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RESEARCH ARTICLE

Sparse 3D reconstructions in Electrical Impedance Tomography
using real data
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‘We present a 3D reconstruction algorithm with sparsity constraints for Electrical Impedance
Tomography (EIT). EIT is the inverse problem of determining the distribution of con-
ductivity in the interior of an object from simultaneous measurements of currents and
voltages on its boundary. The feasibility of the sparsity reconstruction approach is tested
with real data obtained from a new planar EIT device developed at the Institut fiir
Physik, Johannes Gutenberg Universitat, Mainz, Germany. The complete electrode model is
adapted for the given device to handle incomplete measurements and the inhomogeneities
of the conductivity are a priori assumed to be sparse with respect to a certain basis.
This prior information is incorporated into a Tikhonov-type functional by including a
sparsity-promoting £!-regularization term. The functional is minimized with an iterative soft
shrinkage-type algorithm.

Key words: electrical impedance tomography, sparsity reconstruction, Tikhonov regular-
ization

1. Introduction

Electrical Impedance Tomography (EIT) is a non-destructive, low-cost and
portable imaging technique developed to reconstruct the conductivity distribution
in the interior of an object. The technique is algo non-invasive gince only electrical
meagurements of currents and voltages on the boundary are performed. EIT can
therefore be used as an imaging method in industry (e.g. detection of cracks in
conecrete [1] or imaging of fluid flows and their mixing in pipes [2]), geophysics
(e.g. detection of deposits and reconstruction of structures under the ground from
measumements on the surface of the Earth [3]) and medicine (e.g. breast cancer
detection and lung function monitoring [4]).

The inverse conductivity problem is a nonlinear parameter identification prob-
lem for differential equations which ig severely ill-posed in the Hadamard sense.
Therefore, it requires an efficient, stable, and accurate mathematical and numerical
treatment. A wide range of reconstructions algorithms from noisy measurements
have been proposed over the years [5-15]. Many of these algorithms are baged
on minimizing a certain (regularized) least-square functional, i.e. the gquared e
norm of the difference between measured potentialg and computed potentialg for
an estimated digtribution of conductivity. Due to the ill-pogedness of the problem,
different regularization methods were applied and their suitability investigated.
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Figure 1. The gensing head,

Examples include smoothness regularization (9, 12, 16], total variation [8, 10, 13]
or regularization by the Mumford-Shah functional [11]. Despite all these efforts,
the quality of reconstructions is still modest when compared to other (non-diffuse)
imaging modalities.

However, when the object under consideration exhibits sparse features, l.e. it
consists of an ordinary (e.g. constant) background conductivity and a few Inclusions
which have rather simple mathematical descriptions, the use of an £' norm in the
regularization term could enhance the accuracy of the EIT reconstructions. Since
the pioneering work on sparsity constraints for least-squares problems with a linear
operator [17], substantial progress has been made especially in developing efficient
algorithms with € priors for solving both linear and non-linear inverse problems
[18-22]. Recently, this so-called sparsity regularization has been successfully applied
to two-dimensional EIT [23, 24].

In this paper we use a sparsity algorithm to obtain three-dimensional reconstruc-
tions from real data collected using a new plansr electrical impedance tomography
device developed at the Institut fir Physik, Johannes Universitat, Maing, Germany.
The latest Mainz tomograph was designed mainly for breast cancer detection and
is similar to the one described in [25, 26]. Its sensing head consists of a supporting
plastic plate with fixed electrodes, namely 12 large outer {active) electrodes where
the external currents are injected, and a set of B4 point-like high-impedance in-
ner(passive) electrodes where the induced potentials are measured (see Figure 1).
To avoid any problems due to the unknown contact impedance, the potentialy are
not measured at the outer electrodes. At the inner electrodes very high impedance
voltage measurements are taken and the problem of contact impedance does not
arise. In almost all previous EIT experimental setups the same electrodes were
uged for current injection and voltage measurement. The excitation current was
injected (extracted) st one pair of electrodes at each time and the resulting voltage
was messured at all or some of the remaining electrodes, e.g. [4, 24]. The novelty of
the device, and hence of the reconstruction method proposed, consists exactly in
the distinct use of active and pasaive electrodes. The active electrodes are nsed only
for current injection while the passive electrodes only for voltage measurerments,

The paper is structured ag follows. The complete electrode model which we use
as 3 mathematical model for the dsata formation/acquisition process is reviewed
and adapted to the planar EIT device developed in Mainz in section 2. The recon-
struction algorithm is described In section 3 and we indicate all the specific issues
related to its Implementation. Finally, in section 4, we describe the measurement
device and the experimental setup, present the numerical reconstructions from real



data and evaluate the proposed method.

2. Complete electrode model with incomplete measurements

Due to the ill-posed nature of the considered problem, accurate description of
the physical processes is very important. Different electrode models for EIT have
been proposed and studied in [27] and their accuracy wasg compared. The most
accurate model turned out to be the so-called complete electrode model (CEM),
which includes various physical effects into the modelling. We briefly review this
model following the description in [27] and adapt it to the planar data collection
EIT device developed in Mainz.

Let © be the conductive object under consideration, and ' = 89 be its surface
(boundary).The experimental procedure of performing potential meagurements is
ag follows. First, a get of L electrodes ig placed on the gurface of the object. Then,
an input current ig applied to the L electrodes and the resulting potentials are
meagured at a number M of electrodes. This procedure is repeated several timeg
with different currents patterns. The complete electrode model takes into account
distinet features of the EIT experiment, i.e. the discrete nature of the electrodes,
effect of the contact impedance and the shunting effect of the electrodes, and it
is now regarded as the standard electrode model in medical applications. In con-
trast to the original complete electrode model where M = L, the potential is not
measured at all L electrodes, but only at a subset of M of electrodes (M < L).

The CEM is of the form

~V (6Vu) =0 in Q,

u—l—zm%:lfl one,l=1,..., L,

Loskds=0 forl=1,..,1, D
L a—g% =0 on I\ UL, e,

where o is the electrical conductivity, u € H () is the electric potential, {e;}{;l C
[ denote the surfaces under the electrodes and n is the unit cutward normal to
the boundary I'. Moreover, U, I; e R,l =1, ..., L are the electrode potentials and
currents, respectlvely ’I‘he currents have to satlsfy the charge conservation law,
and hence Zz 4 Iy = Q. For umqueness the ground potential has to be fixed; thls
is achieved for example by requiring 2 1—1 Ur = 0. We denote the vectors consmtmg
of electrode potentials and currents by U and I, i.e. U = (U, Us, .. UL) = RL
and I = (I, Iy, ..., I;)T € RL, where RE = {w e RL: YL 4 = 0}

The second equation in system of equations (1) models the contact impedance
effect. When injecting electrical currents into the object, a thin layer with high
registivity forms at the electrode-electrolyte interface due to certain electrochemical
processes, which cauges the potential values to drop at the electrodeg according to
Ohm’s law. Note that the left-hand side w + z;crg% of the second equation is a
function defined on each electrode, whereas the right-hand side U/ ig a scalar. This
is due to the shunting effect: the electrodes are modelled ag perfect conductors and
the potential is therefore constant on them. The third equation in (1) reflects the
fact that the current injected through each electrode is completely confined to the
electrode.

We define the forward operator of the EIT problem by F(o) : RE — HY(Q) x
Rg, I v+ (u,U), which is equivalent to solving the above equations. The forward
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operator is well-defined, linear and continuous in I [27].

We also define the measurement operator by A4 : H1(Q) x Rk — RM | (u,U) r»
(U1, ...,Un)T which restricts the tuple (u, U) to the measurable potentials. One
EIT experiment then corresponds to the composition 7' = MF(a)I. For the de-
vice under consideration, it ig not posgible to inject current into the M potential
measuring electrodes, i.e. ; = 0forl = 1,..., M. Thus, the contact impedance
effect on the electrode potentials U/; becomes negligible and there is no need to
approximate the contact impedances z; correctly.

Unfortunately, the analytical solution of (1) is usually intractable. Thus we em-
ploy a finite element method, see [9, 14] for details. To this end, we exploit the
weak formulation of (1), which reads

L L
il
faVu-Vvdz—I— E Z/(Ug—u)(Vg—v)dS E LV
Q =1 e =1

for all v € H(R2), V € R&.
Choosing a basis {¢; }i=1,_n of a guitable finite element space, one can replace u

by ite basis expansion u = 25\; 1 i¢; and test against everyv =¢; fori =1,..., N
to arrive, in matrix form, at the linear gystem
KO+ Kk kP [w] [0 @)
(CPF k2| &) 7|
N — —
A
with
ch’j:/avqusjdm ij=1,...,N
Q
2.4
KL = /gb'gﬁ'dS B ] = 1y v p N
N ; & € o
b 1 . :
K =——1[ ¢:idS i=1,...,Nandj=1,..., L
Zj Je,
a._ 1 .
Ky=—{ 148 % = Lymes wpll
yats e:
and v = (ul,...,uN)T. The matrix A is symmetric, positive semi-definite and

gparse. [t is singular, because the condition U/ & [R‘é has not been accounted for
yet, and so every constant offset of one solution 18 another solution to that matrix
equation. In [14] it is suggested to add the row

(@ 15 = 1]
N,

N times L times

to A and at the same time extend the right-hand side vector of the linear system (2)
by an additional zero entry. Unfortunately, this destroys symmetry and squareness
of the original matrix, which in turn has bad influence on stability and performance.
We follow [10], where U is expanded in a basis of U?% instead of R” to enforce the
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zero sum condition. Note that this only affects the matrices K¥ and K¢, which are
of small dimensions, thus the transformation can be carried out inexpensively.

3. Tikhonov approach

The EIT inverse problem is to estimate an unknown conductivity ¢! from a finite
set of noigy potential data U%. It suffers from severe ill-posedness and must, as
a result, be regularized. We use the very popular Tikhonov regularization, which
defines an approximation to the unknown conductivity for the data set (I, U5) as
the minimizer ¢* of

0" = argmin § Jo(o) = LIME(o)I - U°|? +aR(o) ¢,
oae

D{)

where R(o) is a regularization functional, D(s) is the discrepancy term and U?® =
(UiS 5 s g Uj&) denotes the noisy potential measurements. From elliptic regularity
theory, the admissible set A i restricted to a pogitive, uniformly bounded subset
of L*°({€2). To this end, we define

A={ceL™():0< <o <cae inl},

where ¢y and ¢1 are known pogitive constants.
This formulation can be modified in a straightforward way to incorporate mul-
tiple data sets {(I*, U} | by modifying the discrepancy D(e) to

K
Do) =3 |MF(a)I* - U%|2.
k_

=1

However, for notational simplicity, we consider only one single data set (1, U5).

The scalar parameter « denoctes the regularization parameter, which balances
between the discrepancy term and the regularization functional. It incorporates a
priori information about properties of the solution and the noise level.

There is a variety of regularization functionals to choose from, each of them suit-
able for a certain type of a priori knowledge available of the true conductivity of.
Here, we consider conductivities which congist of a known or simple (e.g. constant)
background plus some inclugions with small support with regpect to a certain basig.
The natural choice of regularization functional for thig kind of a pricri knowledge
ig an £ norm

l2llf = (@, bn) P
T

for p < 1 with respect to a certain basis {by,}. Popular choices for bases include
the pixel basis, the finite element basis or wavelet bages.

The lp-norm corresponds to the cardinality of the support, thus is a reasonable
meagure for smallness of inclusions. Unfortunately, obtaining the minimizer of the
NP-hard (°-regularized problem is computationally unachievable. The #'-norm, on
the other hand, is the closest convex relaxation of the ’-norm. By virtue of its
convexity, it lends itself to tractable algorithms, and serves ag an approximation
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to the £"-norm. Hence we define the regularization functional as
R(a) = [lo — ongl|e

where opy € H 1{Q2) is the known background conductivity. For a comparison of
spargity regularization to the widely used smoothness regularization on experimen-
tal EIT data, see [24].

Algorithms to compute the minimizer of general sparsity-regularized functionalg
have been digcussed in [18, 19, 21]. One of the algorithms under congideration ig the
iterative soft shrinkage algorithm, which was applied to EIT with the continuum
model in [23]. In thiz paper, we employ a variant of thig algorithm from [24); see
Algorithm 1 for a complete description.

Algorithm 1 Sparse reconstruction algorithm
1 Set do¥ =0
2 forj=1,...,J do
3 Compute ¢? = opg + 607;
Compute the gradient D'(a?) by the adjoint method;
Compute the smoothed gradient D%(a7);
Determine the step size 74;
Update inhomogeneity by a7t = o7 — 7; D(a7);
Threshold do?™ by S, o(do?T);
9. Check a stopping criterion.
10: end for
11: output approximate minimizer do and return 6o + op,.

The algorithm iteratively updates an approximation do to the true inclusion
0" — opg. In each iteration, it first computes the gradient of the discrepancy term
(by the adjoint method, see appendix A), then smooths the gradient to increase
regularity, updates the conductivity by a gradient descent step with suitable chosen
step size, and finally applies a thresholding operator S, , to enforce sparsity. Special
attention has to be paid to the smoothing step and on the choice of suitable stepsize
for their crucial influence on stability and performance of the algorithm.

We experienced considerable oscillations and artifacts in the reconstruction when
directly using the gradient D’'(c7) to update the inhomogeneity. These numerical
difficulties were overcome by introducing the Sobolev gradient (or smoothed gradi-
ent), D.(c?), which is defined as the gradient with respect to the H!-scalar product,
ie

<D’(0’j),h>m(m = (D7), h>H1(Q) for all h € HY(Q).

Reordering this equation we arrive at the weak formulation for the following linear
partial differential equation

—AD.(c?) + D(c?) = D'(0?) on Q. (3)
One can also introduce a parameter 3 into equation (3)
—BAD.L(c%) + Di(¢%) = D'(67) on 0

to control the strenght of smoothing.
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To accelerate this inherently slow gradient-descent-type method, we choose an
adaptive step size gelection rule devised by Barzilai and Borwein [28]. The basic
idea is to make the scalar step size mimic the inverse of the Hessian, i.e. to solve

(o’ = i)  Dy{o%) = Dyfe")

in the leagt square sense. This approach results in the computational simple formula

PICRGN T Ra)
(0 — i1 g — gi—1) ’

Algorithms baged on Barzilai-Borwein are sometimes implemented in an uncon-
strained fashion where the objective value J(o) does not have to decrease at all,
but their convergence is hard to study. On the other hand, the non-monotony (with
M > 0) is characteristic for Barzilai-Borwein and necessary for fast convergence.
We follow [22] by enforcing a 'weak monotony”, i.e. after we have obtained a can-
didate step size by Barzilai-Borwein’s rule, it is only accepted if it yields a lower
value in the objective function than any of the lagt 9 iterates, where 9 is a fixed
parameter. If a candidate step size is rejected, it is halved and the criterion is
evaluated again.

The second last step of algorithm 1 applies the soft shrinkage (or soft thresh-
olding) operator S, to the result of the gradient descent step. The soft shrinkage
operator ig defined componentwise by

(| — @) sign () if |2;] > o
(Salx))i = {O otherwise

acting on the coeffiecients x; of the basis expansion of z. It sets all small (smaller
than «) coefficients to zero and shrinks all other by « towards zero.

The first five steps can be viewed as minimizing the discrepancy D(c), and the
application of the soft-shrinkage operator S; , takes care of the minimization of
the regularization functional E(c) by enforcing sparsity. It has been shown in [18]
that under some conditiong thig iterated soft shrinkage algorithm will converge to
a minimizer of the functional J(o).

4. Experimental setup and numerical reconstructions from real data

The Mainz tomograph has three parts: a planar sensing head of circular geometry,
an electronic device to apply the current patterns and to meagure the electric
potentials, and a computer for image reconstruction. More technical detailg of the
Mainz EIT system can be found in [29]. The gensing head hag a fixed geometry.
There are L = 66 electrodes fixed on a supporting plastic circular plate of diameter
10 cm and their pogitions are exactly known. The M = 54 passive electrodes where
the potentialg are meagured are very small (2 mm-diameter electrodes), practically
no current is drawn and they are placed in a hexagonal pattern (electrodes labeled
13 to 66 in Figure 2). The 12 large active electrodes where the currents is injected
have diameters of 10 mm and their centers are placed on a circle of radiug K = 4.4
em (electrodes labeled 1 to 12 in Figure 2).

The experimental data were collected by placing the sensing head at the bottom
of a cylindrical tank of the same diameter as the sensing head which was filled with
a conducting liquid (salt water). The water level in the tank was approximately 8
cm. Objects made out of different materials were immersed in the liquid at different



Figure 2. Layout of the slectrode array of the Mainz EIT device, The amall circles labeled from 1 to 12 show
the cuter electrodes for current injection. The position of the 54 inner electrodes for potential measurements
are drawn as thick points (marked in blue). The network is used as a model of the messurement ares. The
positions 1, 2, and 2 (marked in red) indicate the places above the sensing head where metallic objecta
were immersed in conducting liquid, while the positions 4 and 5 (marked in yellow) indicste the places
where an agar phantom was placed.

distances from the sensing head, see Figure 2. Metallic cyllindrical objects, M20 and
M15, which have diameters and heights equal to 20 mm and 15 mm, respectively,
were placed at positions 1, 2 and 3. A lower contrast inclusion, i.e. a cubic agar
phantom of side equal to 20 mm, was placed at positions 4 and 5. Although the
distances from the sensing head were accurately measured, the actual positions of
the immersed objects might differ slightly from from those indicated in Figure 2
due to technical reasons. Data were collected for only K = 10 varying-frequency
patterns of the input current:

o I(a)cosoﬁs , a=1...,5
reNe) = (P Coolod) > (@)
¢ sin((a - 5)85), . =6,..., 10,
where ¢, = 4, s = 1,..., 12, is the angular position of the centers of the current
electrodes.

Note that the experimental setup and the data collection process are different
from those presented in [24] where electrical measurements were performed at the
lateral surface of the tank, and hence reconstructions of two-dimensional conduc-
tivities were obtained. In this case electrical measurements were performed solely
at the bottom of the tank and we reconstruct three-dimensional conductivity dis-
tributions.

In the numerical reconstructions, the sensing head is considered to be at height
z = 0 mm and the tank extends downwards to z = —2, —6, ... mm. The volume was
approximated by a tetrahedral mesh of 42496 elements and a piecewise linear finite
element space was used for both the potential w and the conductivity o. We also
considered sparsity with respect to that finite element basis. The reconstructions
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Figure 3. Conductivity reconstructions for the agar phantom placed at position 5 and at different distances
below the sensing head: (a) and (¢) 2 mm; (b) and (d) 5 mm. (a) and (b): cross sections of conductivity
reconstructions; (c) and (d): three-dimensional views of the conductivity reconstructions.
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Figure 4. Cross sections of conductivity reconstruction for M15 at position 1 and M20 at position 2. The
inclusion is (a) 2 mm and (b) 5 mm below the sensing head.

took about 8 minutes on a off-the-shelf 2.6 GHz dual-core laptop.

In Figure 3, we present reconstructions for the the agar-phantom placed at posi-
tion 5 and at two different depths (i.e. two different distances to the sensing head).
The conductivity reconstructions look quite similar. They localize the inclusion
very well in the z,y-plane confirming that the currents penetrate deep enough.
As expected, the planar sensing head cannot provide information about the exact
depth and height of the inclusion. Since similar results were obtained for an agar
phantom placed at position 4, we decided not to include those in this paper.

Figure 4 shows the conductivity reconstructions for two metallic objects M15
and M20 placed at positions 1 and 2, respectively, and at two different distances
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Figure 5. Cross sections of conductivity reconstruction for M15 at position 2 and M20 at position 1. The
inclusion is (a) 2 mm and (b) 5 mm below the sensing head.
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Figure 6. Cross sections of conductivity reconstruction for M15 at position 1 and M20 at position 3. The
inclusion is (a) 2mm and (b) 5mm below the sensing head.

from the sensing head, 2 mm and 5 mm. In figure 6 we present conductivity re-
constructions for the same two metallic objects whose positions were swapped. All
reconstructions give good localizations of the inclusions. In the experiments with
inclusions at depth 5 mm, the separation is worse and the smaller inclusion seems
to be shielded by the bigger inclusion. This time the reconstructions contain some
oscillations near the electrodes (see cross section at z = —2 mm in Figure 6 (b))
which are due to the ill-posed nature of the problem.

Figure 6 shows the reconstructions obtained for the same metallic inclusions
placed at different positions, i.e. M15 placed at position 1 and M20 placed at
position 3. We observe the same features of the reconstructions as before: good
localizations in the z, y-plane and a nice separation of the different inclusions.

5. Conclusions

We applied a sparsity enforcing reconstruction method using the complete electrode
model to a new planar EIT device developed in Mainz, Germany. The reconstruc-
tions show that objects placed into the tank at various positions and distances from
the sensing head could be detected and their positions in 2, y-plane recovered. As
expected, in the data collected by the Mainz tomograph there is little information
about the depth and the heights of the inclusions. Future work includes evaluation
of various choice rules for the regularization parameter « for the specific inverse
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problem presented here, recongtructions obtained from clinical data and investiga-
tions of whether both conductivity and permitivity reconstructions obtained from
real data at differernt frequencies of the applied current improve the specificity of
breast tumour detections.
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Appendix A. Derivation of the gradient formula

Recall that the discrepancy term is given by

D(o) = 3| MF(o)] - U°|?

where F(o) : RE — HY(Q) < RE, T > (u,U7), is the forward operator, M : H(Q2) x
RE — RM, (u,U) = (Un,...,Un)T, is the measurement operator, and U? are the
meagured potentials.

Proposition A.1: Let o € A, do compactly supported on ) such that c+do € A,
TeRE, U eRM, (w,U) = F(o)I and (p, P) € HY(Q) x RE be the solution of

L
1
fQUvaVvdw+Zz£f(Pz —p)(Vi —v)ds
I=1 i

- <(M(u, U) — U%), M(v, V)>RM for all (v, V) € HY(Q) x RE

then the L2-gradient of the functional D(c) = || MF (o)1 — U°|? is given by
VD(o)=—Vu - Vp. (A1)

Remark A7: In the above notation, D'(c) is the gradient w.r.t. o; Vu and Vp
are spatial gradients.

Remark A2: For multiple currents I', ..., I* the equations becomes

D'ie) == Tul : Vp".

ifNgt

where p* and u* have been calculated from their regpective currents I*.

Proof: The derivative of D(s) can be rewritten by the chain-rule as

M

D'(0)87 = (M(w,U) ~ U, M, T))__,
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where (v',U') = F'(a)dc. The weak formulation for (p, P) with (v, V) = (v/,U’) is

L
1
/ oVp Vi dz+ 3 2_1/ (B — p)(U] —u/)dS = <M(u, ] = U5,M(u’,U’)>RM
0 =1 L=34

and the weak formulation of (v/, U") with (v, V) = (p, P) ig

L
1
/ oVp - Vu'dz + Z_/(Pl —p)(U] —u')dS = —/ doVu - Vp.
Q =1 ZE (=4 Q
Combining the above two equations leads to
D)o = — / doVu - Vpde.
2

Henee, using the definition of the L?-gradient we obtain

D'(e)ée = <Df(cr), 50>L2(Q) 5

which concludes the proof. O

This result allows us to compute the gradient of D(e¢) without the need to evalu-
ate the Fréchet derivative (o) for every do. After solving two forward problems,
the evaluation of D'(o) is a mere integration, which is especially easy for the dis-
cretized problem.





