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Abstract 

 

Given the importance of walking in everyday life, understanding why this is challenging for 

some populations is particularly important. Studies focusing on gait patterns of individuals 

with Developmental Coordination Disorder (DCD) have shown that whilst increased 

variability is characteristic of walking patterns for this group, differences in spatio-temporal 

gait variables seem only to arise when task demands increase. However, these differences 

occur under rather artificial conditions, for example using a treadmill. The aim of this study, 

therefore was to examine the step characteristics of individuals with and without DCD whilst 

walking along an irregular terrain. Thirty-five individuals with DCD aged 8-32 years and 35 

age and gender-matched controls participated in this study. Participants were divided into 3 

age groups; 8-12years (n = 12), 13-17years (n =12) and 18-32years (n=11). Participants 

walked up and down a 6m walkway for two minutes on two terrains: level and irregular. 

VICON 3D motion analysis was used to extract measures of foot placement, velocity and 

angle of the head and trunk. Results showed that both groups adapted their gait to negotiate 

the irregular terrain, but the DCD group were more affected than their TD peers; walking 

significantly slower with shorter, wider steps and inclining their head more towards the 

ground. This suggests an adaptive approach used by individuals with DCD to preserve 

stability and increase visual sampling whilst negotiating an irregular terrain.  

 

Key words; Developmental Coordination Disorder; Gait; Balance; Irregular terrain 

 

Highlights; 

 

• Movement control while walking on an irregular terrain was considered in individuals 

with and without Developmental Coordination Disorder (DCD) 

• The irregular terrain had a greater influence on the individuals with DCD compared to 

their typically developing (TD) peers 

• When on an irregular terrain, individuals with DCD walked more slowly, with 

shorter, wider steps and angled their heads towards the ground more than TD peers. 

• Individuals with DCD use an adaptive approach to preserve stability and increase 

visual sampling while walking over an irregular terrain 
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1. Introduction  

Competence in walking is a core skill necessary for many activities of daily living, and a 

major contributor to quality of life (Patla & Shumway-Cook, 1999). However, although 

walking is a mundane skill it is not a simple task. In fact, Winter (1991) argues that walking 

is one of the most complex and totally integrated movement tasks humans have to master.  

 

Given the complexities of coordinated movement required for efficient walking it is easy to 

see that walking is a skill that individuals with movement difficulties may struggle with. One 

group that has received little attention, and yet has everyday movement difficulties are those 

with Developmental Coordination Disorder (DCD). DCD is an idiopathic movement disorder 

that affects the development of motor control and coordination in the absence of obvious 

physical or neurological dysfunction. The movement skills are below what would be 

expected given the person’s age and opportunity to practice, and significantly interfere with 

activities of daily living, academic productivity and employment (American Psychiatric 

Association, 2013). These problems manifest in areas such as coordinated movement, riding 

a bike and learning to drive (Kirby, Edwards & Sugden 2011). It is estimated that DCD 

affects between 5-6% of children aged 5 to 11 years (APA, 2013), constituting a major 

childhood disorder which continues to adulthood (Cousins & Smyth, 2003; Kirby, Edwards, 

Sugden & Rosenblum, 2010; Losse, et al., 1991). 

 

Themes emerging from a limited literature which has considered the walking patterns of 

individuals with DCD suggest that when children (Cherng, Liang, Chen & Chen, 2009; 

Deconinck, Savelsbergh, De Clercq & Lenoir, 2010; Wilmut, Du and Barnett, 2016; 

Woodruff, Bothwell-Myers, Tingley & Albert, 2002;) and adults (Du, Wilmut and Barnett, 

2015) with DCD walk in a relatively stable environment (along a level pathway), the mean 

spatio-temporal gait variables (e.g. step length, velocity) show only subtle differences to 

those of typical gait. Clear group differences for children with DCD seem to arise in more 

challenging situations, such as when walking on a treadmill (Deconinck, et al., 2006a), or 

when visual information is removed (Deconinck, et al., 2006b). Other studies have also 

highlighted an increase in variability (i.e. decrease in consistency) of movement during gait 

in DCD (Du, et al., 2015; Rosengren, et al., 2009; Wilmut et al., 2016).  
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Wilmut et al. (2016) investigated movement variability in children with DCD, and they argue 

that elevated variability in medio-lateral velocity and acceleration of the centre of mass may 

indicate a difficulty integrating sensory information while walking. This argument is 

supported by other studies that focus on processing sensory information for individuals with 

DCD; Geuze (2003) and Wilson & McKenzie (1998) highlight how difficulty integrating 

sensory information could be a potential causal factor for the movement difficulties. Some 

studies suggest an over-reliance on visual information which may be due to a difficulty 

integrating streams of information from other sensory inputs (Wann, Mon-Williams & 

Rushton, 1998). Deconinck, et al. (2006b) considered sensory inputs by asking children to 

walk along a level pathway in a normal light condition and in a dark condition (a target LED 

was given for heading direction). Children with DCD walked more slowly and swayed more 

in the dark compared to the light condition while typically developing (TD) children showed 

no differences in gait across conditions. From these findings it was concluded that the TD 

group adapted by using other sensory information such as proprioception and/or the 

vestibular system, while the children with DCD were less able to do this. These findings 

suggest that differences seen in the walking patterns of children with DCD may be due to 

difficulty integrating sensory information, specifically, using sensory information other than 

vision.   

 

Given that the maintenance of dynamic stability whilst walking requires the efficient 

integration of visual, vestibular and proprioceptive information (Peterka, 2002), it could be 

argued that in a laboratory setting (i.e. level, clear pathways) visual rather than proprioceptive 

and vestibular information would be the main focus of attention.  However, in a natural 

setting we have to negotiate a more complex environment and may encounter different 

ground terrains (poorly finished pavement, cobbled surface, sand or grass), increasing the 

importance of integrating all three sensory systems. Some studies have considered how 

typically developing young and older adults walk on uneven terrains. These studies have 

found that whilst young adults (22-39yrs) maintain (or even increase) their velocity whilst 

walking on an uneven terrain, older adults (mean age 75-85yrs) walk more slowly with a 

shortened step length than the young adults (Marigold & Patla, 2008; Menz, Lord, & 

Fitzpatrick, 2003). The authors argue that this more conservative gait pattern indicates that 

the older participants perceived the irregular walking surface as a greater risk to dynamic 
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stability, and adapted their gait to accommodate this threat. Furthermore, MacLellan and 

Patla (2006) argue that walking on some surfaces that are compliant (such as snow, grass or 

sand) can reduce the information available from the travel surface to  the proprioceptive 

sensors in the body. To investigate this further, they examined the gait adaptations of eight 

young adults as they traversed a firm and a compliant walkway (compliant walkway 

comprised medium density foam). MacLellan and Patla (2006) propose that pedestrians 

increase their base of support to ensure the stability of the Centre of Mass whilst traversing 

compliant surfaces. These studies demonstrate the increased task demands which come from 

walking on an irregular terrain, however, it is unclear how a population who already find the 

integration of sensory information difficult will adapt to walking in on this type of terrain.  

 

The aims of the current study, therefore, were to examine walking patterns in individuals with 

DCD whilst traversing an irregular terrain, and to determine whether these patterns differed 

between individuals with and without DCD. In order to determine how each group adapted 

their walking when traversing an irregular terrain, there were two walking conditions: a level 

walking condition to provide a baseline measure of walking; and an irregular walking 

condition. The percentage change in measures from one condition to the other allowed a 

direct comparison and thus an examination of the adaptations made. The control of the feet, 

using traditional spatio-temporal measures of walking and the angle of the head and the trunk 

were considered. Inclination of the head was taken as a proxy of gaze direction. Due to the 

findings of Deconinck et al. (2006b), who examined walking in the dark, it was hypothesised 

that individuals with DCD would show a greater adaptation of movement in the irregular 

walking condition compared to the TD participants and that this would be shown through the 

adoption of a ‘safer’ walking style (slower, shorter, wider steps; greater forward incline of the 

trunk), together with more forward incline of the head. A wide age range was included in this 

study to allow for the consideration of maturation of walking patterns, given that studies have 

shown developmental changes in individuals with DCD from childhood to adulthood 

(Wilmut & Byrne, 2014; Wilmut, Byrne, & Barnett, 2013). It was expected that the irregular 

terrain would affect the walking pattern of the children to a greater extent than the adults.  

 

2. Methods 
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2.1. Participants 

Thirty-five individuals with DCD (26 male; 9 female) aged 8-32 years and 35 age and 

gender-matched controls participated in this study. Participants were divided into 3 age 

groups; Children 8-12years (n=24), Teenagers 13-17years (n=24) and Adults 18-32years 

(n=22). All participants with DCD were recruited in-line with the DSM-5 (APA, 2013) and 

the UK guidelines for assessment of adults with DCD (Barnett, Hill, Kirby & Sugden, 2015). 

Participants with DCD were recruited from a local support group for individuals with 

coordination difficulties and from a group who had previously taken part in our studies. 

Please see Table 1 for sample demographics.  

 

2.1.1. Selection and assessment for individuals with DCD >17 years of age   

A range of assessments were used to ensure the four diagnostic criteria for DCD were met. 

Both the Movement Assessment Battery for Children-2 test component (M-ABC-2; 

Henderson, Sugden & Barnett, 2007) and the Bruininks-Oseretsky Test of Motor Proficiency, 

Second Edition, Brief Form (BOT-2 Brief; Bruininks, & Bruininks, 2005) were used to 

determine whether significant movement difficulties were present (criterion A). All 

individuals with DCD >17 years of age scored below the 15th percentile on the M-ABC-2 

and below the 18th percentile on the BOT-2 Brief. Criterion B (impairment on everyday life) 

was assessed using a telephone interview and the Adult Developmental Coordination 

Disorder/Dyspraxia Checklist (ADC; Kirby, et al., 2010). The telephone interview was also 

used to determine that the onset of motor difficulties was during early childhood (criterion C) 

and could not be attributed to a sensory or neurological disorder or intellectual impairment 

(criterion D). Given the high rate of co-occurrences between DCD and ADHD (Blank, Smits-

Engelsman, Polatajko, Wilson, 2012; Kadesjö & Gillberg, 1999), and the affect that increased 

levels of distractibility and impulsivity can have on motor skills, additional assessments were 

performed to check for attentional difficulties. The Conners Adult ADHD Rating Scales 

(CAARS, short version; Conners, Erhardt & Sparrow, 1999) was used for individuals >17 

years of age. Only one participant >17 years with DCD scored highly on these rating scales, 

however subsequent analyses including and excluding this participant failed to affect the 

results and all participants were subsequently included in the study. 

 

2.1.2. Selection and assessment for individuals with DCD <17years 

As above, a range of assessments were used to ensure the four diagnostic criteria for DCD 

were met. Criterion A was assessed using M-ABC-2 test (Henderson, et al., 2007), all 
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children with DCD scored below the 15th percentile. Criterion B was assessed using a 

telephone interview and the M-ABC-2 Checklist (Henderson et al, 2007) completed by 

parents of children 8-15 years and the ADC (Kirby, et al., 2010) completed by individuals 

aged 16-17 years; The telephone interview also established that the movement difficulty was 

apparent from early childhood (Criterion C) and that the difficulties could not be attributed to 

a sensory or neurological disorder or intellectual impairment (Criterion D). As above, 

additional assessments were performed to check for attentional difficulties. The Strengths and 

Difficulties Questionnaire, (SDQ; Goodman, 1997) is a brief behavioural screening tool for 

children aged 4-16 years, and was completed by parents to identify any behavioural 

problems. A total of 9 participants with DCD (<17 years) scored highly on the SDQ, however 

subsequent analyses including and excluding these participants failed to affect the results and 

all participants were subsequently included in the study. 

 

2.1.3. Selection and assessment for typically developing participants 

All typically developing (TD) participants were recruited from the local area and were age- 

(to within 6 months for children and 1 year for adults) and gender-matched to the participants 

with DCD. Inclusion criteria stipulated a self-report (or parental report where appropriate) of 

no motor difficulties or previously diagnosed medical conditions that might impact on 

movement skill, together with a score >16th percentile on the M-ABC-2 balance sub-section 

(this measure was most relevant to walking, and indicated balance performance within the 

typical range).  

 

 

INSERT TABLE 1 HERE 

 

2.2. Materials and Procedure  

This research was approved by the Oxford Brookes University Research Ethics Committee 

and informed consent was obtained from all participants. A VICON 3D motion analysis 

system with 6 infrared cameras, operating at 120Hz, tracked the motion of small reflective 

markers attached to the skin at 11 bony landmarks: centre forehead, chin, chest (manubruim 

of the sternum), hips (trochanter major), knees (lateral epicondyle), ankles (lateral malleolus) 

and toes (caput for the 5th metatarsal). A flat walkway was laid out comprising six 1m2 

interlocking high density, non-slip sports mats. The walkway was edged in a contrasting 

colour (red) to clearly delineate the path (blue) for participants to walk along. A cone was 
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placed at the start and end of the walkway for participants to walk around. The VICON 

system was set up to capture the middle 4m x 1m area of the walkway to eliminate 

deceleration effects whilst navigating around the cones. 

 

There were two conditions; Level, where the walkway was as described above, and Irregular, 

where rectangular pieces of foam (9cm wide x 10cm long x 2cm high) were stuck at irregular 

intervals and positions on to the middle 4m of the walkway. There were approximately 190 of 

these pieces of foam, made of the same non-slip material as the sports mats and were spaced 

at a minimum distance of 4cm and maximum distance of 10cm apart. The spacing essentially 

forced participants to walk on these foam rectangles rather than between them. All other 

materials remained the same as for level walking. For both conditions participants walked 

barefoot at a self-selected pace, for two minutes around the cones placed at either end of the 

walkway. They walked in a clockwise direction and in as straight a line as possible. All 

participants were given a demonstration and one practice trial (one walk from start to end 

cone) to familiarise themselves with each experimental condition. Measurements of leg 

length (greater trochanter to floor) and hip width (left trochanter major – right trochanter 

major) were taken, as these dimensions are known to affect some gait variables such as stride 

length (Stansfield, et al., 2003).   

 

2.3. Data analysis 

The VICON movement data were labelled and smoothed using a Butterworth low-pass filter 

(cut-off 10 Hz) and processed to extract the gait variables of interest using tailored MatlabTM 

routines. The Foot Velocity Algorithm (O’Connor, Thorpe, O’Malley & Vaughan, 2007) was 

chosen to determine the timing of Heel-strike (HS) and Toe-off (TO) which was used to 

identify complete strides. The maximum number of complete strides completed within the 

data collection area was identified for each participant (mean strides extracted; Level TD 

8.86, DCD 7.83; Irregular; TD 8.40, DCD 6.66). Foot placement measures were taken from 

the ankle and toe markers from each foot and were used to identify three spatial measures; 

Proportional step length: anterior-posterior distance from lag ankle to lead ankle at their 

respective heel-strike, then normalised by leg length; Step width ratio (SWR): medio-lateral 

distance between ankle markers at heel-strike, then normalised by hip width; Percentage gait 

cycle in double support (%DS): amount of time during one gait cycle spent with both feet on 

the ground, expressed as a percentage of the whole stride, measured from ankle markers. 

Velocity was measured in meters per second (taken from the chest marker). Finally, the angle 
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of the head and trunk were calculated at both heel-strike and toe-off marking the transition 

between stance and swing (Perry & Burnfield, 2010; Whittle, 2012). Pitch rotations between 

the front segment (Head; measured from markers on the forehead and chin: Trunk; measured 

from markers on the chest and midpoint between the hips) and the horizontal plane are 

presented, as recommended by Winter (1991). For all measures we report mean percentage 

differences between walking conditions: [(measure during level condition – measure during 

irregular condition) / (measure during level condition) x100)]. This approach was taken as it 

provides more informative data about the adaptation of walking patterns between conditions. 

Absolute values for the level condition are provided for reference.  

 

2.4 Statistical Analysis 

Two-way independent ANOVA’s were used to investigate any percentage differences 

between Group (DCD, TD), and Age (Child, Teenage, Adult). Significant interactions were 

explored using simple main effects and significant main effects were investigated using post-

hoc tests. Bonferroni corrections were applied to protect against Type I error. Statistical 

significance was set at the 5% level.  

 

3. Results 

 

3.1. Percentage change in spatio-temporal measures 

Data for spatio-temporal measures can be found in Table 2. There were significant main 

effects of group for walking velocity (F(1,62) =12.65, p = .001, η2 = .17), proportional step 

length (F(1,63) = 13.07, p = .001, η2 = 0.18), and step width ratio (F(1,61) = 10.18, p = .002, 

η2 = .14), with the DCD group showing a greater reduction in percentage change in velocity 

and step length and a greater increase in percentage change in step width compared to the TD 

group. In addition, there were significant main effects of age for walking velocity (F(2,61) 

=3.86, p = .026, η2 = .11). Post hoc tests reveal a significant difference between children and 

teenagers (p = .021), but no significant difference between children and adults or teenagers 

and adults. This finding demonstrates that the children showed a greater reduction in 

percentage change compared to the teenagers. Finally, there was a group-by-age interaction 

for step width ratio (F(2,61) = 6.80, p = .002, η2 = .18), simple main effects show this is due 

to a larger percentage change in Step Width Ratio (SWR) for children (p = .049) and adults (p 

< .001) with DCD compared to their TD controls, no difference was seen between the two 

teenage groups (p > .05). This interaction is illustrated in Figure 1. The percentage of time in 
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double support (%DS) showed no significant effects of age, group or interaction between the 

two.  

 

INSERT FIGURE 1 HERE 

INSERT TABLE 2 HERE 

 

3.2. Percentage change in Angles of the head and trunk 
Data for percentage change in head and trunk angle can be seen in Table 3. There were 

significant group effects for head angle (F(1,51) = 6.15, p =  .016, η2 = .11), with the DCD 

group showing a greater percentage change reduction in head incline compared to their TD 

peers. In addition, there was a significant main effect of age for trunk angle (F(2,51) = 4.62, p 

= .014, η2 = .15). Pairwise comparisons (using the Bonferroni correction) indicated that 

children showed a greater reduction in percentage change of trunk angle compared to 

teenagers (p = .039). No difference was seen between the children and adults or the teenagers 

and adults. No significant interactions were found. 

 

INSERT TABLE 3 HERE 

 

4. Discussion 

The current study aimed to examine the adaptation to gait in individuals with and without 

DCD whilst traversing on an irregular terrain compared to a level one. It is clear that both 

groups made adaptations to their gait pattern whilst walking on the irregular, compared to the 

level terrain. However, it appears that the impact of the irregular terrain was greater for 

individuals with DCD compared to the control group. This was demonstrated by the 

individuals with DCD showing a greater reduction in step length, velocity and head angle and 

a greater increase in step width compared to the TD group. In other words, when walking on 

the irregular terrain the individuals with DCD shortened their step length, decreased their 

velocity, angled their head to the ground and increased step width more than the TD group.  

 

The shortening of step length, widening of step width and slowing walking speed have been 

seen in combination previously (Bierbaum, Peper, Karamanidis & Arampatzis, 2010; 

Deconinck, et al., 2006a; Maki, 1997; Menz, et al., 2003) and are thought to help to preserve 

stability when there are environmental and/or internal challenges to balance. In fact, in their 

study looking at walking on an irregular terrain Menz, et al. (2003) and Marigold & Patla 
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(2008) found very similar adaptive walking in healthy older adults (75-85years), they 

concluded that this conservative walking strategy enables these older adults to accommodate 

the greater risk of falling in this complex environment. It seems that the adaptations in 

individuals with DCD in the current study serve a similar purpose, allowing these participants 

to maintain forward propulsion while reducing the risk of falling by increasing base of 

support.  

 

In the introduction, we suggested that one reason individuals with DCD may find walking on 

an irregular terrain more challenging is an apparent difficulty they have with integrating 

sensory information while walking (Wilmut et al., 2016) and an over-reliance on visual 

information (Smits-Engelsman, et al., 2003; Wann, et al., 1998). To some extent the greater 

change in head angle in the individuals with DCD supports this. Whilst walking on an 

irregular terrain the individuals with DCD angled their heads more towards the ground than 

the TD individuals. If this is taken as a proxy for eye gaze, then it may suggest that these 

individuals are visually sampling the terrain more in the complex environment. This greater 

reliance on visual information, may be due to the difficulties these individuals have with 

integrating sensory information, both while walking (Deconinck et al., 2006b; Wilmut et al. 

2016) and while performing other motor tasks (Geuze, 2003; Wilson & McKenzie, 1998). In 

the irregular terrain, the proprioceptive feedback from the feet becomes more unstable and 

difficult to interpret for both groups (as shown by MacLellan & Patla, 2006). It would seem 

that the TD participants were better able to adapt movement in order to accommodate 

environmental demands. This may support previous studies which have shown typical 

populations can manage different sensory inputs (Oie, Kiemel & Jeka, 2002; Peterka, 2002). 

However, the DCD group seem less able to do this and looked down to utilise additional 

visual information to help interpret the changing environmental constraints. These findings 

could be extended with further research using an eye tracker to investigate whether head 

angle is indeed a good proxy for eye gaze. Furthermore, making the walkway more complex 

by introducing changes in direction would add ecological validity to the investigation and 

provide a clearer picture of how individuals with DCD forge a path to their destination in the 

real environment.  

 

In addition to the group differences described above, we found some effects of age, whereby 

children walked significantly slower than teenagers and leant their torsos more towards the 

ground than adults. These gait adaptations have been previously argued to assist with balance 
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constraints for pedestrians in challenging situations (Deconinck et al 2006a; Maki, 1997; 

Menz, et al 2003). It could be argued that the reduced velocity gives the children additional 

time to process the complex environmental information as they are subject to the constraints 

of maturational processes of the central nervous system involved with the organisation of 

movement (Duysens & Van de Crommert, 1998). They are also heavily reliant upon 

perceptual processes, particularly visual, vestibular and proprioception (Hulme & Snowling, 

2009) and their reduced speed may give additional processing time to assimilate this 

information. Thus, whilst the motoric demands of the walking task are mature by 7 years 

(Sutherland, Olshen, Cooper, Woo, 1980), the sensory processing needed to effectively 

interact with a complex environment may not be mature until later in development.  

 

In addition to considering age we also found that the adaptations to changing environments 

were different across age for the two groups for step width ratio. Specifically, the children 

and adults demonstrated clear group differences (with a greater percentage increase in step 

width ratio in the DCD compared to the typically developing group), but there was no group 

difference for the teenage group. However, whilst there was no difference in percentage 

change between teenagers with and without DCD, the   response to the cobbled terrain 

differed when compared to the other age groups (i.e. a smaller percentage increase in step 

width ratio for teenagers with DCD compared to children and adults with DCD , a larger 

percentage increase in step width ratio for typically developing teenagers compared to 

typically developing children and adults). Whilst the phenomenon of the adolescent growth 

spurt was not a focus of the present study, and any conclusions drawn are purely speculative, 

it may offer an explanation for these results. Beunen and Malina (1988) argue that the rate of 

development during the adolescent growth spurt is inversely proportional to the level of 

motor performance before the spurt. Thus it could be argued that children who are well 

coordinated at the start of the growth spurt, (i.e. the typically developing teenagers) are more 

at risk of the negative effect on motor skills (and subsequent wider SWR to accommodate the 

cobbled terrain) than poorly coordinated children (such as the teenagers with DCD). These 

findings are supported by research by Visser, Geuze and Kalverboer (1998) who investigated 

the relationship between the adolescent growth spurt and motor competence for individuals 

with and without DCD. Results suggested that rapid growth during the teenage years has a 

negative effect on motor skills, but this affect was more apparent in the typically developing 

teenagers than the DCD group, who actually improved their motor competence during this 
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time. Clearly caution is needed when interpreting cross-sectional data and our findings 

suggest that more research is needed to better understand these age effects.   

 

5. Conclusions 

The results from the current study suggest that all participants adopted a ‘safer’ walking 

strategy whilst traversing the irregular compared to the level terrain. However, the DCD 

group showed even greater adaptations to the irregular terrain, walking more slowly with 

shorter, wider steps, and inclined their head more towards the ground than their TD peers. 

These strategies suggest an adaptive approach used to preserve stability and increase visual 

sampling whilst negotiating the irregular terrain.  
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Table 1. Means, (standard deviations) of demographic data for participants in this study. Significant group 
differences (TD, DCD) for each measure are also reported.  

Key; M=male; F=female; M-ABC=Movement Assessment Battery for Children; SDQ= The Strengths and 
Difficulties Questionnaire; CAARS= The Conners Adult ADHD Rating Scales 

Measure Age 
group 

DCD group TD group p value 
Mean (SD) Mean (SD) 

 
Gender ratio 

M: F 

 
Child 

 
10:2 (N=12) 

 
10:2 (N=12) 

 

Teenage 9:3  (N=12) 9:3  (N=12)  
Adult 

 
7:4  (N=11) 7:4  (N=11) 

 
 

Age 
 

Child 10y 4m (1.25) 10y 3m (1.31) p > 0.05 
Teenage 16y 2m (1.27) 16y 0m (1.65) p > 0.05 

Adult 24y 2m (5.08) 27y 7m (4.97) 
 

p > 0.05 

Leg length (cm) 
 

Child 74.60 (107.81) 75.17 (34.86) p > 0.05 
Teenage 90.83 (67.13) 92.50 (41.23) p > 0.05 

Adult 88.45 (39.59) 91.72 (75.77) 
 

p > 0.05 

M-ABC balance 
(%) 

 
 

Child 2.59 (1.90) 69.75 (25.50) p < 0.001 
Teenage 2.99 (3.01) 61.58 (25.21) p < 0.001 

Adult 2.78 (2.84) 
 

54.27(25.36) p < 0.001 

SDQ Child High risk N =6 High risk N = 0  
Teenage High risk N =3 High risk N = 0  

CAARS 
 

Adult High risk N =1 High risk N = 0  
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Table 2. Means of absolute values for level terrain, standard deviations (in brackets) and percentage change in 
spatio-temporal measures from level (L) to irregular (I) terrain.  

Key; * p = significant to 0.05 level; **p = significant to 0.001 level; ns = not significant. SWR=Step Width 
ratio; %DS= Percentage gait cycle in double support. N.B. For two measures, values are only reported for 68 
participants in both cases this was due to 1 teenager with DCD and their matched pair being removed from 
analysis as the chest (walking speed) or hip (step width ratio) marked was occluded throughout a number of 
trials.  
  

Measure Age DCD 
Mean  

TD 
Mean 

 

Level % change 
L: I  

Level % change 
L: I  

Significant results 
[post hoc] 

 
Velocity 
(ms-1) 
(n = 68) 

 
Child 
 

 
0.99 
(0.20) 

 
-44.30 
(17.44) 

 
1.05 
(0.17) 

 
-29.57 
(12.61) 

 
    
     
   Group ** [DCD < TD] 
    Age * [C < T] 

Teenage 
 

1.06 
(0.22) 

-24.02 
(9.15) 

1.12 
(0.12) 

-21.51 
(21.82) 

Adult 
 
 

1.06 
(0.17) 

-38.98 
(13.10) 

1.10 
(0.18) 

-11.75 
(24.20) 
 

Prop 
step 
length 
 

Child 
 

0.61 
(0.08) 

-14.55 
(18.52) 

0.66 
(0.05) 

-9.38 
(10.13) 

    
 
    Group* [DCD < TD] Teenage 

 
0.58 
(0.09) 

-11.72 
(17.43) 

0.62 
(0.05) 

-2.93 
(4.78) 

Adult 
 
 

0.63 
(0.05) 

-19.69 
(7.58) 

0.64 
(0.07) 

-3.39 
(11.30) 
 

SWR 
(n = 68) 
 

Child 
 

0.83 
(0.17) 

32.59 
(20.15) 

0.92 
(0.12) 

10.58 
(16.34) 

     
 
    Group* [DCD > TD] 
    Group-by-age interaction* 

Teenage 
 

0.63 
(0.17) 

5.91 
(19.45) 

0.68 
(0.13) 

15.20 
(36.95) 

Adult 
 
 

0.66 
(0.20) 

41.42 
(30.58) 

0.75 
(0.13)  

-4.81 
(23.67) 
 

%DS 
 

Child 
 

15.65 
(3.05) 

44.60 
(28.39) 

15.05 
(1.39) 

35.08 
(19.74) 

 

Teenage 
 

17.67 
(4.46) 

18.01 
(46.21) 

15.80 
(2.19) 

24.10 
(17.42) 

    ns 

Adult 
 
 

16.74 
(5.66) 

29.74 
(49.15) 

16.04 
(1.13) 

18.22 
(12.47) 
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Table 3. Means of absolute values for level terrain, standard deviations (in brackets) and percentage change in 
in head and trunk angles whilst walking on the level (L) to irregular (I) terrain.   

Measure   Age DCD  TD   
 Level 

 
% change 
L: I 

Level 
 

% change 
L: I 

Significance 
  

 
Head 
angle o 

 
Child  
 

 
72.63 
(4.45) 

 
-37.46 
(14.24) 

 
75.93 
(5.35) 

 
-27.30 
(14.44) 

 

(n=58) Teenage  69.52 
(11.04) 

-30.72 
(15.07) 

  72.10 
(10.54) 

-18.59 
(11.63) 

    Group* [DCD<TD] 

 Adult  72.86 
(8.83) 

-28.32 
(17.50) 

78.83 
(9.72) 

-23.06 
(11.51) 

 
 
 

 
Trunk 
angle o 

 
Child  

 
90.63 
(3.93) 

 
-12.54 

(13.84) 

 
88.82 
(4.44) 

 
-9.34 
(6.90) 

 

(n=64) Teenage   
 

86.62 
(3.97) 

-3.96 
(4.02) 

89.17 
(4.17) 

-6.39 
(6.55) 

    Age* [C<A] 

 Adult  91.39 
(4.15) 

-2.92 
(5.06) 

92.04 
(4.48) 

-5.86 
(7.57) 

 

Key; * p = significant to 0.05 level; **p = significant to 0.001 level; ns = not significant. N.B. For head angle, 
values are reported for 58 participants (2 children, 3 teenagers with DCD; 1 TD adult and matched controls 
removed). For trunk angle, values are reported for 64 participants (2 children, 2 teenagers with DCD and 
matched controls removed). In all cases this was due to obscured markers (head – forehead marker; trunk = 
chest marker) for a number of trials.  
 

  



19 
 

-20

-10

0

10

20

30

40

50

Child Teen Adult

Pe
rc

en
ta

ge
 d

iff
er

en
ce

 fr
om

 
 le

ve
l t

o 
irr

eg
ul

ar
 te

rr
ai

n 

Age group 

DCD TD
                                     

 

 

 

 

 
 

 
Figure 1. Percentage difference in step width ratio from level to irregular terrain. Error bars represent standard 
error. key   p = significant to 0.05 level;     p = significant to 0.001 level.  
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