed to support many formal software development
activities, such as formal refinement from specifications
to implementations, proving correctness of implementations
against formal specifications, and proving properties of
software systems based on formal specifications [9], etc.

One of its most attractive features of algebraic speci-
fication is that it supports automatic testing of software
systems. This is particularly important for testing web
services because test on-the-fly must be fully automated.
There are software tools for testing implementations of
abstract data types [10], [11], [12], classes [13], [14], [15],
[16] and software components [17], [18] base on algebraic

specifications. In our previous work, we have developed the
CASOCC algebraic specification language that specifies ab-
stract data types, classes and software components in a uni-
fied formalism [17]. We have also developed an automated
software testing tool called CASCAT, which tests Java EJB
components automatically based on specifications in written
CASOCC. Our experiments with CASOCC/CASCAT have
shown that automated testing of Java EJB components based
on algebraic specifications can detect about 85% faults in
mutation analysis [18]. Moerover, specification of software
components can be learnable and efficient [19]. However, the
algebraic approach has not been applied to the specification
of web services as far as we know. This is mostly due to the
restrictions imposed by algebraic specification languages.

In this paper, we will extend CASOCC language to
enable the specification of services with automated testing
of services as our ultimate goal. The extended specification
language is called CASOCC-WS. It facilitates the specifi-
cation of web services in a unified syntax and semantics
in which software components, object-oriented systems and
traditional data types are specified. We will demonstrate by
an example that web services can be specified by CASOCC-
WS with the algebraic structures automatically derived from
WSDL.

The remainder of this paper is organized as follows. Sec-
tion II gives a brief introduction to CASOCC-WS. Section
III presents a set of rules for transforming WSDL descrip-
tions of Web Services into algebraic structures, and some
heuristic rules for writing axioms to define the semantics
of web services. Section IV gives an example of algebraic
specification of a web service. Section V concludes the paper
with a brief discussion of related works and future work.

II. THE CASOCC-WS SPECIFICATION LANGUAGE

CASOCC-WS specifications are modular. A specification
consists of a number of modular units, each for one software
entity type in the software system. A type of software entity
can be an abstract data type, a class, a component, a web
service, a message type defined by an XML schema and
passed between services, and so on. We will not distinguish
them in a specification. Instead, we will abstract out such
implementation details in our specifications of their func-
tions and behavioral properties.

2010 10th International Conference on Quality Software

1550-6002/10 $26.00 © 2010 IEEE

DOI 10.1109/QSIC.2010.47

457

As shown in the following BNF syntax rules, each specifi-
cation unit contains three parts: (a) a sort name of the entity
and its observability, (b) a signature and (c) a set of axioms.
They are presented in the subsections below.
<Specification> ::= {<Spec unit> }
<Spec unit> ::=
Spec <Sort Name> is <Observability>;

<Signature>; <Axioms> End

A. Signature

Signature specifies the syntax aspect of a software entity.
Each specification unit has a unique identifier, which corre-
sponds to a sort in the traditional terminology of algebraic
specification.

Let S be a finite non-empty set of sorts. We will also
define a binary relation ≺, called importation relation,
on its elements. Informally, the relation ≺ represents the
dependency between sorts. If sorts s1 ≺ s2, it means
that the computational entity s2 is constructed based on
the computational entity s1. We can use the operators and
axioms defined in s1 to construct s2.

In the CASOCC-WS language, the relation ≺ is defined
by the Import clause in the specification of a sort. It lists
the sorts that the specified sort depends on. For example,
suppose that the following Import clause is written in the
specification of Stack.
Import BOOL, NAT;

It means that STACK depends on BOOL and NAT. Thus,
BOOL ≺ STACK and NAT ≺ STACK.

A common feature of software entities, like abstract data
type, class, component and services, is that each entity
defines a set of operations. The syntax aspect of an operator
is specified by giving its identifier, its domain and co-domain
types. It is written in the following form.

Op : s1, s2, · · · , sn → s′1, s
′
2, · · · , s′k

where n, k ≥ 0, (s1, s2, · · · , sn) are the domain sorts, and
(s′1, s

′
2, · · · , s′k) are the codomain sorts.

For example, the Push operator of the STACK abstract
data type has two input parameters: the stack that stores data
and a nature number to be push into the stack. The result of
the operation is a new state of the stack. The signature of
the operator can be defined as follows in CASOCC-WS.
Push: STACK, NAT -> STACK

Note that, in a traditional algebraic specification language,
the co-domain of an operator must be a singleton. Such a
signature is called algebraic.

Recently, specifications based on co-algebras allows the
co-domains of operators to be non-singleton. It can be
any sequence of sorts. However, the domain must be a
singleton. Such a signature is called co-algebraic [20]. For
example, the following signature for infinite streams of
natural numbers is co-algebraic.

Spec STREAM Is Unobservable
Import NAT;
Operators:
Transformer:
NEXT: STREAM -> NAT,STREAM;

Axioms:
...
End

In the above specification, there is only one operator, i.e.
NEXT, applicable to an infinite stream of natural numbers.
Each time the operator is applied to a stream will give a
natural number and change the state of STREAM.

However, we will show in the example in section IV,
both algebraic and co-algebraic signatures are too restrictive
for the specification of web services. Thus, CASOCC-
WS language allows both the domain and codomain of an
operator to be non-singleton sequence of sorts.

Moreover, when the main sort occurs in both domain and
co-domain of an operator, we consider the main sort as the
context sort of the operator and specify the operator in the
following format, where the occurrences of the context sort
in the domain and co-domain are removed.

Op : [sc]s1, · · · , sn− > s′1, · · · , s′k,

where sc is the context sort. When the main sort is the only
sort in the domain (or co-domain) of an operator, we write
VOID as the type of domain (or co-domain) in the operator’s
type specification using context. For example, the signature
of the BOOL operators AND, OR, EQ and NOT can be defined
as follows.

AND: [BOOL] BOOL -> VOID;
OR: [BOOL] BOOL -> VOID;
EQ: [BOOL] BOOL -> VOID;
NOT: [BOOL] VOID -> VOID;

The semantics of an operator with a context sort is
equivalent to the operator with the context sort added to
the lists of sorts of the domain and co-domain. The only
difference is that terms formed by an operator with a context
sort can be written in the object-oriented style, i.e. in the
form of C.f(x1, x2, · · · , xn), where C is a term of the
context sort of operator f . Context sort is only a syntax
sugar to improve the readability of specifications. Therefore,
in the sequel, we will only discuss operators without context
sorts unless explicitly stated.

In general, the syntax in BNF of the signature of an
operator is given below.

<Type> ::= <Sort Name> [, <Type>]
<Domain Type> ::= <Type> | VOID
<Co-domain Type> ::= <Type> | VOID
<Context Sort> ::= <Sort Name>
<Operation> ::=
<Operator ID>: [’[’ <Context Sort> ’]’]

<Domain Type> -> <Co-domain Type>;
<Operator ID>::= <Identifier>

We classify the operators defined for a sort s into the fol-
lowing kinds. This classification helps the uses of algebraic

458

specifications in automated software testing [17], [18].
Let ϕs : w → w′ be an operator in the specification of sort

s, where w = (s1, s2, · · · , sn) and w′ = (s′1, s
′
2, · · · , s′k).

The operator ϕs is called a creator of sort s, if for all
i = 1, · · · , n, si 6= s, and for some j = 1, · · · , k, s′j = s.

The operator ϕs is called a transformer of sort s, if there
are i ∈ {1, · · · , n} and j ∈ {1, · · · , k} such that si = s′j = s.

The operator ϕs is called an observer of sort s, if for all
j = 1, · · · , k, sj 6= s, and for some i = 1, · · · , n, s′j = s.

For example, consider the signatures of the operators
of the Boolean algebra. According to the above definition,
TRUE and FALSE are creators. AND, OR, NOT and EQ are
transformers.

A signature part of a specification unit for a sort s,
denoted by Σs, consists of a finite family of non-empty
disjoint sets Σw,w′ indexed by (w,w′), where w and w′

∈ Ws = {x ∈ S|x ≺ s ∨ x = s}∗. Each element ϕ of set
Σw,w′ is an operator symbol of type w → w′ , where w is
the domain type and w′ the co-domain type of the operator.

The CASOCC-WS syntax of unit signature in BNF is
given below.

<Signature>::= [<Import clause>;] <Operations>;
<Operations>::= Operations:[<Creator>;]
[<Transformers>;][<Observers>]

<Creators>::= Creators:<Operation List>
<Transformers>::= Transformers: <Operation List>
<Observers>::= Observers:<Operation List>
<Operation List>::=<Operation>[;<Operation List>]

The signature of a software system is an ordered pair
(S,Σ) that consists of S that is a set S of sorts ordered
by the importation relation ≺, and a collection Σ of unit
signatures Σs for sorts s ∈ S.

B. Axioms

Let (S,Σ) be a system signature and {Vs|s ∈ S} be a
collection of disjoint sets of variables, where elements of
Vs are called variables of sort s. Let s ∈ S be any given
sort. The set of s-terms, which are terms that can occur in
the specification of sort s, is inductively defined as follows.
Let s1, s2, · · · , sn, s′ � s, where s′ � s means s′ ≺ s or
s′ = s.

1) Every s’-term τ of type w is a s-term of type w.
2) For all variables v ∈ Vs′ , v is a s-term of type s′.
3) For all s-terms τ1, · · · , τn of types s1, · · · , sn, respec-

tively, 〈τ1, · · · , τn〉 is a s-term of type (s1, · · · , sn).
4) For every operator ϕs

′
: w → w′ and s-term τ of type

w, ϕ(τ) is a s-term of type w′.
5) For every operator ϕs

′
: [s′]w → w′ and s-terms τC

of type s′ and τ of type w, τC .ϕ(τ) is a s-term of
type w′, and τC .[ϕ(τ)] is a s-term of type s′.

In particular, a s-term is called a ground s-term, if it
contains no variable, i.e. it is formed without using rule 2 in
the above definition. For the sake of convenience, we will
also write ϕs(τ1, · · · , τn) for the s-term ϕ(〈τ1, · · · , τn〉).

For example, assume that p and q are variables of the
BOOL sort, the following are BOOL-terms.

AND(p,q), OR(FALSE,q), AND(p,OR(q,p)).

Let x and y be variables of type NAT. The following are
examples of NAT-terms. They are of BOOL type, but they
are not BOOL-terms. They can only be used in the axioms
of NAT, not in axioms of BOOL.

IS_ZERO(x), EQ(S(x),y), AND(IS_ZERO(x),EQ(x,y))

The following are BOOL-terms using the signature that
contains context.

p.AND(q), FALSE.OR(q), p.OR(q).AND(p)

The BNF syntax rules for terms are given below.

<Term> ::= <Variable> | "<" <Term List> ">"
| <Operator ID> ["(" [<Parameters>] ")"]
| <Term> "." <Term>

<Parameters> ::= <Term List>
<Term List> ::= <Term> ["," <Term List>]

Let (S,Σ) be a given system signature and Σs be the
unit signature for sort s. Let τ and τ ′ be s-terms of type w,
c1, c2, · · · , cn and d1, d2, · · · , dn be s-terms such that for all
i = 1, 2, · · · , n, ci and di are of the same type, a conditional
equation of signature Σs is

τ = τ ′, if c1 = d1, c2 = d2, · · · , cn = dn.

For example, the following is an equation for NAT.

S(x) = S(y), if EQ(x, y)=TRUE.

We consider BOOL as predefined unit signature and write
f(x1, · · · , xn) to denote the condition f(x1, · · · , xn) =
TRUE, if the co-domain type of operator f is BOOL. Thus,
the above equation can be rewritten as follows.

S(x) = S(y), if EQ(x, y).

To further improve the readability of axioms, we also
introduce local variable declaration, which defines variables
to be used in an equation or a set of equations. The format
of local variable declarations is as follows.

Let x1 = τ1, · · · , xn = τn in Equs end.

For example, the following is an axiom that contains a
local variable declaration.

Let aID = B.OpenAccount(customer),
B’ = B.[OpenAccount(customer)]

in B’.Account(aID).CustomerInfo = customer end;

The BNF syntax rules for equations are given below.

<Equation>::=
<Label> : <Term> = <Term> [, if <Conditions>]
| Let <Var Definition> in <Equations> end

<Conditions> ::= <Condition>[(,|"or")<Conditions>]
<Condition> ::= <Term> = <Term> | <BOOL Term>
|<Num Term> <Rel Op> <Num Term> |"˜"<Condition>

<Rel Op> ::= "<" | "<=" | ">" | ">=" | "<>"

459

where <Num term> are terms of type NAT, INT or REAL,
which are predefined sorts. Each equation can also be
associated with a unique label.

An axiom consists of a list of variable declarations and
a list of equations. A variable declaration declares a list of
variables and their types. For example, the following is an
example of variable declaration together with an equation
that forms an axiom for NAT.

For all x, y: NAT that S(x) = S(y), if x = y.

The BNF syntax rules for axioms are given below.

<Var Dec>::= For all <Var-Sort Pairs> that
<Var-Sort Pairs>::=
<Var IDs>:<Sort Name> [, <Var-Sort Pairs>]

<Var IDs>::= <Var ID> [, <Var IDs>]
<Axiom>::= <Var Dec> <Equations>
<Equations>::= <Equation> [; <Equations>]

An algebraic specification in CASOCC-WS is a triple
(S,Σ,E), where (S,Σ) is a system signature, E = {Es|s ∈
S} is a collection of equation sets that Es is a finite set of
equations of signature Σs.

C. Semantics of Specifications

We now define the semantics of CASOCC-WS algebraic
specifications. It is fairly standard, for example, in the
definition of the semantics of first order logic [22].

Given a system signature (S,Σ), a (S,Σ)-algebra A is a
mathematical structure (A,F) consists of a collection A =
{As|s ∈ S} of sets indexed by S, and a collection F of
functions indexed by the set

⋃
s∈S Σs such that for each

operator ϕs : w → w′, the function fϕ ∈ F has domain Aw
and co-domain Aw′ , where w = (s1, · · · , sn), Aw = As1 ×
· · · ×Asn , w′ = (s′1, · · · , s′n), and Aw′ = As′1 × · · · ×As′n .

Let A = (A,FA) and B = (B,FB) be two (S,Σ)-
algebras. A homomorphism β from A to B is a mapping
β from A to B such that for all operators ϕ : w → w′ in
the signature and all elements a1 ∈ As1 , · · · , an ∈ Asn , we
have that

β(fA,ϕ(a1, · · · , an)) = fB,ϕ(β(a1), · · · , β(an)).

The evaluation of a term in an algebra depends on the
values assigned to the variables that occur in the term. An
assignment α of variables Vs, s ∈ S, in an algebra is a
function from Vs to As. Given an assignment α : V →
A, the evaluation of a term τ , written [[τ]]α, is defined as
follows.

1) [[v]]α = α(v);
2) [[〈τ1, · · · , τn〉]]α = 〈[[τ1]]α, · · · , [[τn]]α〉;
3) [[ϕ(τ)]]α = fA,ϕ([[τ]]α);
4) [[τ.ϕ(〈τ1, · · · , τn〉)]]α = fA,ϕ([[〈τ, τ1, · · · , τn〉]]α)

Let S = (S,Σ,E) be an algebraic specification and e be
an equation τ = τ ′, if c1 = d1, · · · , cn = dn. An (S,Σ)-
algebra A = (A,F) satisfies e, write A |= e, if for all
assignments α, we have that [[τ]]α = [[τ ′]]α whenever [[ci]]α =

[[di]]α is true for all i = 1, · · · , n. A satisfies specification
S, written A |= S, if for all equations e in E, we have that
A |= e, and we say that A is an S-algebra.

The semantics of an algebraic specification is the final
algebra A that satisfies the specification. Formally, an S-
algebra is initial, if for all S-algebras B, there is a unique
homomorphism from A to B. The S-algebra A is final, if
for all S-algebras B, there is a unique homomorphism from
B to A.

The existence of final S-algebra is omitted for the sake
of space.

D. Observability

Informally, a software entity is observable if we can
compare the equality of two values (or states) x and y of
the entity by invocation of a binary predicate EQ(x, y), i.e.
operator with BOOL as the codomain, provided by the entity.
In that case, we say that the software entity is observable by
the predicate. For example, the BOOL and NAT data types are
observable. However, many complex data types and software
entities are not observable. For example, the equality of two
streams of natural numbers cannot be determined in such a
way. Thus, STREAM is not observable.

The observability by an operator EQ means that whenever
EQ(τ, τ ′) returns TRUE, the values of terms τ and τ ′ must
be the same. Therefore, observability imposes an addition
requirement for an algebra to satisfy the specification. This
requirement is formally defined as follows.

Let S = (S,Σ,E) be a given specification in CASOCC-
WS and A = (A,F) be a S-algebra. Assume that sort s ∈
S is specified as observable by operator EQ. We say that
algebra A satisfies the condition of ”observable by EQ”, if
for all ground s-terms τ and τ ′ of type s, we have that

A |= (τ = τ ′)⇔ A |= (EQ(τ, τ ′) = TRUE).

For example, assume that NAT is observable by EQ. Then,
the following two equations are equivalent.

S(x) = S(y), if EQ(x, y).
S(x) = S(y), if x = y.

The specification of observability in CASOCC-WS is in
the format defined by the following BNF syntax rule.

<Observability> ::=
observable by <Operation Id> | unobservable

III. SPECIFYING WEB SERVICES IN CASOCC-WS

In this section, we discuss how to specify web services
in CASOCC-WS. We will first present a set of rules to
automatically derive algebraic signatures from the descrip-
tions of web services in WSDL. We will then give a set
of heuristic rules for writing algebraic axioms in order to
define the semantics of the services.

460

A. Web Service Description Language WSDL

WSDL stands for Web Service Description Language.
It is an XML language for describing the programmatic
interfaces to web services. Its current version, WSDL 2.0,
is recommended by W3C, but its tool supports are still
underdevelopment. In contrast, there are good tool supports
to its previous version WSDL 1.1, which is still widely used
although not endorsed by the W3C. Therefore, in this paper,
we will use WSDL 1.1. The principle can be easily adapted
to WSDL 2.0.

In WSDL, a web service description has the following
structure.

<definitions>
<types> <!--types definitions--> </types>
<message> <!--message definition--> </message>
<portType definition>

<operation>
<!--operation definition--></operation>

<input> <!--input definition--> </input>
<output> <!--output definition> </output>

</portType>
<binding> <!--binding definition--> </binding>
<service> <!--service definition-->

<port> <!--port definition> </port>
</service>

</definition>

In a WSDL description of a web service, the type defini-
tions define the data types and their representations in XML.
They are often in the form of XML schema definition. The
message definitions define the typed data input to or output
from an operation of the service. There are three kinds of
messages: IN, OUT and INOUT. The portType definition
defines a collection of operations provided by the service
together their input and output. Each operation is an atom
of the functionality of the service. The binding definition
associates a port type to a protocol and a data format.
An example is binding to SOAP and further identifying
its style to be RPC, encoding to be literal and transport to
be HTTP. The port definition gives a network address and
binding where operations reside. The algebraic structure of
a web service can be derived from type definition, message
definition and portType definition.

B. Rules for Transforming WSDL to CASOCC-WS Signature

The basic idea of the algebraic approach to the formal
specification of web services is to regard a service as
an algebraic structure with the operations provided by a
service as the operators. However, the parameters of the
operators cannot simply be string of characters. Instead,
we also regard each data type and message type as an
algebraic structure. The elements and attributes of an XML
document are accessed through a set of setters and getters.
The constraints on the instance documents are specified by
the axioms through these setters and getters. Therefore, we
have the following rules that transform WSDL descriptions
into CASOCC-WS specifications.

• The service name corresponds to the main sort name
for the web service.

• For each type definition, an algebraic specification of
the type is generated with the type name as the sort
name. And, this sort name is then added into the import
list of the algebraic specification of the web service.

• For each message definition, an algebraic specification
of the message type is generated with the message type
name as the sort name. This sort name is also added to
the import list of the specification of the web service.

• For each operation defined in portType part, an oper-
ation signature is generated and added into the trans-
former part. Its domain and co-domain are the input
and output message type names, respectively. The web
service name is the context sort.

The rules for generating algebraic specifications for a type
U are as follows. Note that, for each simple type of XML
schema definition language, we provide a predefined alge-
braic specification in the CASOCC-WS language. Therefore,
we do not need to generate the specification for simple types,
but just to use the corresponding sort name. If the type U
is not a simple type, the following rules are applied.
• Generate U as the sort name of the algebraic specifi-

cation of the type.
• For each attribute A in the type definition of U , where
E is in the following form.
<xsd:attribute name="X" type="V"/>

– An algebraic specification of the type V is gener-
ated by applying this same set of rules with a sort
name V .

– The sort name V is added to the import list of the
algebraic specification of U .

– An operator setX : U, V → U is added into the
transformer part of the specification of U .

– An operator getX : U → V is added into the
observer part of the specification of U .

– The following equations are added to the axiom
part of the specification of U :
Forall v : V, u : U that
u.setX(v).getX = v;
u.setX(v).getY = u.getY

where Y is a name of an element or attribute in
the definition of type U and Y 6= X .

• For each element E is the type definition of U , the
transformation rule is similar to that for attribute;

• For each constraint, an axiom is generated according
to the meaning of the constraint. For example, for the
constraint that the length of string is fixed to be 8. The
following axiom will be generated.

Forall v : V that v.length=8

For example, consider the following type definition.

<xsd:complexType name="PurchaseOrder">
<xsd:attribute name="shipTo" type="USAddress"/>

461

<xsd:attribute name="items" type="Items"/>
<xsd:attribute name="orderDate"

type="xsd:date"/>
</xsd:complexType>

We have the following algebraic specification.

Spec PurchaseOrder Unobservable
Import USAddress, Items, date;
Operators
Transformer:

set_shipTo: [PurchaseOrder] USAddress->VOID,
set_items: [PurchaseOrder] Items-> VOID
set_orderDate: [PurchaseOrder] date -> VOID;

Observer:
get_ShipTo: [PurchaseOrder] VOID->USAddress;
get_items: [PurchaseOrder] VOID ->Items;
get_orderDate: [PurchaseOrder] VOID -> date;

Axioms:
Forall ord: PurchaseOrder, addr: USAddress,

itm: Items, dt: date that
ord.set_shipTo(addr).get_shipTo = addr;
ord.set_shipTo(addr).get_items

= Ord.get_items;
ord.set_shipTo(addr).get_orderDate

= Ord.get_orderDate;
ord.set_items(itm).get_Items = itm;
ord.set_items(itm).get_shipTo

= ord.get_shipTo
ord.set_items(itm).get_orderDate

= ord.get_orderDate
ord.set_orederDate(dt).get_orderDate = dt;
ord.set_orederDate(dt).get_shipTo

= ord.get_shipTo;
ord.set_orederDate(dt).get_Items

= ord.get_Items.
End

The rules for generating algebraic specifications from
message type definitions are similar. The details are omitted.

C. Guidelines for Writing Axioms

Now, we address the question how to write axioms.
Because axioms heavily depend on the semantics of the
web services, they cannot be derived from the descriptions
in WSDL, which contains very limited information about
semantics. The following gives a few heuristic rules for the
manual writing of axioms.
(R1-Setter): For each setter setX(v) that sets the value of
attribute X to v, write two axioms as follows:

∀s, v · (s.setX(v).getX = v), if PreCondsetX(v)

∀s, v. · (s.setX(v).getY = s.getY),

where X 6= Y .
(R2-Getter): For each getter getX that gets the value of
attribute X , write the following axiom:

∀s, v · (s.[getX] = s).

(R3-Creator): For each creator C(x1, · · · , xn), write the
following axioms for i = 1, · · · , n.

∀x1, · · · , xn·C(x1, · · · , xn).getXi = xi, if PreCondC(x1,···,xn)

(R4-Transformer 1): For each transformer F (x) and observer
getX , write an axiom in the following form.

∀s, x · (s.F (x).getX) = ϕ(x, s.getX), if PreCondF (x)

where ϕ is the function of the service F (x).
(R5-Transformer 2): For each operation P (x) that applies
to component A that generates an invocation of operation
Q(expx) on component B of the system, write an axiom in
the following form.

∀s, x, y·(s.[A.P (x)].B = s.B.Q(expx)), if PreCondA.P (x)

where PreCondf(x) is the pre-condition to apply f(x).

IV. AN EXAMPLE

In this section, we demonstrate the algebraic specification
of a web service in CASOCC-WS by an example.

The service is to provide advises on the amount of
personal tax when a user inputs his incomes and the types
of incomes according to the Chinese personal income tax
rules, which classifies personal incomes into three types:
salary, business revenue, and services revenue. Here, for the
sake of space, we focus on salary incomes. The tax rates
for salary incomes are given in Table I, where the taxable
income is calculated according to the following formula.

TaxableIncome = Income− Pension−Allowance.

The total amount of tax to pay is calculated in two different
but equivalent ways as follows.

Tax(X) =
K−1∑
i=1

((Ui − Li)×Ri) + (X − LK)×RK

= X ×RK −DK (1)

where K is the tax level, Ui and Li are the upper and lower
boundaries of tax level i, respectively, Ri and Di are the
rate and adjustment for level i, respectively, and X is the
taxable income. The correctness of formula (1) depends on
the values set to Di, which should be calculated as follows.

D1 = 0;

Dk = Uk−1 ∗ (Rk −Rk−1) +Dk−1, k > 1.

Table I
TAX RATES FOR SALARY INCOME

Level Taxable Income range Rate (%) Adjustment
1 [0, 500) 5 0
2 [500, 2000] 10 25
3 (2000, 5000] 15 125
4 (5000, 20000] 20 375
5 (20000, 40000] 25 1,375
6 (40000, 60000] 30 3,375
7 (60000, 80000] 35 6,375
8 (80000, 100000] 40 10,375
9 > 100000 45 15,375

462

The description of the web services in WSDL 1.1 is given
below, where, for the sake of space, we have removed the
details of the message types and the binding part.

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions ... >
<wsdl:message name="getTaxRateRequest">

... </wsdl:message>
<wsdl:message name="getTaxLevelRequest">

... </wsdl:message>
<wsdl:message name="getTaxLevelResponse">

... </wsdl:message>
<wsdl:message name="getReducerRequest">

... </wsdl:message>
<wsdl:message name="getBaseResponse">

... </wsdl:message>
<wsdl:message name="getBaseRequest" />
<wsdl:message name="getReducerResponse">

... </wsdl:message>
<wsdl:message name="getTaxResponse">

... </wsdl:message>
<wsdl:message name="getTaxRequest">

... </wsdl:message>
<wsdl:message name="getTaxRateResponse">

... </wsdl:message>
<wsdl:portType name="PersonalTax">
<wsdl:operation name="getBase">
<wsdl:input message="impl:getBaseRequest"
name="getBaseRequest" />

<wsdl:output message="impl:getBaseResponse"
name="getBaseResponse" />

</wsdl:operation>
<wsdl:operation name="getTaxLevel"
parameterOrder="kind revenue">
<wsdl:input message="impl:getTaxLevelRequest"
name="getTaxLevelRequest" />

<wsdl:output message="impl:getTaxLevelResponse"
name="getTaxLevelResponse" />

</wsdl:operation>
<wsdl:operation name="getTaxRate"

parameterOrder="kind revenue">
<wsdl:input message="impl:getTaxRateRequest"
name="getTaxRateRequest" />

<wsdl:output message="impl:getTaxRateResponse"
name="getTaxRateResponse" />

</wsdl:operation>
<wsdl:operation name="getReducer"
parameterOrder="kind revenue">
<wsdl:input message="impl:getReducerRequest"
name="getReducerRequest" />

<wsdl:output message="impl:getReducerResponse"
name="getReducerResponse" />

</wsdl:operation>
<wsdl:operation name="getTax"
parameterOrder="kind salary pension">
<wsdl:input message="impl:getTaxRequest"
name="getTaxRequest" />

<wsdl:output message="impl:getTaxResponse"
name="getTaxResponse" />

</wsdl:portType>
<wsdl:binding name="PersonalTaxSoapBinding"
type="impl:PersonalTax"> ...
</wsdl:binding>
<wsdl:service name="PersonalTaxService">
<wsdl:port binding="impl:PersonalTaxSoapBinding"
name="PersonalTax">
<wsdlsoap:address

location="http:.../PersonalTax.jws" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

As shown in the WSDL description of the web service,
the service consists of five operations. Their functions are
explained in Table II.

Table II
OPERATIONS OF THE TAX ADVISE WEB SERVICES

Name Function
getBase It returns the amount of taxable income when given

the net income and pension.
getTaxLevel It returns the tax level when given the amount of

taxable income.
getTaxRate It returns the tax rate when given the amount of

taxable income.
getReducer It returns the amount of adjustment when given the

amount of taxable income.
getTax It returns the total amount of tax to be paid when

given the amount of taxable income.

From the WSDL description of the web services, we
can generate the following algebraic specification, where
additional observer operations on the internal state of the
web service and axioms were added manually.
Spec PersonalTaxService Is unobservable;
Import
getTaxRateRequest, getTaxRateRespons;
getTaxLevelRequest, getTaxLevelResponse,
getBaseRequest, getBaseResponse,
getReducerRequest, getReducerResponse,
getTaxRequest, getTaxResponse

Operations:
Transformer:
getBase: [PersonalTaxService]
getBaseRequest -> getBaseResponse;

getTaxLevel: [PersonalTaxService]
getTaxLevelRequest -> getTaxLevelResponse;

getTaxRate: [PersonalTaxService]
getTaxRateRequest -> getTaxRateResponse;

getReducer: [PersonalTaxService]
getReducerRequest -> getReducerResponse;

getTax: [PersonalTaxService]
getTaxRequest -> getTaxResponse;

Observers:
TaxRate: [PersonalTaxService] Int -> Real;
Allowance: [PersonalTaxService] VOID -> Real;
TaxLevel: [PersonalTaxService] Real -> Int;
Adjustment: [PersonalTaxService] Int -> Real;
Lower: [PersonalTaxService] int -> Real;
Upper: [PersonalTaxService] Int -> Real;

Axioms:
For all x, k: Int;
PTS:PersonalTaxService, gBR: getBaseRequest,
gTLR:getTaxLevelRequest, gTax:getTaxRequest,
gRR:getReducerRequest,gTRR:getTaxRateRequest,
that
PTS.getBase(gBR).amount
= gBR.salary - gBR.pension -PTS.Allowance;
PTS.getTaxLevel(gTLR).Level
= PTS.TaxLevel(gTLR.amount);
PTS.getTaxRate(gTRR).Rate
= PTS.TaxRate(gTRR.Level);
PTS.getReducer(gRR).amount
= PTS.Adjustment(gRR.Level);
Let k=TaxLevel(gTax.amount) in
PTS.getTax(gTax).amount
= (gTax.amount * PTS.TaxRate(k))

-PTS.Adjustment(k)
end

463

Let k = PTS.TaxLevel(x) in
PTS.Lower(k) > x;
PTS.Upper(k) <= x;

end;
PTS.Lower(k) < PTS.Upper(k), if k >0 & k<=9;
PTS.Lower(k+1) = PTS.Upper(k), if k>0 & k<9;
PTS.Adjustment(1)=0;
PTS.Adjustment(k+1)
=(PTS.TaxRate(k+1)-PTS.TaxRate(k))
* PTS.Upper(k) + PTS.Adjustment(k),

if k>0 & k<9
End

Note that, the axioms about the amount of tax to be paid is
according to the formula (1).

V. CONCLUSION

In this paper, we proposed an algebraic specification
language CASOCC-WS for web services. A set of rules to
transform WSDL descriptions of web services into algebraic
structures is also proposed and illustrated by an example.

There are algebraic specification languages, such as Co-
Casl [20], that allow both algebraic and co-algebraic specifi-
cations. However, for each operator, either the domain or the
co-domain must be a singleton. Moreover, CoCasl requires
that a specification unit is either algebraic (i.e. all operators
have singleton domain) or co-algebraic (i.e. all operators
have singleton co-domain), but not a mixture. In [21], a unit
of specification can be in the so-called (Ω,Ξ)-structure. That
is, a specification unit can contain a set of algebraic operators
plus a set of co-algebraic operators, but for each operator one
of its domain and co-domain must be singleton.

Although (Ω,Ξ)-structure is much more flexible, its re-
strictions are still too stringent for software components and
services. For example, suppose that an online ticket booking
service BOOKING provides a service BookTicket, which
takes two parameters DATE and number of seats, and
returns a message to inform whether the number of seats
is available. Its signature has non-singleton domain and co-
domain because the internal state of booking is changed.
The CASOCC-WS language relaxes the restrictions on the
domains and co-domains of operators so that each service
can be naturally represented as one operator. Thus, the ticket
booking service can be written in CASOCC-WS as follows,
but not in any existing algebraic specification languages.
BookTicket:[BOOKING] DATE,NAT -> MESSAGE.

Because each service can be naturally represented as an
operator and the sorts can map into types of software en-
tities with one-one correspondence, CASOCC-WS supports
modular development of formal specifications of services.
This enables us to derive the algebraic structures of service
automatically as shown in this paper. A prototype system
that implements the rules that transform WSDL descriptions
into algebraic structures have been implemented. The exam-
ple given in this paper was generated by the tool. We are
further developing the tool toward automated testing of web
services based on CASOCC-WS specifications.

REFERENCES

[1] A. van Lamsweerde, “Formal specification: a roadmap,” in
Proc. of ICSE’00 - Future of SE Track, 2000, pp. 147–159.

[2] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright,
“Initial algebra semantics and continuous algebras,” J. ACM,
vol. 24, no. 1, pp. 68–95, 1977.

[3] H.-D. Ehrich, “On the theory of specification, implementa-
tion, and parametrization of abstract data types,” J. ACM,
vol. 29, no. 1, pp. 206–227, 1982.

[4] J. A. Goguen and G. Malcolm, “A hidden agenda,” Theor.
Comput. Sci., vol. 245, no. 1, pp. 55–101, 2000.

[5] C. Cı̂rstea, “Coalgebra semantics for hidden algebra: Param-
eterised objects an inheritance,” in Prof. of WADT’97, 1997,
pp. 174–189.

[6] J. J. M. M. Rutten, “Universal coalgebra: a theory of systems,”
Theor. Comput. Sci., vol. 249, no. 1, pp. 3–80, 2000.

[7] C. Cı̂rstea, “A coalgebraic equational approach to specifying
observational structures,” Theor. Comput. Sci., vol. 280, no.
1-2, pp. 35–68, 2002.

[8] F. Bonchi and U. Montanari, “A coalgebraic theory of reactive
systems,” Electr. Notes Theor. Comput. Sci., vol. 209, pp.
201–215, 2008.

[9] D. Sannella and A. Tarlecki, “Algebraic methods for specifi-
cation and formal development of programs,” ACM Comput.
Surv., vol. 31, no. 3es, p. 10, 1999.

[10] J. D. Gannon, P. R. McMullin, and R. G. Hamlet, “Data-
abstraction implementation, specification, and testing,” ACM
Trans. Prog. Lang. Syst., vol. 3, no. 3, pp. 211–223, 1981.

[11] P. Dauchy, M.-C. Gaudel, and B. Marre, “Using algebraic
specifications in software testing: A case study on the soft-
ware of an automatic subway,” Journal of Systems and
Software, vol. 21, no. 3, pp. 229–244, 1993.

[12] M.-C. Gaudel and P. L. Gall, “Testing data types im-
plementations from algebraic specifications,” CoRR, vol.
abs/0804.0970, 2008.

[13] R.-K. Doong and P. G. Frankl, “The astoot approach to
testing object-oriented programs,” ACM Trans. Softw. Eng.
Methodol., vol. 3, no. 2, pp. 101–130, 1994.

[14] M. Hughes and D. Stotts, “Daistish: systematic algebraic
testing for oo programs in the presence of side-effects,” in
Proc. of ISSTA ’96, 1996, pp. 53–61.

[15] H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen, “In
black and white: An integrated approach to class-level test-
ing of object-oriented programs,” ACM Trans. Softw. Eng.
Methodol., vol. 7, no. 3, pp. 250–295, 1998.

[16] H. Y. Chen, T. H. Tse, and T. Y. Chen, “Taccle: a methodology
for object-oriented software testing at the class and cluster
levels,” ACM Trans. Softw. Eng. Methodol., vol. 10, no. 1,
pp. 56–109, 2001.

[17] L. Kong, H. Zhu, and B. Zhou, “Automated testing ejb
components based on algebraic specifications,” in Proc. of
COMPSAC’07 (2), 2007, pp. 717–722.

[18] B. Yu, L. Kong, Y. Zhang, and H. Zhu, “Testing java
components based on algebraic specifications,” in Proc. of
ICST’08, 2008, pp. 190–199.

[19] H.Zhu and B.Yu, “An Experiment with Algebraic Specifica-
tions of Software Components,” in Proc. of QSIC’10, 2010.

[20] T. Mossakowski, L. Schröder, M. Roggenbach, and H. Re-
ichel, “Algebraic-coalgebraic specification in CoCasl,” J. Log.
Algebr. Program., vol. 67, no. 1-2, pp. 146–197, 2006.

[21] A. Kurz, “Logics for coalgebras and applications to computer
science,” Ph.D. dissertation, Ludwig-Maximilians Universitat
Munchen, July 2000.

[22] I. Chiswell and W. Hodges, Mathematical Logic, Oxford
University Press, 2007.

464

