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Meta-analysis of Indoor Temperatures in New-build UK Housing 

 

Despite growing concerns about overheating, there is a lack of evidence regarding the 

scale of the problem, particularly in contemporary UK housing. This paper presents the 

results of a meta-analysis of indoor temperatures in selected low-energy housing. 

Temperature data recorded at 5 minute intervals in 60 dwellings across 19 demonstration 

projects (2012-2014) were collated and analysed to investigate the prevalence of 

overheating.  

Findings evidence high summertime temperatures, with 27% of living rooms exceeding 

28°C during August. Based on the CIBSE threshold of 5% annual occupied hours >25°C, 

57% of bedrooms and 75% of living rooms were classified as having overheated. Overall, 

30% of living rooms exceeded the adaptive comfort threshold of >3% occupied hours 

∆T≥1K. 

The results suggest a fundamental relationship between ventilation and indoor 

temperatures. The higher minimum and average summertime temperatures observed in 

MVHR homes (p<0.05) and lower temperature range (p<0.001) suggest the need for 

greater attention to adequate summertime ventilation provision in airtight homes. The 

results demonstrate a high prevalence of overheating in exemplary housing, indicating the 

need for greater efforts to ensure the effective implementation of strategies to minimise 

overheating and improve ventilation in low-energy homes. 
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Introduction 

Over the last three decades temperatures on the surface of the Earth have risen, with future projections 

estimating a 4°C average global temperature increase by the turn of the century under a high emissions 

scenario (IPCC, 2007; Stocker et al., 2013). In the UK, central climate estimates (under a medium 

emissions scenario) indicate an increase of mean daily summer maximum temperatures of 5.4°C in 



England and 2.8°C in northern Britain by 2080, relative to 1961-1990 baseline (Murphy et al., 2010). 

With this, an increase in the frequency, duration and intensity of heatwaves are expected. Given the 

experience of the 2003 heatwave in Europe which is estimated to have caused 2,091 excess deaths in 

the UK alone (Johnson et al., 2005), this is likely to have serious adverse implications on public health 

particularly the health of vulnerable populations. Increased mortality rates of vulnerable populations 

such as young children, the elderly and the immobile are of particular concern as these groups are 

likely to spend a significant majority of their time at home.  

To address the causes of Climate Change, a substantial reduction of greenhouse gas emissions 

is required over the next few decades to, ‘reduce climate risks in the 21st century and beyond, increase 

prospects for effective adaption, reduce the costs and challenges of mitigation in the longer term and 

contribute to climate-resilient pathways for sustainable development’ (Pachauri et al. 2014, p.17). 

Efforts to reduce greenhouse gas emissions and maintain global average temperature rises below 2-

3°C have resulted in significant changes to the way homes in the UK and across Europe are being 

designed and built (McLeod et al., 2013). On account of the large proportion of building energy use 

that may be attributed to space heating (Huovila et al., 2007), mitigation efforts within the construction 

sector have concentrated on improving the thermal performance and airtightness of building 

envelopes, to reduce heat loss from infiltration and thermal bridging.  

Whilst improvements in thermal performance have addressed problems of heat loss in 

dwellings, there has been less focus on issues of unwanted heat gains and requisite ventilation in 

thermally robust dwellings. As explained by the Zero Carbon Hub (2010, p.7),  

‘There is some anxiety that the homes we are building today may be at risk of overheating even 

in the current climate. Given the prospect of significant warming, well within the expected 

lifetime of homes, this risk will increase with potentially serious consequences.’  

The Zero Carbon Hub is a non-profit organisation established in 2008, to take day-to-day 

responsibility for the achievement of the UK government’s target of zero carbon homes from 2016. 

The hub recently undertook a comprehensive study reviewing a considerable body of knowledge 



relating to overheating in UK dwellings (Zero Carbon Hub, 2015a; 2015b; 2015c; 2015d; 2015e; 

2015f; 2015g; 2015h). They stress that one of the most significant challenges of addressing 

overheating has been the lack of evidence regarding the scale of the problem in a domestic context 

(2015a, p.10).  

Indeed much existing evidence, particularly in relation to the prevalence of overheating in 

energy efficient new homes, stems from small-scale demonstration projects or survey responses. As 

posited by AECOM (a multinational Architecture, Engineering, Consulting, Operations and 

Maintenance firm), in a review of the literature on overheating in homes (2012, p.4), ‘The literature 

describing the current knowledge as to how UK dwellings modify external temperatures is dominated 

by modelling studies and published measured data is scarce.’ Most monitoring studies of the indoor 

thermal environment in dwellings have focused on winter temperatures, with few exploring the range 

of conditions experienced during the summer season (Lomas and Kane, 2013). Also, criteria used to 

define overheating often vary between studies, meaning direct comparison is usually not possible 

(Zero Carbon Hub (ZCH), 2015a). The ZCH study suggests that, ‘Future research which uses the 

original data from these [small scale monitoring] studies but analyses them in a consistent way would 

provide further insights’ (p.51). The data acquired as part of the Building Performance Evaluation 

(BPE) programme therefore offers a rare opportunity. 

The aim of this paper is to identify the prevalence of overheating in new-build energy efficient 

dwellings through a meta-analysis of the existing temperature data gathered as part of the Innovate UK 

(formerly Technology Strategy Board) BPE programme. This will be achieved by; i) Identifying the 

prevalence of overheating using static (Passivhaus and CIBSE) criteria and the adaptive method, ii) 

Exploring the relationship between overheating prevalence and building characteristics (including 

construction, dwelling type and region),  iii) Examining seasonal temperature variations, and iv) 

Comparing indoor temperatures in homes with and without MVHR systems.  

Background 

Innovate UK Building Performance Evaluation programme 



A growing body of evidence is now available to demonstrate that decarbonisation strategies aimed at 

the housing sector do not always achieve intended results (De Wilde, 2014). To address this 

performance gap between ‘as designed’ and ‘as built’, Innovate UK commissioned the BPE 

programme, to: i) gain real-world performance data of recently constructed buildings, ii) facilitate 

learning of the variables and factors that impact performance, iii) embed a culture of Building 

Performance Evaluation in the UK construction sector and iv), generate a knowledge base of Case 

Studies (Innovate UK, 2015).   

This £8m programme was funded over four years to support a range of BPE studies across the 

UK in both domestic and non-domestic buildings, including Phase 1 studies looking at post-

construction and early occupation and Phase 2 studies looking at in-use monitoring and evaluation 

over a 2 year period. In the Domestic programme, a total of 53 projects were funded, representing 

approximately 250 dwellings. Due to the nature of the programme, only projects with high 

sustainability credentials (Code for Sustainable Home’s level 3, 4, 5, 6 or Passivhaus) were funded. 

All domestic projects evaluated as part of the programme were either new-build or recently 

constructed since 2008.  

             To maintain consistency, mandatory testing and evaluation requirements were outlined within 

the Guide for Project Execution Document1, which provided recommendations for sensor location, 

accuracy (±0.5°C), resolution (0.1°C), granularity (5 minute intervals) and monitoring regime. 

Seasonal temperature data were available for 60 of these dwellings. Consistently-recorded temperature 

data over a full one year period were available for 53 living rooms and 77 bedrooms in total. To meet 

the criteria of the funding, all studies were required to follow specific protocols, techniques and tools 

for data collection to ensure consistency of the information obtained.  

It is important to note that the projects included in the Building Performance Evaluation 

programme were not selected at random, therefore the results may not be representative of all new-

build UK dwellings, but they do represent contemporary low energy design and construction 

strategies. The results may be further limited by the lack of information on orientation and shading, 

                                                           
1 The Project Execution Document provided guidance on Building Performance Evaluation (BPE) methods and 
tools to the winning project teams. 



and information on building occupants perceptions of overheating within the home. In addition, 

although a project execution guide was provided under the Building Performance Evaluation 

programme, measurements were undertaken independently for each project therefore sampling 

equipment and methodology may have varied.  

 

Defining overheating 

One of the biggest challenges of establishing the prevalence of overheating in dwellings is the current 

inconsistency in the field regarding what particular conditions may constitute overheating. For 

example, as explained by Dengel and Swainson (2012), there is at present no precise, universally 

accepted definition of overheating. This is supported by McLeod (2013), who suggests that the 

particular thresholds at which overheating leads to elevated risk to occupant health has yet to be fully 

explored. Despite this, numerous methods of quantifying overheating exist, comprising of both ‘fixed’ 

and ‘adaptive’ approaches.  

The adaptive approach recognises that the temperature at which humans feel comfortable 

indoors varies depending on the running-mean ambient temperature (Humphreys and Nicol, 1998). 

The BS EN 15251 (BS EN 15251: 2007) standard defines acceptable indoor summer temperature 

levels using the adaptive method, in free-running buildings where occupants have the ability to 

regulate indoor thermal conditions through opening and closing windows. It should be noted that these 

temperature limits were derived by comfort studies in office buildings (BS EN 15251: 2007; Halawa 

and Van Hoof, 2012) and since comfort conditions have been found to differ significantly between 

offices and homes (Oseland, 1995), care should be taken when applying this method to a domestic 

context (Nicol et al., 2009).  

The Passivhaus Institute define overheating in homes as temperatures exceeding 25°C for 

more than 10% of the year (2012). CIBSE (2015, p.5.53) refer to a fixed definition of overheating 

where, ‘the internal operative temperature should not exceed 25°C for more than 5% of occupied 

hours and 28°C for more than 1% of occupied hours.’ Operative temperature is a combination of the 

mean radiant temperature and air temperature, expressed as a single value (CIBSE, 2013). For air-

conditioned buildings, CIBSE Guide A (2015) refers to customary summer operative temperatures of 



between 23°C and 25°C for bedroom and living room spaces. In CIBSE TM 36 (2005), ‘warm’ and 

‘hot’ temperature thresholds of 25°C and 28°C for living rooms and 21°C and 25°C for bedrooms 

have been recommended. Lower temperature thresholds in bedrooms were devised since sleep quality 

and thermal comfort have been found to decrease at temperatures above 24°C (CIBSE, 2006; 

Humphreys, 1979).  

A number of limitations to the use of static criteria for the definition of overheating exist. As 

suggested by Nicol et al. (2009), whilst the use of a fixed threshold temperature offers a method to 

establish the occurrence of overheating, it does not provide an indication of the severity. The use of 

criteria that define overheating based on the percentage of annual occupied hours exceeding a 

particular temperature threshold may be open to abuse, given the inherent sensitivity of the assessment 

method and the lack of clarity of what is meant by occupied hours (CIBSE, 2015; Nicol et al., 2009).  

However, as expressed by Anderson et al. (2013), the adaptive approach to overheating may 

also be problematic as it assumes that building occupants can adapt or alter their indoor environment 

regardless of their environmental or physical circumstances. This is particularly true for sleeping 

persons and consequently there are no currently accepted adaptive criteria for bedrooms. BS EN 15251 

defines the risk of overheating using four categories, ranging from Category I (vulnerable group) to 

Category IV. To gain an in-depth understanding of overheating prevalence in the monitored dwellings, 

both static and adaptive approaches were employed.  

 
Overheating in energy efficient dwellings- existing evidence 

Performance evaluation of demonstration projects provides the opportunity to learn from experience, 

avoid pitfalls and ultimately improve the effectiveness of next generation homes (Isaksson and 

Karlsson, 2006). Despite the importance of building performance evaluation in this regard, there still 

exists a lack of uptake in practice. Emerging evidence tends to suggest that, ‘modern energy efficient, 

i.e. well insulated, airtight dwellings are suffering from overheating, and that in some cases this is 

resulting in adverse health effects for the occupants of these properties’ (Dengel and Swainson, 2012; 

p.19). However, without the necessary evidence base to support this, there remains a lack of concerted 

action to address the risk of overheating in modern airtight homes. As identified in a report 



commissioned by the Department of Communities and Local Government (AECOM, 2012; p.2), three 

main questions require addressing: i) Whether overheating is occurring in new dwellings as a result of 

higher insulation standards and improved airtightness, ii) Whether overheating is occurring in existing 

dwellings, and iii) Whether retrofitting/refurbishing existing dwellings is likely to increase the risk of 

overheating or not. 

Table 1 presents a summary of existing research that has examined the prevalence of 

overheating based on physical monitoring in energy efficient European dwellings. Whilst it is clear 

that some evidence is available, these findings are generally limited to small scale projects using 

varying methods of defining overheating; indicating that much more work is needed in this area. 

Sameni et al. (2015) for example, present the results of an investigation of indoor temperatures 

monitored in 23 social homes in Coventry (UK) constructed to the German Passivhaus standard. They 

identified significant incidences of overheating, with two thirds of dwellings exceeding the Passivhaus 

overheating criteria during the summer season. These findings are supported by the results of 

monitoring studies in Passivhaus certified housing projects in Denmark (Larsen et al., 2012; Larsen 

and Jensen, 2011) and Wales (Ridley et al., 2014). In Finland however, summer monitoring of 9 low 

energy dwellings found generally satisfactory temperatures indoors. It should be noted that these 

homes were equipped with permanent external shading and a cooling system to limit the risk of 

overheating (Kähkönen et al., 2015).  

 
(Insert Table 1 here) 
 

In Cheshire, monitoring of 4x airtight masonry dwellings by Wingfield et al. (2008) identified mean 

indoor temperatures of 25°C during the month of July, with peak temperatures exceeding 30°C in 

some cases. Monitoring of indoor temperature levels in 15 low energy dwellings constructed in the 

late 1980s in Milton Keynes found that the bedroom and living room temperatures were consistently 

above external temperatures throughout the year, which may have resulted in overheating during the 

summer months (Summerfield et al., 2007).  

Evidence of overheating of the general UK housing stock has also been observed.  In a study 

by Lomas and Kane (2013), measurements of internal summertime temperatures in 268 typical 



dwellings in Leicester found approximately 15% of bedrooms exceeded the recommended maximum 

of 26°C for more than 30% of summer night time hours, during a generally cool summer. 

Furthermore, an analysis of adaptive thermal comfort methods found that occupants tended not to 

apply these in practice to achieve comfortable temperatures as anticipated by the BS EN 15251 

standard (albeit at low temperatures), which suggests more work may be required to examine the 

applicability of this standard in a domestic context. In a national survey of overheating risk in 207 

English homes, Beizaee et al. (2013) found 21% of bedrooms exceeded the recommended maximum 

temperature of 26°C for more than 5% of night time hours, with bedrooms of modern homes 

significantly warmer. They conclude, ‘The incidence of warm bedrooms in modern homes, even 

during a cool summer, is of concern, especially as there is a strong trend towards even better insulation 

standards in new homes and the energy-efficient retrofitting of existing homes’ (Beizaee et al., 2013; 

p. 1).  

Based on the results of a survey of end-users experiences in nearly zero-energy dwellings in 

the Netherlands where 49% of respondents stated that they found the bedroom too hot in summer, 

Mlecnik and colleagues (2012) call for improvements to summer comfort conditions in future nearly-

zero energy homes. This is supported by the results of similar surveys relating to energy efficient 

dwellings, with concerns of summertime overheating expressed by both building occupants (Behar 

and Chiu, 2013; Holopainen et al., 2015; Knudsen et al., 2012; Kotol, 2012; Yakubu, 1996) and 

building professionals (Davis and Harvey, 2008; Gul et al., 2012). Evidence suggests occupants of low 

energy dwellings are often more comfortable during the winter season compared to summer (McGill et 

al., 2015; Mlecnik et al., 2012; Schnieders and Hermelink, 2006).  

An evaluation of occupants’ experiences of low energy and conventional dwellings in Sweden 

found that when indoor summer temperatures exceeded comfortable levels, occupants considered or 

even used supplemental cooling to achieve thermal comfort (Zalejska-Jonsson, 2012). In one low 

energy housing project evaluated, over 35% of respondents stated that they used supplementary 

cooling almost every day during summer. These findings are concerning as this would suggest an 

increased energy demand, which highlights the need for further investigation of summertime 

temperature levels in low energy homes.  



A large number of studies have explored the risk of overheating in UK homes using building 

simulation tools, to examine future climate scenarios and evaluate the potential impact of mitigation 

strategies, input data, occupant behaviour, building characteristics and adaption strategies (Jenkins et 

al., 2013; Mavrogianni et al., 2012; Mavrogianni et al., 2014; Peacock et al., 2010; Porritt et al., 2012; 

Taylor et al., 2014; Vardoulakis et al., 2015; Williams et al., 2013). Whilst building simulation can be 

very useful, there is a pressing need to identify the prevalence of overheating from live data, to ensure 

the protection of occupant health and wellbeing, to provide real world evidence and to support the call 

for concerted action from policy makers and the UK construction industry as a whole.   

Methods 

Data collection 

Temperature data was acquired from the BPE Phase 2 domestic projects through use of the online 

central data repository, EMBED (www.getembed.com). Monitoring of Phase 2 projects typically 

spanned a two year period (2012-2014), during which time monitoring equipment was installed in the 

dwellings to collect data at 5 minute intervals, in accordance with the BPE programme protocol. 

Recorded data was uploaded to the open data repository. Cleaning of the data was performed within 

the EMBED platform, where data greater than two standard deviations from the median was classified 

as ‘in error’ and was not used in the calculations. Data checking was then carried out by filtering the 

data to identify any major discrepancies or sensor failures.  

The programme protocol required monitoring of the main living area and main bedroom in 

each home, accompanied by a series of other sensors and meters to measure energy performance and 

indoor environmental quality. In practice, consistently-recorded temperature data were not available 

for all projects, and since monitoring was undertaken at different times for each project, the dataset is 

quite diverse. Nevertheless, it represents a substantial body of information from which important 

insights can be gathered.  

The dwellings included in this study represent a variety of housing types, including flats 

(n=18), semi-detached (n=15), terraced (n=12) and detached homes (n=8). Tenure types included 

social rent (n=21), mixed (n=14), private (n=12), shared ownership (n=3) and leasehold (n=3). The 

http://www.getembed.com/


majority of dwellings were of timber frame construction (n=33), followed by masonry (n=10), 

concrete (n=4), SIPs (n=4) and steel frame (n=2). Airtightness levels were generally low, ranging from 

0.26-9.10 m3/h/m2 @50 Pa, with a mean of 3.4 m3/h/m2 @50 Pa (SD = 2.1). Occupancy density 

ranged from 18 to 173 m3 floor area per person, with a mean of 43 (SD = 26). Dwellings were located 

in Scotland (n=20), East Midlands (n=11), South East (n=6), South West (n=5), Wales (n=4), London 

(n=3), Yorkshire and Humber (n=2) and Northern Ireland (n=2).  

 (insert figure 1) 

Data analysis 

Exceedance of the Passivhaus and CIBSE thresholds (annual occupied hours) and adaptive comfort 

criteria were calculated from the raw data downloaded from the EMBED site and analysed using 

Excel. Following data exclusion (four homes), 53 households were found to have consistent and 

reliable data. Occupied hours were based on assumptions from previous studies (Beizaee et al., 2013; 

Sharpe et al., 2014b; Wright et al., 2005) for bedrooms 23:00-07:00 h and 07:00-23:00 h for living 

room spaces. Statistical analysis was performed using SPSS (version 22). Prior to analysis data 

distributions were checked for normality and outliers.  Mann-Whitney U tests, Kruskal-Wallis, 

Student's t-tests and Chi-square tests were used to examine differences between groups and across 

variables.   

Analysis of the data to evaluate seasonal conditions was performed using the descriptive 

statistics generated within the EMBED platform. This was limited to three months during 2013, 

representative of winter, spring and summer conditions (February, April and August). Only datasets 

that were complete for each month were included in the analysis.  

To identify the prevalence of overheating using the adaptive comfort approach, historic 

weather data from near-by airports were used for each site to calculate the exponentially weighted 

outdoor running mean temperature from 1st May to 30th September 2013, using the following 

equations: 

𝑇𝑇𝑟𝑟𝑟𝑟 = (𝑇𝑇𝑜𝑜𝑜𝑜−1 + 0.8 𝑇𝑇𝑜𝑜𝑜𝑜−2 + 0.6 𝑇𝑇𝑜𝑜𝑜𝑜−3 + 0.5 𝑇𝑇𝑜𝑜𝑜𝑜−4 + 0.4 𝑇𝑇𝑜𝑜𝑜𝑜−5 + 0.3 𝑇𝑇𝑜𝑜𝑜𝑜−6 + 0.2 𝑇𝑇𝑜𝑜𝑜𝑜−7) / 3.8    (1) 



𝑇𝑇𝑟𝑟𝑟𝑟 = (1− 𝛼𝛼) 𝑇𝑇𝑜𝑜𝑜𝑜−1  +  𝛼𝛼 𝑇𝑇𝑟𝑟𝑟𝑟−1                                                                                                        (2) 

Where: 

 𝑇𝑇𝑜𝑜𝑜𝑜−1 = Daily mean external temperature for previous day 

𝑇𝑇𝑜𝑜𝑜𝑜−2 = Daily mean external temperature for the day before, and so on 

𝑇𝑇𝑟𝑟𝑟𝑟−1 = Exponentially weighted running mean from the previous day 

𝛼𝛼 = 0.8 

 

BS EN 15251 defines overheating according to the temperature difference (∆T) between the actual 

operative temperature and the maximum acceptable temperature, which is rounded to the nearest 

whole degree (K value). CIBSE TM 52 (2013) suggests the following maximum acceptable 

temperature ranges depending on four categories, as described below. For the purpose of this study, 

overheating was defined using Category II for normal expectation for new buildings and renovations.  

Category I (High level of expectation for spaces occupied by very sensitive and fragile persons) 

upper limit  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (°C) = 0.33 𝑇𝑇𝑟𝑟𝑟𝑟 + 18.8 + 2  

lower limit  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (°C) = 0.33 𝑇𝑇𝑟𝑟𝑟𝑟 + 18.8 - 2 

Category II (Normal expectation for new buildings and renovations) 

upper limit  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (°C) = 0.33 𝑇𝑇𝑟𝑟𝑟𝑟 + 18.8 + 3  

lower limit  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (°C) = 0.33 𝑇𝑇𝑟𝑟𝑟𝑟 + 18.8 – 3 

Category III (A moderate expectation used for existing buildings) 

upper limit  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (°C) = 0.33 𝑇𝑇𝑟𝑟𝑟𝑟 + 18.8 + 4  

lower limit  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (°C) = 0.33 𝑇𝑇𝑟𝑟𝑟𝑟 + 18.8 – 4 

Category IV (Value outside the criteria- only acceptable for limited periods) 

upper limit  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (°C) = 0.33 𝑇𝑇𝑟𝑟𝑟𝑟 + 18.8 + 5  

lower limit  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 (°C) = 0.33 𝑇𝑇𝑟𝑟𝑟𝑟 + 18.8 – 5 

 



The adaptive method classes a building or room as overheating if it fails any two of the following 

three criteria:  

i) Criterion 1 

The first criteria refers to the number of hours (𝐻𝐻𝑒𝑒) during which the temperature difference between 

operative temperature and maximum acceptable temperature (∆T) is greater than or equal to one 

degree (K), and states that this should not be more than 3 per cent of occupied hours between 1st May 

to 30th September.  

ii) Criterion 2 

Criterion two addresses the severity of overheating within any one day. To meet this criterion, the 

daily limit for weighted exceedance ( 𝑊𝑊𝑒𝑒) during occupied hours should be less than or equal to 6. The 

daily weighted exceedance is calculated using the following equations: 

𝑊𝑊𝑒𝑒 = (∑ℎ𝑒𝑒) × 𝑊𝑊𝑊𝑊                                                                                                                                              (3)   

𝑊𝑊𝑒𝑒 =  (ℎ𝑒𝑒0 × 0) +  (ℎ𝑒𝑒1 × 1) +  (ℎ𝑒𝑒2 × 2) +  (ℎ𝑒𝑒3 × 3) +  (ℎ𝑒𝑒4 × 4)                                                 (4) 

 

Where: 

𝑊𝑊𝑊𝑊 = ∆𝑇𝑇   (If  ∆𝑇𝑇 ≤ 0,𝑊𝑊𝑊𝑊 = 0) 

ℎ𝑒𝑒𝑒𝑒 = the period of time (h) when 𝑊𝑊𝑊𝑊 = 𝑦𝑦 

The guideline value for the weighted exceedance (𝑊𝑊𝑒𝑒) of 6, as described in CIBSE TM52, is based on 

a room with an occupancy of 8 hours. This is in line with the assumed occupancy in bedrooms (23:00-

07:00), however may need adjusted for living rooms with higher hours of occupancy (Sameni et al., 

2015). For this reason, a weighted exceedance level of 12 was used for living rooms, which is 

proportional to the increased assumed occupancy of 16 hours (07:00-23:00), in comparison to the 

standard assumed occupancy of 8 hours.  



iii) Criterion 3 

The final criterion sets an absolute maximum temperature difference (∆𝑇𝑇)  of 4 degrees (K), above 

which normal adaptive measures are expected to be insufficient to restore occupant comfort.  

 

Results 

Prevalence of overheating using Passivhaus and CIBSE criteria  

Figure 2 shows the percentage of hours temperatures exceeded the CIBSE and Passivhaus overheating 

threshold of 25°C. This is revealing in many ways. First, it is evident that a large proportion of 

monitored bedrooms (57%) and living rooms (75%) exceeded the CIBSE overheating threshold of 5% 

annual ‘occupied’ hours >25°C. Correspondingly, the Passivhaus overheating threshold of 10% annual 

hours >25°C was exceeded in 38% of bedrooms and 58% of living rooms respectively.  

(insert figure 2a here)   

(insert figure 2b here) 

Using the CIBSE threshold of 1% of annual occupied hours exceeding 28°C (see figure 3b), 25% of 

living rooms were found to be overheating. This prevalence was higher for living rooms of lightweight 

construction (32%, n=37), compared to heavyweight construction (6%, n=16). 62% of bedrooms were 

classified as overheating, based on the CIBSE threshold of 1% annual occupied hours exceeding 26°C 

(figure 3a).  

(insert figure 3a here) 

(insert figure 3b here) 

In some homes (such as H11_a), bedroom or living room temperatures exceeded 25°C for more than 

50% of annual occupied hours, indicating significant problems with overheating. Figure 4 illustrates 

the temperature traces of this home during the month of August.   

(insert figure 4 here) 



The prevalence of living room and bedroom overheating relative to the building characteristics is 

presented in Table 2. There were no significant differences in living room overheating prevalence 

across dwelling type, Passivhaus certification, ventilation type, or region; however there were 

significant differences across construction type regarding the prevalence of overheating based on the 

percentage of annual occupied hours exceeding 25°C (p= 0.026) and 28°C (p=0.029).  

Unlike the results of previous studies (Lomas and Kane, 2013; Beizaee et al., 2013), a tendency 

towards overheating in flats was not observed, based on the Passivhaus and CIBSE thresholds. Of the 

Passivhaus certified dwellings monitored, 38% of bedrooms and 53% of living rooms exceeded the 

Passivhaus threshold for overheating (see figure 2).  

(insert table 2 here) 

Seasonal temperature variation 

Analysis of August temperature data revealed widespread problems with summertime overheating. 

Specifically, average temperatures during August exceeded 25°C in 27% of living rooms and 20% of 

bedrooms monitored. In 6% of living rooms monitored, August temperatures remained consistently 

above 25°C. Peak August temperatures exceeded 28°C in 27% of living rooms and 18% of bedrooms. 

Incidences of overheating however were not limited to the summer season, with temperatures 

exceeding 28°C in 15% of living rooms during February and 21% of living rooms during April. It is 

interesting to note that despite the majority of dwellings demonstrating temperature distinctions 

between seasons, some dwellings appeared to maintain consistently high temperatures year round, 

with average February and/or April temperatures exceeding August temperatures in some cases (see 

figure 5).   

(insert figure 5 here) 

Overall, mean living room temperatures were lowest in February (21.6°C) and highest in August 

(24.0°C). It is important to note that there did not appear to be a considerable temperature difference 

between living rooms and bedrooms during February, April or August months, suggesting 

homogeneous conditions throughout the home (see Table 3).  



For the sample as a whole, there were no significant differences in living room temperature 

across dwelling type. However, within the MVHR group, there were significant differences observed 

in temperature by dwelling type for February (maximum p=0.048, range p=0.025) and August 

(minimum p=0.004, mean p=0.013, range p=0.025). The trend was as expected, with the highest 

August minimum and mean temperatures in flats, followed by terraced, semi-detached and detached 

homes. For the non-MVHR group, significant differences were observed in temperature across 

dwelling type for February and August range (p=0.025).  

A comparison between lightweight (timber and SIPS) and heavyweight (concrete, steel and 

masonry) construction found significant differences in living room temperatures during February (max 

p=0.001, mean p=0.019, range p=<0.000), April (max p=<0.000, mean p=0.028, range p=0.002), and 

August (minimum p=0.002, range p<0.000). However, all monitored homes in Scotland and Northern 

Ireland were of timber frame construction, which is likely to have had a significant impact on the 

results.  

For region, there was a decrease in maximum temperature depending on latitude (northern 

regions with highest maximum temperatures), which was most pronounced during February and April 

months. Dividing the regions between North (Scotland, Northern Ireland) and South (Yorkshire & 

Humber, East Midlands, Wales, London, South East and South West), higher mean and range of 

temperatures during February, April and August were found in Northern homes (p<0.01), however this 

may be a consequence of construction type (since all homes in the North were of timber frame 

construction), rather than location.  

Indoor temperatures in homes with and without MVHR 

Statistical analysis of the temperature data revealed a number of important differences between homes 

with and without Mechanical Ventilation with Heat Recovery (MVHR) systems. First, average 

temperatures were significantly higher in dwellings without MVHR systems during February (living 

room p <0.05) and April (living room p<0.001, bedrooms p<0.05), however higher in homes with 

MVHR systems during August (bedroom 1 p<0.05) - see Table 3. Peak temperatures were 

significantly higher in Non-MVHR homes compared to MVHR homes, with this trend most notable in 



living rooms during February (p<0.001) and April (p<0.001). It is important to note however that there 

was a higher proportion of Non-MVHR dwellings located in Scotland, which may have influenced the 

results (see table 4).  

(insert table 3) 

(insert table 4) 

The range of temperatures observed in each home indicates a tendency for homes with MVHR 

systems to have greater temperature stability. This was evident during all seasons, however was most 

significant during April (living room and bedroom 1 p<0.001, bedroom 2 p<0.05) and August (living 

room p<0.001, bedrooms p<0.01), see for example, figure 6. Minimum temperatures were 

significantly higher in homes with MVHR systems during August (living room p<0.001, bedrooms 

p<0.05) and April (living room p<0.001), however no significant difference was observed during the 

month of February.  

(insert figure 6) 

Average hourly temperature profile 

Average hourly temperature profiles for the month of August (2013) for MVHR and Non-MVHR 

dwellings revealed interesting insights regarding the time of day overheating occurred in bedroom and 

living room spaces and the relationship between ventilation strategy and indoor temperatures (see 

Figure 7a and 7b). Importantly, a clear distinction can be made between the average hourly 

temperature profiles of homes ventilated with MVHR systems compared to those without MVHR, 

with the latter demonstrating higher hourly temperatures during the month of August. This distinction 

was most evident between the hours of 08:00 and 13:00, and was more pronounced in the living room 

in comparison to the bedroom.  

(insert figure 7a) 

(insert figure 7b) 



Overall, August temperatures were generally lowest around 07:00-09:00, with the majority of peak 

temperatures occurring between 17:00-18:00. The variation in average temperatures throughout the 

day appeared much greater in living rooms compared to bedrooms.  

 

Adaptive method 

Figure 8 illustrates the percentage of occupied hours living room temperatures exceeded the adaptive 

comfort upper limit from the 1st May to the 30th September 2013. Overall, 30% of living rooms 

exceeded the adaptive comfort overheating threshold (criterion one) of 3 per cent of occupied hours 

with a temperature difference (∆T) greater than one degree K. In addition, 20% of living rooms (n=9) 

failed criterion three, where temperatures exceeded the adaptive comfort absolute maximum 

temperature difference of 4 degrees (K) during this period.  

(insert figure 8) 

The daily weighted exceedance values between the 1st of May and the 30th of September 2013 are 

presented in figure 9. Overall, 49% of living rooms exceeded the daily weighted exceedance guideline 

level of 12 at least once during the summer monitoring period.  

(insert figure 9) 

Discussion 

This study set out with the aim of identifying the prevalence of overheating in new-build energy 

efficient dwellings using temperature data acquired as part of the Innovate UK BPE programme. 

Whilst it is clear that overheating is a recognised issue in terms of comfort in modern airtight housing 

(Holopainen et al., 2015; Knudsen et al., 2012; Mlecnik et al., 2012; Rohdin et al., 2014), there is a 

lack of physical evidence regarding its prevalence.  This data therefore provides an evidential basis for 

this.  

Analysis of the prevalence of overheating based on the CIBSE and Passivhaus criteria found 

that a significant proportion of the homes were overheating in practice; which is in agreement with the 



findings of previous studies (as outlined in Table 1) and with the findings using the adaptive model. It 

should be noted however that less homes were categorised as overheating using the adaptive method 

compared to static methods (see table 5). This however may be attributed in part to differences 

between the time period under examination; specifically annual occupied hours for the Passivhaus and 

CIBSE criteria compared to summertime occupied hours (between May and September) for the 

adaptive model.  

 

(insert table 5) 

 

Whilst the homes in this study were not selected at random and may not be representative of all new-

build energy efficient housing in the UK, they do represent emerging standards and methods of 

construction and therefore provide a useful insight into the potential risk of overheating in exemplary 

housing. In particular, the high prevalence of overheating in Passivhaus certified dwellings highlights 

the need for further examination of the causes of overheating in a residential context in the UK. 

A key issue however relates to the way in which overheating is defined. Although this study 

used recognised definitions of overheating, the lack of measured occupancy data was a particular 

limitation. The potential variability between actual and estimated occupied hours may be more 

significant in living rooms compared to bedrooms. In bedrooms, it can be reasonably assumed that the 

room may be occupied between the hours of 23:00-07:00. In living rooms however, occupancy will 

depend on a multitude of factors that may be difficult to predict in practice and will vary in any case.  

While temperatures were generally higher in living rooms, bedrooms may be considered at 

greater risk given the limited adaption of occupants while asleep, the inherent nature, intensity and 

duration of exposure and the potential implication on sleep quality (Okamoto-Mizuno and Mizuno, 

2012). For this reason, the use of adaptive criteria for bedrooms is not recommended. 

The occurrence of overheating during February and April months indicates that the problem is 

not entirely due to external temperature and solar gains, but is also a problem of internal gains (either 

active heating or passive incidental gains); or an inability to reduce heat (insufficient ventilation 

provision, or lack of use of such provision). The lack of temperature distinction between seasons 



apparent in some homes supports this premise and demonstrates a potential energy component of 

overheating in modern housing. This may be attributed to a number of factors associated with energy 

efficient housing, including; greater occupant expectations (Herring and Roy, 2007; Howden-

Chapman et al., 2007), improved fabric performance (with no subsequent change in heating 

behaviour), oversized and/or poor control of heating systems (Liao et al., 2005) and low ventilation 

rates in practice (Sharpe et al., 2014a; Sullivan et al., 2013). 

Similarly, the lack of temperature distinction between living rooms and bedrooms indicates a 

trend towards homogeneous temperature conditions (or thermal monotony (Chappells and Shove, 

2005)) within the home environment. This has implications for building modelling, especially 

Standard Assessment Methodology (SAP) models for energy rating of new homes in the UK, which 

assume design temperatures of 21°C for living rooms and 18°C for the rest of the home (DECC, 

2012). In the homes with MVHR systems, homogeneous indoor conditions may be attributed to the 

‘whole house’ ventilation concept, however this tendency was also observed in Non-MVHR homes.  

The high average and peak temperatures observed during August in both living rooms and 

bedrooms indicate a significant issue with summertime overheating. It is important to note that 

analysis of seasonal variation was carried out for the whole month (i.e. not occupied hours only), 

therefore is likely to include periods of time where the rooms were unoccupied. 

A key finding to emerge from the study was the observed relationship between indoor 

temperature conditions and ventilation methods. The significantly higher average and peak 

temperatures observed in Non-MVHR homes during February and April months may be explained by 

lower levels of ventilation, indicated through higher levels of carbon dioxide in these homes (Sharpe et 

al., 2016).  

During August however, mean temperatures were significantly higher in homes with MVHR 

systems (bedroom 1). An examination of average hourly temperatures during the month of August 

found consistently higher temperatures in MVHR homes compared to Non-MVHR homes, particularly 

between the hours of 08:00 and 13:00. Higher August temperatures in MVHR homes may be 

attributed to a lack of a summer by-pass mode in some MVHR units, or the deactivation of MVHR 

systems by building occupants during summer; resulting in naturally ventilated houses (through 



intermittent window opening), without any provision for background ventilation. Likewise, the higher 

levels of airtightness expected in MVHR homes may also have influenced the results.  

There are however a number of caveats to be considered when interpreting these results. 

Firstly, the majority of Non-MVHR homes were located in Scotland, while a higher proportion of 

MVHR homes were located in the south (East Midlands). Similarly, the sample sizes between MVHR 

and Non-MVHR homes were not even and there were a greater proportion of dwellings of timber 

frame construction within the sample as a whole.  

However, while previous work has evidenced problems with ventilation and indoor air quality 

in modern homes (Crump et al., 2009; Howieson et al., 2013; Sullivan et al., 2013), overheating is 

often a component of this. In some instances, heat reduction through ventilation is a low-cost activity 

(for example, summer ventilation of solar gain, or night-time ventilation under ‘free-running’ mode 

(Ucci et al., 2011), however during the heating season, venting of incidental gains from energy sources 

(space and water heating, electrical items) will likely incur an energy penalty. 

What was clear was the tendency for homes with MVHR systems to have greater temperature 

stability, particularly during April and August. This, in combination with significantly higher 

minimum temperatures observed in homes with MVHR systems (during April and August) may be of 

significant concern in situations where occupants are exposed to consistently high temperatures 

indoors. Moreover, although greater stability of internal temperatures may be perceived as beneficial 

during the heating season, a growing body of research suggests that variable indoor temperatures may 

in fact, be beneficial for health (van der Lans et al., 2013; van Marken Lichtenbelt, 2015; Wijers et al., 

2009). Indeed, the drive towards the achievement of ‘neutral’ indoor environments may be perceived 

as an irrational and senseless goal. As suggested by Brager and de Dear (2003, p.178),  

‘the simple goal of creating ‘thermal neutrality’ in buildings hinders the possibility of creating 

indoor environments that are richer in their experiential qualities than neutrality, and that have 

the ability to provide valuable sensory stimulation’. 

Conclusions 



The study identifies that, by generally accepted measures, overheating is common within these 

building types. Overall, 58% of living rooms and 38% of bedrooms recorded temperatures greater than 

25°C for more than 10% of the year. Whilst the sample of housing in the study is not statistically 

representative, the dwellings do represent a large number of case studies of contemporary housing, and 

the nature of overheating is therefore a cause for concern. Overheating, particularly outwith the 

summer, may also be an important component of the performance gap for energy use that is emerging 

in contemporary housing. 

The nature and scale of the causes are less clear. In any case, there are likely to be a number of 

possible causes, but the nature of overheating across different geographical locations and seasons 

suggests that this is not just a function of external conditions. Whilst there are a range of possible 

causes, the need for ventilation to act as a mitigating factor is clear and it would appear that there is 

insufficient provision. 

The high prevalence of overheating supports the need for concerted action to address the risk 

of overheating in modern energy efficient homes. While there is some indication of changes in 

acceptable comfort or high comfort expectations (evidenced through high mean temperatures during 

the heating season), this will incur an energy penalty and is likely to contribute to discrepancies 

between ‘as designed’ and ‘as built’ energy performance. Likewise, high incidences of overheating 

during the summer season are likely to increase energy expenditure through a greater demand for air-

conditioning.    

The intrinsic relationship observed between indoor temperature conditions and ventilation 

demonstrates the fundamental importance of internal gains (such as appliances and hot water systems) 

in homes built to increasingly high levels of insulation and airtightness. This also supports the need for 

alternative ventilation solutions during the summer season in homes with MVHR systems to ensure 

adequate provision of background ventilation (where systems may be disabled) and effective purge 

ventilation for peak lopping. This should be addressed in future revisions of Approved Document Part 

F of UK Building Regulations.  

Moreover, the risks of overheating and mitigating measures need to be better addressed in 

design. Most design tools are predicated on reductions of energy consumption, and provide no 



guidance on overheating and ventilation for IAQ. Even more detailed tools such as Passivhaus 

Planning Package (PHPP) need to take cognisance of UK house standards, and consequences of 

incidental gains. 

Further work is needed to establish a consistent and validated method of determining the 

prevalence of overheating in a domestic context, based on conclusive evidence of the impact of 

exposure to high indoor temperatures on health; as opposed to a primary focus on comfort. Similarly, 

there remains a need to establish the effect on the hygroscopic environment, where high temperatures 

have the potential to mask high indoor moisture content through low observed relative humidity 

levels. This may be particularly problematic during rapid cooling. Finally, work is required to 

establish the impact of high indoor temperatures on the building fabric (such as drying, shrinkage and 

airtightness) in new-build energy efficient housing.  
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Table 1. Prevalence of overheating from monitoring studies of low energy dwellings in Europe 

Country Dwelling 
description 

Monitoring 
period/location 

Summary of findings Source 

Skibet, 
Denmark 

10x 
Passivhaus 

Oct 2008- 2010 
in four 
locations 

July 2009- temperatures exceeded 26°C for 40% of time, 
increasing to 60% during July 2010. Overheating defined 
by criteria set out in DS/CEN/CR1752 

(Larsen and 
Jensen, 2011) 

Wales, UK 2x 
Passivhaus, 
detached 

May 2012- 
April 2014- 
living rooms 
and bedrooms 

Summer bedroom temperatures exceeded 26°C for 8.4% 
(dwelling 1) and 6.6% (dwelling 2) of time. Bedroom and 
living room temperatures failed PHPP overheating criteria 
(25°C >10%) in both homes. Overheating defined by 
CIBSE (2006), PHPP & BS EN 15251:2007 

(Ridley et al., 
2014) 

Coventry,  
UK 

23x 
Passivhaus 
units, (18x 
flats, 5x 
terraced)   

Aug- Sept 
2011, July- 
Aug 2012, 
May- Aug 
2013, living 
rooms only 

More than two thirds of flats exceeded Passivhaus 
overheating criteria. Using adaptive thermal comfort 
model, prevalence of overheating was lower for normal 
occupants but higher for vulnerable occupants. 
Overheating defined by adaptive model BS EN 15251 & 
PHPP. 

(Sameni et al., 
2015) 

Finland 

 

7x low-
energy 
dwellings,  
2x low 
energy flats 

June 2012- 
Sept 2013, 
living room, 
bedroom and 
outside 

Summer (June – Aug 2013) mean air temperatures 
between 21.9- 23.8°C recorded. Peak temperatures ranged 
from 23.9°C to 26.4°C. The low energy dwellings 
however were equipped with permanent external solar 
shading and a cooling system (heat pump/ circulation of 
cooling liquid in the ground).  

(Kähkönen et 
al. 2015) 

Milton 
Keynes,  
UK 

15 ‘low 
energy’ 
dwellings 
(built late 
1980s) 

Feb 2005- July 
2006, living 
rooms and 
bedrooms 

Monitored bedroom and living room temperatures were 
maintained above outside temperatures throughout the 
year, which may have resulted in overheating during the 
summer season. Peak temperature data not available.  

(Summerfield et 
al. 2007) 

Cheshire,  
UK 

4x airtight 
masonry 
dwellings  

July-Aug 2006,  
5 different 
locations  

Mean internal temperatures of approximately 25°C 
reported in all four dwellings during the month of July. 
However peak internal temperatures exceeded 30°C in 
monitored dwellings. 

(Wingfield et 
al. 2008) 

Pays-de-la-
Loire,  
France 

2x energy 
efficient 
detached 
dwellings 

June 2009- Jan 
2012, bedroom 
and kitchen/ 
living room 

During August 2010, kitchen/living room temperatures 
exceeded 27°C for 54% of the time in House B and 31% 
in House E. Similarly, during August 2011 and 2012, 
House B exceeded 27°C for 21% and 41% of the time.  

(Derbez et al. 
2014) 

South-East 
England 

6x low-
carbon 
housing, 
terraced/ 
detached 

Jan- Dec 2013, 
living room 
and bedrooms 

Summer living room temperatures in 4 out of 6 dwellings 
exceeded the CIBSE overheating criteria of >28°C for 
more than 1% occupied hours. Bedroom temperatures 
exceeded 26°C for more than 1% of occupied hours in all 
six dwellings. 

Gupta and 
Kapsali, 2016 

Three sites 
in Germany, 
Austria and 
Switzerland 

>100 
dwellings 
built to 
Passivhaus 
standard 

May-Aug 
2001, average 
house specific 
temperatures 
reported 

Results from the CEPHEUS project found mean summer 
indoor temperatures exceeded 25°C in 17.5% of 
dwellings. Overall, temperatures exceeded 27°C for >5% 
of time (hourly mean values) in 21% of monitored 
dwellings. In the development in Austria, temperatures 
exceeded 28°C for > 5% of time in 16% of homes. 
Authors suggest comfortable indoor conditions. 

(Schnieders and 
Hermelink, 
2006) 

Denmark 3x detached 
Passivhaus 
dwellings 

June-Aug 
2009, living 
room, 
bedroom, 
bathroom 

Thermal indoor environment assessed using 
DS/CEN/CR1752. Measurement results demonstrate 
excessive indoor temperatures in all three dwellings, with 
one dwelling exceeding comfort requirements (Cat B), 
with an average summer temperature of 26.6°C. 

(Larsen et al. 
2011) 



Table 2. Comparison of overheating prevalence and building characteristics 

 Living room Bedroom 1  
n (total) >5% annual 

occupied 
hours >25°C 

>10% annual 
occupied hours 
>25°C 

>1% annual 
occupied   
hours >28°C 

n (total) >5% annual 
occupied  
hours >25°C 

>10% annual 
occupied  
hours >25°C 

>1% annual 
occupied   
hours >26°C 

All dwellings 53 40 (75%) 31 (58%) 13 (25%) 55 31 (56%) 20 (36%) 33 (60%) 
Dwelling type         
Flat 18 14 (78%) 11 (61%) 4 (22%) 18 8 (44%) 7 (39%) 8 (44%) 
Terraced 12 10 (83%) 7 (58%) 3 (25%) 13 9 (69%) 4 (31%) 11 (85%) 
Semi-detached 15 10 (67%) 7 (47%) 3 (20%) 15 9 (60%) 5 (33%) 9 (60%) 
Detached 8 6 (75%) 6 (75%) 3 (38%) 9 5 (56%) 4 (44%) 5 (56%) 
Construction         
Timber 33 26 (79%) 20 (61%) 10 (30%) 36 19 (52%) 13 (36%) 21 (58%) 
SIPs 4 3 (75%) 3 (75%) 2 (50%) 4 4 (100%) 1 (25%) 4 (100%) 
Total lightweight 37 29 (78%) 23 (62%) 12 (32%) 40 23 (58%) 14 (35%) 25 (63%) 
Concrete 4 4 (100%) 4 (100%) 1 (25%) 2 2 (100%) 2 (100%) 2 (100%) 
Masonry 10 5 (50%) 2 (20%) 0 (0%) 11 5 (46%) 4 (36%) 5 (46%) 
Steel w. brick & block 2 2 (100%) 2 (100%) 0 (0%) 2 1 (50%) 0 (0%) 1 (50%) 
Total heavyweight 16 11 (69%) 8 (50%) 1 (6%) 15 8 (53%) 6 (40%) 8 (53%) 
Standard         
Passivhaus 15 10 (67%) 8 (53%) 3 (20%) 16 8 (50%) 6 (38%) 8 (60%) 
Non-Passivhaus 38 30 (79%) 23 (61%) 10 (26%) 39 23 (59%) 14 (36%) 25 (50%) 
Ventilation         
MVHR 35 25 (71%) 19 (54%) 8 (23%) 37 21 (57%) 13 (35%) 24 (65%) 
Non-MVHR 18 15 (83%) 12 (67%) 5 (28%) 18 10 (56%) 7 (39%) 9 (50%) 
Region         
Scotland 20 16 (80%) 14 (70%) 7 (35%) 21 12 (57%) 10 (48%) 11 (53%) 
N Ireland 2 2 (100%) 1 (50%) 0 (0%) 2 1 (50%) 1 (50%) 1 (50%) 
Total North 22 18 (81%) 15 (68%) 7 (32%) 23 13 (57%) 11 (48%) 12 (52%) 
Yorkshire & Humber 2 2 (100%) 1 (50%) 1 (50%) 2 2 (100%) 1 (50%) 2 (100%) 
E Midlands 11 8 (73%) 5 (46%) 3 (27%) 12 7 (58%) 2 (17%) 10 (83%) 
Wales 4 2 (50%) 1 (25%) 0 (0%) 4 2 (50%) 0 (0%) 2 (50%) 
London 3 3 (100%) 3 (100%) 1 (33%) 3 1 (33%) 1 (33%) 1 (33%) 
S East 6 4 (67%) 4 (67%) 1 (17%) 6 4 (67%) 4 (67%) 4 (67%) 
S West 5 3 (60%) 2 (40%) 0 (0%) 5 2 (40%) 1 (20%) 2 (40%) 
Total South 31 22 (71%) 16 (52%) 6 (19%) 32 18 (56%) 9 (33%) 21 (66%) 



 

Table 3. Comparison of indoor temperatures in MVHR and Non-MVHR dwellings 

* p < 0.05, ** p < 0.01, *** p < 0.001 
SD = standard deviation; IQR = interquartile range 
T-tests were used for all comparisons except for median temperature range, using Mann-Whitney U 

Statistic Living room Bedroom (1) Bedroom (2) 
All MVHR Non MVHR All MVHR Non MVHR All MVHR Non MVHR 

February 2013          
n 53 17 36 51 17 34 14 5 9 
Minimum 11.4 12.0 11.4 8.1 8.1 11.0 15.1 15.1 17.2 
Maximum 33.4 30.0 33.4 31.0 31.0 29.8 29.4 29.4 27.2 
Mean (SD) 21.6 (2.4) 21.0 (2.2)* 22.8 (2.3)* 20.6 (3.1) 20.1 (3.1) 21.5 (3.2) 21.4 (2.4) 20.9 (2.8) 22.2 (1.5) 
Mean Min (SD) 18.5 (2.8) 18.7 (2.4) 18.2 (3.5) 17.9 (3.1) 18.0 (2.8) 17.7 (3.8) 18.2 (1.9) 17.9 (2.1) 18.7 (1.4) 
Mean Max (SD) 24.5 (3.5) 23.2 (3.1)*** 27.3 (2.5)*** 23.0 (3.9) 22.1 (3.9)* 24.6 (3.5)* 24.1 (3.2) 23.3 (3.6) 25.5 (2.1) 
Median range 
(IQR) 

4.8 (6.1) 3.8 (3.9)*** 8.8 (4.1) *** 4.1 (4.6) 3.2 (3.0) ** 7.2 (4.7)** 5.8 (3.3) 4.5 (2.3) 7.0 (4.3) 

April 2013          
n 50 15 35 49 15 34 15 6 9 
Minimum 10.9 10.9 16.4 10.4 10.4 14.4 13.9 13.9 15.8 
Maximum 31.4 29.0 31.4 29.2 28.2 29.2 29.2 25.6 29.2 
Mean (SD) 21.8 (1.9) 21.3 (1.9)*** 23.0 (1.0)*** 21.3 (1.8) 20.9 (1.8)* 22.1 (1.7)* 21.2 (2.1) 20.2 (1.7)* 22.7 (1.6)* 
Mean Min (SD) 18.4 (2.5) 18.6 (2.7)*** 17.9 (1.9)*** 18.2 (2.5) 18.3 (2.6) 18.2 (2.1) 18.1 (2.2) 17.8 (2.3) 18.7 (2.0) 
Mean Max (SD) 24.9 (3.0) 23.4 (2.1)*** 28.3 (1.8)*** 23.7 (2.4) 22.9 (2.0)*** 25.6 (2.2)*** 23.8 (2.6) 22.4 (1.8)* 26.0 (2.2)* 
Median range 
(IQR) 

5.6 (6.6) 4.0 (3.5)*** 10.6 (4.6)*** 4.6 (4.5) 4.0 (2.8)*** 7.6 (3.4)*** 6.0 (2.8) 5.1 (3.9)* 7.4 (0.8)* 

August 2013          
n 52 17 35 52 17 35 17 7 10 
Minimum 17.8 19.0 17.8 16.0 18.9 16.0 18.8 21.1 18.8 
Maximum 32.2 29.6 32.2 30.5 30.5 30.2 33.4 29.8 33.4 
Mean (SD) 24.0 (1.4) 24.3 (1.8) 23.5 (2.1) 23.8 (1.7) 24.1 (1.6)* 23.1 (1.6)* 23.8 (1.7) 24.1 (1.3) 23.4 (2.1) 
Mean Min (SD) 21.8 (2.0) 22.5 (1.9)*** 20.5 (1.5)*** 21.6 (2.1) 22.3 (1.8)* 20.2 (2.0)* 21.4 (1.6) 22.2 (1.2)* 20.3 (1.5)* 
Mean Max (SD) 26.7 (1.9) 26.2 (1.6)* 27.7 (2.3)* 26.1 (2.1) 26.1 (2.0) 26.0 (2.3) 26.5 (2.5) 26.2 (1.7) 26.8 (3.5) 
Median range 
(IQR) 

4.4 (4.3) 3.7 (2.3)*** 7.6 (3.9)*** 4.1 (2.8) 3.4 (2.7)** 5.6 (2.8)** 4.2 (2.9) 3.7 (1.0)** 5.6 (3.6)** 



Table 4. Distribution of MVHR and Non-MVHR dwellings by building characteristics and region 

 Dwellings (n = 53) 
 Total         

(n = 53) 
MVHR 
(n = 36) 

Non-MVHR 
(n = 17) 

Dwelling type    
Flats 18 (34%) 11 (61%) 7 (39%) 
Terraced 14 (26%) 10 (71%) 4 (29%) 
Semi-detached 12 (23%) 6 (50%) 6 (50%) 
Detached 9 (17%) 9 (100%) 0 (0%) 
Construction    
Timber 36 (68%) 21 (58%) 15 (42%) 
SIPs 3 (6%) 3 (100%) 0 (0%) 
Total lightweight 39 (74%) 24 (62%) 15 (38%) 
Concrete 4 (8%) 4 (100%) 0 (0%) 
Masonry 8 (15%) 8 (100%) 0 (0%) 
Steel w. brick & block 2 (4%) 0 (0%) 2 (100%) 
Total heavyweight 14 (26%) 12 (86%) 2 (14%) 
Standard    
Passivhaus 16 (30%) 16 (100%) 0 (0%) 
Non-Passivhaus 37 (70%) 20 (54%) 17 (46%) 
Region    
Scotland 22 (42%) 7 (32%) 15 (68%) 
N Ireland 2 (4%) 2 (100%) 0 (0%) 
Total North 24 (45%) 9 (38%) 15 (62%) 
Yorkshire & Humber 2 (4%) 2 (100%) 0 (0%) 
E Midlands 11 (21%) 11 (100%) 0 (0%) 
Wales 2 (4%) 2 (100%) 0 (0%) 
London 3 (6%) 1 (33%) 2 (67%) 
S East 6 (11%) 6 (100%) 0 (0%) 
S West 5 (9%) 5 (100%) 0 (0%) 
Total South 29 (55%) 27 (93%) 2 (7%) 
    
    



 
Table 5. Living room overheating status based on adaptive and static criteria1 

 
Adaptive method Passivhaus CIBSE CIBSE 

No. 

Criterion 1  
>3% occupied 
hours ∆T ≥ 1K 

Criterion 2  
Daily WE during 
occupied hours >12 

Criterion 3 
Maximum  
∆T ≥ 4K 

>10% annual 
occupied 
hours > 25°C 

>5% annual 
occupied 
hours > 25°C  

>1% annual 
occupied 
hours > 28°C 

F1_b    
  

 
F1_d 

   
  

 
F1_f    

   
F11_a       
F11_b       
F11_c       
F11_d 

    
 

 
F12_a 

      
F12_b 

    
 

 
F19_a 

    
 

 
F7_a 

      
F7_b 

   
  

 
F7_c 

   
  

 
H10_a 

      
H11_a       
H11_b 

   
  

 
H11_c 

      
H11_d    

  
 

H14_a      
 

H14_b 
    

 
 

H15_a 
      

H15_b 
   

  
 

H15_c 
      

H16_a 
   

  
 

H17_b    
   

H17_c 
   

  
 

H17_d       
H19_a 

   
  

 
H19_b       
H20_a       
H20_b 

   
  

 
H20_c    

   
H20_d 

      
H3_a 

      
H3_b 

   
  

 
H3_c 

    
 

 
H3_d 

    
  

H3_e 
      

H3_f 
    

 
 

H3_g 
   

  
 

H5_a 
   

   
H8_a      

 
H8_b 

      
H9_a 

    
 

 
H9_b    

   

                                                           
1 *Note, only homes with both summertime and annual data were included in the table 
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