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Title: Slow lorises (Nycticebus spp.) really are slow: a study of food passage rates 28 

Running Title:  Slow loris food passage rate 29 

Abstract 30 

The characteristics of food ingested by a primate affect its assimilation of energy by modulating food 31 

passage rate. In general, digestive time increases in folivorous primates and decreases in frugivorous 32 

primates when they are fed higher fibre diets but this relationship is understudied in exudativorous 33 

primates. We compared the food passage rate of five slow loris species. We studied 34 wild-caught slow 34 

lorises (15 Nycticebus coucang, 15 N. javanicus, and four N. menegensis) in an Indonesian rescue centre 35 

and four captive-born slow lorises (two N. bengalensis and two N. pygmaeus) in a UK institution. We fed 36 

the Indonesian animals two different diets: a captive-type diet comprising fruits, vegetables and insects, 37 

and a wild-type diet formulated to be similar in nutrients to that consumed by slow lorises in the wild, 38 

consisting of gum, insects, vegetables and nectar. We fed the UK animals a diet of gum, vegetables, 39 

insects and hard-boiled eggs. We formulated this diet to mimic the wild diet, with notably higher fibre 40 

fractions and lower soluble sugars than the previous diet. We measured two variables: the transit time 41 

(TT) and the mean retention time (MRT). We mixed 1 tsp of glitter in bananas or gum as our markers and 42 

fed them to the slow lorises immediately prior to their main diet. We noted the date and time of feeding 43 

and of appearances of the marker in faeces. We weighed food given and left over for each animal to 44 

calculate ingested foods and nutrients. We found that TTs were not affected by diet treatment but MRTs 45 

were significantly longer for all species fed the wild type diet. Our results show that Nycticebus spp. have 46 

long MRTs for their body weight, and N. pygmaeus may have the slowest MRT of all primates in relation 47 

to body mass. The digestive flexibility of exudativorous primates should allow them to maximise 48 

fermentation opportunities when they ingest more (appropriate) fibre by increasing the amount of time the 49 

fibre substrate stays in the large intestine. Exudativorous primates appear to have plastic digestive 50 



3 

strategies that may be an adaptation to cope with relatively nutrient-poor staple food sources such as gum. 51 

The provision of gum in a captive setting may therefore provide benefits for gut health in slow lorises. 52 

Key words 53 

Mean retention time, transit time, exudativory, diet, primate, gum 54 

Introduction 55 

Obtaining energy is a fundamental task of all animals, and underlies a finely tuned relationship between 56 

food composition and digestive ability. An animal’s food passage rate varies with the nutrients ingested to 57 

maximize energetic gains. Obtaining energy from plant fibres (cellulose, hemicellulose, pectin, etc.) 58 

requires fermentation by microbes in the digestive systems of some animals. A fast passage rate may not 59 

allow enough time for the microbes to release a valuable amount of energy. The length of time food 60 

remains inside the gastrointestinal tract of an animal can influence many interrelated biological functions, 61 

such as the concentration and composition of intestinal microflora (Bailey and Coe 2002, Fogel 2015), 62 

extent of nutrient breakdown and absorption (Flores-Miyamoto et al. 2005), energetic yield (Blaine and 63 

Lambert 2012), metabolic rate (Muller et al. 2013) and detoxification of secondary plant metabolites 64 

(Cork and Foley 1991). Depending on the food ingested, some mammal species modulate this rate of 65 

passage (Edwards and Ullrey 1999a, Kuijper et al. 2004) to enhance the digestibility of poor quality food, 66 

speed up the intake of food items high in easily digestible nutrients (Caton et al. 1996, Sawada et al. 67 

2011), or eliminate non-digestible food items (Dierenfeld et al. 1982, Power 2010). Measurements used 68 

to estimate the food passage rate include transit time (TT) and mean retention time (MRT) (Warner 69 

1981). MRT values are difficult to measure in wild animals, so researchers use MRT in captive animals to 70 

infer information about the wild ecological niche, revealing information about energetic needs and 71 

digestive ecology (Blaine and Lambert 2012, Lambert 2002).  72 

When primates undergo changes in their feeding regimes, changes in MRT values can be grossly 73 

predicted depending on feeding ecology and gastrointestinal tract anatomy. The MRTs of foregut 74 
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fermenting folivorous proboscis monkeys (Nasalis larvatus) or hindgut fermenting folivorous gorillas 75 

(Gorilla gorilla) differ from those of poorly fermenting frugivores such as red ruffed lemurs (Varecia 76 

rubra) or granivorous white-faced saki monkeys (Pithecia pithecia) (Dierenfeld 2004, Dierenfeld et al. 77 

1992, Edwards and Ullrey 1999b, Norconk et al. 1992). Changes in MRT may in part be caused by plant 78 

fiber in the diets of species with different feeding ecologies and the relative importance of fibrer to their 79 

overall energy balance. The folivorous colobine primates have the longest absolute MRTs (up to 49 h; 80 

Nijboer 2006), and folivorous hindgut fermenters vary greatly in their digestive capabilities and MRT 81 

ranging from 12-37 hr (Edwards and Ullrey 1999b). Such results are not surprising because colobine 82 

primates ingest foods high in fibre content compared to non-colobines, and must have a long MRT to 83 

allow their symbiotic microbes enough contact time to convert the cellulose and hemi-cellulose fibres into 84 

energy sources. Frugivorous species such as spider monkeys (Ateles spp.), in contrast, do not exploit the 85 

fibrous portions of their diets to the same extent as the soluble carbohydrates found in fruit and therefore 86 

do not require extended retention (Milton 1981). Numerous comparisons between the passage rates of 87 

frugivorous versus folivorous primates are available, but it is still difficult to draw general conclusions 88 

about primates of the same feeding ecology archetypes in relation to body mass (Lambert 1998). 89 

90 

Much of our understanding of exudativory (most notably tree gum eaters) in primates is based on the New 91 

World marmosets, which gouge trees throughout the year and trigger gum production that they harvest the 92 

next day or night (Isbell et al. 2013; Nash 1986, Smith 2010). Both the marmosets and the less-studied 93 

exudativorous slow lorises (Nycticebus spp.) possess gastro-intestinal tract anatomies (i.e., enlarged 94 

cecae) associated with digestion/fermentation of soluble polysaccharides found within tree gums 95 

(Coimbra-Filha and Mittermeier 1977, Ushida et al. 2006). This may be why marmosets decrease their 96 

food passage rates when they feed on gum (Power and Oftedal 1996). Gums are also high in minerals, 97 

particularly calcium, and once fermented, gums provide a concentrated source of energy; however, they 98 

are low in most other nutrients such as protein and lipids (Hladik 1979; Isbell et al. 2013). Amongst 99 
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exudativores, Callithrix jacchus has a longer MRT to accommodate the opportunity for fermentation and 100 

energy gain (Power and Oftedal 1996). Studies of MRT in relation to exudativory have been limited to 101 

New World primates (Platyrrhini), despite the prevalence of this diet amongst the Strepsirrhini, notably 102 

the nocturnal slow lorises.   103 

104 

Recent research shows that exudates play a vital role across slow loris species in the wild (Nycticebus 105 

pygmaeus, N. coucang, N. bengalensis – all Vulnerable, and N. javanicus – Critically Endangered), with 106 

these taxa spending 43-87% of feeding time on exudates (Cabana et al. 2017, Das et al. 2014, Starr and 107 

Nekaris 2013, Wiens et al. 2006). In the past, Nycticebus spp. were classified as frugivores based on 108 

limited observations and comparisons to African pottos (Perodicticus) (Charles-Dominique 1977; Barrett 109 

1984). This misconception has led zoos and rescue centres to feed slow lorises diets comprising largely 110 

fruits, a practice which has been implicated in reduced reproduction and high incidence of diseases, most 111 

notably dental and renal diseases (Cabana 2014, Cabana and Nekaris 2015, Debyser 1995, Fuller et al. 112 

2013, Fuller et al. 2014).  113 

114 

We aimed to compare the TT and MRT of five slow loris species (N. coucang, N. javanicus, N. 115 

menagensis, N. bengalensis, N. pygmaeus) fed a traditional captive diet and a diet formulated to resemble 116 

wild diets to further understand the digestive strategy of exudativorous primates. We predicted that slow 117 

lorises should show a similar MRT response to common marmosets, namely increasing their MRT as 118 

fibre fractions in the form of gum in the diet is increased. We also compiled published primate TT and 119 

MRT values for comparison with our data.  120 

121 

122 
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Methods 123 

Study Subjects and Locations 124 

We conducted the study at two locations. The first location was Cikananga Wildlife Rescue Centre 125 

(CWRC), in Sukabumi, West Java, Indonesia. Animals housed at the centre and used in the study were: 126 

Nycticebus coucang (n=15), N. javanicus (n=15) and N. menagensis (n=4). All animals at CWRC were 127 

wild born and had been at the centre for 14 - 20 months. We could not estimate the age of these animals; 128 

all were housed in single sex groups. We performed the second set of trials at Shaldon Wildlife Trust 129 

(SWT), Shaldon, United Kingdom, with N. pygmaeus (n=2) and N. bengalensis (n=2). Both N. pygmaeus 130 

were captive born, and both N. bengalensis were wild born. SWT housed all animals individually; 131 

veterinarians deemed animals healthy and kept them in non-breeding situations.  132 

Estimation of Nutrient Intake 133 

We estimated the nutrient intake of captive slow lorises fed two different diets. We quantified foods 134 

consumed by each slow loris as well as the uneaten foods the following morning using the methods of 135 

Britt et al. (2015). The captive diet at the CWRC was their current diet, comprising (on average per 136 

individual): katydids (Scudderia spp. - 3.4 g), peeled oranges (18.3 g), peeled banana (44.0 g), 137 

mealworms (Tenebrio molitor - 4.9 g), crickets (Acheta domestica) (1.3 g), peeled rambutans (Nephelium 138 

lappaceum - 12.2 g), hardboiled chicken egg without shell (2.2 g), sapodilla without seeds (Manilkara 139 

zapota - 17.1 g), honey (4.0 g), mangosteen (Garcinia mangostana - 12.9 g) and sago worms 140 

(Rhynchophorus ferrugineus - 2.1 g). We weighed the food before giving it to the animals, and weighed 141 

any uneaten food in the enclosure the following morning at 0700 h. We also set up desiccation dishes of 142 

food items and measured them at feeding time and the following morning at 0700 h. We filled them with 143 

the diet we gave the animals and kept them in a pest proof area with the same temperature and climate as 144 

the enclosures. We attributed the decrease in weight to evaporation, which allowed us to correct the diet 145 

intake values for this.  146 
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We based the wild type diet on a year-long ecological study of Javan slow lorises (Cabana et al. 2017). 147 

The wild type diet consisted of 20 g of various insects (including mealworms, crickets, wild caught 148 

katydids, sago worm larvae and pupae mix), carrots (10 g), green beans (10 g), young bamboo leaves 149 

(Gigantochloa cf. ater) (5 g) and gum directly from Acacia decurrens trees (20 g).  150 

We changed the captive type diet to the wild type diet progressively over seven days. We then allowed 151 

seven days for acclimatisation then collected data forvthe following seven days. We used only food items 152 

that were affordable and available at the rescue centre and zoo. 153 

We analysed the components of both CWRC diets for primary nutrients and fibre fractions (moisture, ash, 154 

crude protein, crude fat, acid detergent fibre (ADF), neutral detergent fibre (NDF), soluble fibre and 155 

soluble sugars) at the Indonesian Institute of Sciences (LIPI – Lembaga Ilmu Pengetahuan Indonesia) 156 

Nutrition Laboratory using methods in Cabana et al. (2017).  157 

The SWT diet consisted of 50 g of vegetables (broccoli, peppers, cucumber), 50 g of various root 158 

vegetables (carrots, sweet potato, parsnip, swede), 2 g of nectar powder (Sunbird Nectar, Mazuri Europe, 159 

UK), 3 g of locusts (Schistocerca gregaria), 3 g of mealworms (Tenebrio molitor), 1/2 hardboiled egg 160 

with shell, and 5 g of gum arabic powder from A. senegalensis.  161 

162 

Food Passage Rate 163 

We used the methods described by Lambert (2002) to determine TT and MRT. Initially, we hid non-toxic 164 

plastic beads in bananas, guava and gum to use as the marker to calculate the TT and MRT by noting the 165 

time the beads were fed to animals and the time they appeared in faeces, but the slow lorises used their 166 

sublinguals (used to clean out their dental comb) to remove and spit out the beads. We then used glitter 167 

(unknown brand, Indonesia), previously described by Fuller et al. (2011) as a successful TT and MRT 168 

marker. To validate the glitter technique for slow lorises, we put it inside guavas and compared the TT 169 
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and MRT of the guava seeds versus glitter in the same individuals of N. javanicus. Results were identical 170 

(TT of 24.00 ± 2.25 hr (SD) and MRT of 32.25 h ± 4.66). We then tried 5.0 g of glitter inside a banana in 171 

the captive diet, and in 10 g of gum for the wild type diet at CWRC and at SWT. We gave each animal 172 

the same amount of glitter. We always fed animals the markers first, before the rest of the diet. At CWRC 173 

we fed the animals markers at 1800 hr when the slow lorises awoke, and at SWT we fed slow lorises at 174 

0800 hr due to the reversed light cycle of their nocturnal enclosures. After the slow lorises awoke, we 175 

checked each enclosure hourly and collected all faeces we could locate. If we found glitter in the faeces, 176 

we recorded the name of the individual and the time we found the marker. We alternated glitter colours 177 

(red and blue) between trials. We conducted four trials for each animal for each diet; trials lasted until we 178 

observed no more markers in the faeces and one extra day, making all trials four days long.  179 

180 

We defined the time between ingestion of the marker and its first appearance as TT, and we used MRT as 181 

the best estimate of food movement through the gastrointestinal tract (Warner 1981). We calculated this 182 

value by dividing the length of time from ingestion to each occurrence of the marker, divided by the total 183 

number of separate faeces with markers present for that trial (Lambert 2002). We took the mean of the 184 

four trials per animal to calculate individual MRT values.  185 

We compiled the TT and MRT values of primates thus far for comparison between other species 186 

(Supplementary Table 1). We plotted MRT values against body mass and labelled species with their gross 187 

ecological feeding niche (folivore, frugivore, exudativore or granivore). We labelled generalist species 188 

and those with heavily seasonal diets frugivores. 189 

190 

191 

192 
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Statistical Analysis 193 

We conducted all statistical analyses using SPSS version 22.0 (IBM). We used a Generalized Linear 194 

Mixed Model (GLMM) to test for main effects of species and diet composition on the TT and MRT. We 195 

considered the assumptions associated with GLMMs and did not violate them. We used a gamma 196 

distribution for the response variables (TT and MRT), individual as a random factor and diet (captive and 197 

wild) and the three species (N. coucang, N. javanicus and N. menagensis) as fixed factors. We did not use 198 

data from SWT in this analysis since the animals only received the SWT diet. We also performed a 199 

Wilcoxon Signed Rank Test, comparing the nutrient concentrations ingested each CWRC slow loris when 200 

fed the captive diet and the wild diet.  201 

202 

Ethical Note 203 

We received ethical clearance from the Oxford Brookes University (UK) Social Sciences Department 204 

Ethics Committee. Cabana obtained an Indonesian research visa for this research from the Indonesian 205 

government (Ministry of Research, Technology and Higher Education of the Republic of Indonesia). 206 

Animals were already captive and we did not handle them any more than usual. We expected the diet 207 

manipulations to lead to healthier and more naturalistic diets and thus we did not consider them to be a 208 

significant stress or danger to the animals.   209 

210 

Results 211 

Transit and Mean Retention Times 212 

The mean TT for CWRC Nycticebus spp. on the captive type diet ranged 24.2-25.6 hr, and on the wild 213 

type diet ranged 24.4 – 25.9 hr (Table 1). The MRT of Nycticebus at CWRC on the captive type diet 214 
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ranged 29.7 - 33.4 hr and on the wild type diet ranged 34.1-88.5 hr. SWT slow lorises had TTs of 25.3-29 215 

hr and MRTs of 42.6-58 hr. The TT was not affected by any variables we tested (overall model: 216 

χ2=77.549, df=271, P=0.0001; diet χ2=1.647, df=1, P=0.199; species χ2=54.528, df=2, P=0.608) but for 217 

MRT, (overall model: (χ2=211.394, df=271, P=0.0001) both diet (χ2=710.276, df=1, P=0.0001) and 218 

species (χ2=17.531, df=2, P=0.0001) had a significant effect. The captive type diet was associated with a 219 

significantly shorter MRT overall (B=-4.750 df= 1 P=0.0001). The MRTs of both N. javanicus (B=4.600 220 

df=2 P=0.0001) and N. coucang (B=4.000 df=2 P=0.0001) were approximately four hours longer than N. 221 

menagensis fed the wild type diet. When we gave animals the captive diet, we recorded significantly 222 

shorter MRT values for N. coucang than for other species on this diet (B=-4.000, df=1 P=0.001).  223 

Exudativores had the steepest line of best fit (y=40.45x) in our scatterplot of MRT and body mass values, 224 

followed by granivores (y=21.87x, although this was represented by only 2 samples), then folivores 225 

(y=6.80x) and finally frugivores (y=4.03x). These values should be used as loose comparisons only as 226 

species were fed different diets which may alter their TT or MRT.  227 

228 

Nutrients Ingested by Slow Lorises 229 

The mean nutrient values ingested by slow lorises fed the captive type diet at CWRC were different to 230 

those in the wild type diet (Table 2). At SWT, N. pygmaeus and N. bengalensis had fibre intake 231 

concentrations (DMB) of 9.2-12.3% (ADF) and 12.0-13.6% (NDF). Our Wilcoxon signed rank test 232 

revealed that all nutrients ingested except iron were significantly different between the captive and wild 233 

diets (Table 3).  234 

235 

Discussion 236 
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The food passage rate of Nycticebus spp. was relatively long for their body mass compared to other 237 

primates. They showed a digestive response similar to that of leaf-eating monkeys (Colobinae), where 238 

MRT increased with fibre intake. This response is also comparable to that of exudativorous marmosets 239 

when dietary fibre intake increases (Power and Oftedal 1996). The wild type diet increased MRT by up to 240 

42% but did not change TT values. The two different diets led to significantly different nutrient 241 

concentrations being ingested for every nutrient except iron, which also reflects how different captive 242 

diets can be to wild slow loris diets. The TT of the slow lorises did not vary with diet. Their long MRTs 243 

(ranging 29.70-33.40 hr) increased by 4-29 % when fed the wild type diet. This diet contained 244 

significantly more fibre fractions (soluble fibre, ADF and NDF), which may be the major reason 245 

underlying this altered gut passage rate. The SWT diet contained gum arabic, insects (crickets and 246 

mealworms), eggs, vegetables and fruit, effectively making it a hybrid of the captive and wild type diets, 247 

but the dietary fibre values were closer to the wild type diet. We did not have data to test whether MRT in 248 

N. pygmaeus or N. bengalensis increases if they are fed a higher fibre diet but we can compare their MRT249 

values with those of other Nycticebus spp. The markers we used were not as sensitive as other validated 250 

methods. Our results are nonetheless useful for comparisons and to influence captive care due to the 251 

dearth of knowledge about Nycticebus physiology.    252 

253 

Strepsirrhines that depend on fermentable foods, such as leaves, have an enlarged large intestine and 254 

caecum (e.g., the sportive lemur Lepilemur leucopus, Perrin 2013). This anatomy most likely reflects an 255 

adaptation for efficient use of high fibre diets and active microbial populations. Slow lorises also appear 256 

to possess adaptations to high fibre diets, reflected in the large increase in MRT when we fed them wild 257 

type diets. Within the platyrrhines, howler monkeys (Allouatta spp.) also eat a very fibrous diet and 258 

display TTs of 20.4 - 35.0 hr and MRTs of 49.5 - 57.0 hr, in contrast with 5.3 hr in the frugivorous spider 259 

monkeys (Ateles spp, Crissey et al. 1990, Espinoza-Gomez et al. 2013, Milton 1984). This enables spider 260 

monkeys to pass indigestible materials rapidly through their less complex digestive tract, similar to 261 
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tamarin species which pass whole undigested seeds within 2.2-2.5 hr (Heymann and Smith 1999, Knogge 262 

1998). This response allows frugivores to ingest more food and exploit the easily absorbable nutrients in 263 

the diet faster than folivores. This also explains why frugivores had the lowest MRT to body size ratio. If 264 

preferred foods are not available in large quantity, a higher intake of lesser quality food may compensate. 265 

This strategy is useful for frugivorous tamarins (Saguinus spp.), spider monkeys, Japanese macaques 266 

(Macaca fuscata), white-handed gibbons (Hylobates lar) and de Brazza's monkeys (Cercopithecus 267 

neglectus), which show decreased MRTs with increasing dietary fibre (Sawada et al. 2011). The 268 

dichotomy between the folivorous and frugivorous responses is further exemplified in the lemurs 269 

(Lemuridae). Frugivorous lemurs (Eulemur spp.) have a rapid TT of 1.6 - 3.3 hr, but the fermenting 270 

eastern lesser bamboo lemur (Hapalemur griseus) has a much longer TT of 18.2 hr (Overdorff and 271 

Rasmussen 1995). Data for great apes also support this hypothesis. The more frugivorous orangutans 272 

(Pongo pygmaeus) and chimpanzee (Pan troglodytes) have an MRT of 37 and 37.0-48.0 hr while the 273 

highly folivorous lowland gorilla (Gorilla gorilla) has an MRT which may reach up to 97 hr (Milton 274 

1984, Milton and Demment 1988, Remis 2000, Remis and Dierenfeld 2004). The slow loris in this study 275 

had a similar MRT to that of P. pygmaeus, which is 80 times larger. 276 

 There is a trend for frugivores to reduce their MRT when they ingest more fibre (Overdorff and 277 

Rasmussen 1995), while folivores (Remis and Dierenfeld 2004) and exudativores (Power and Oftedal 278 

1996; this study) increase their MRT. The gouging marmosets (Cebuella and Callithrix) are often 279 

grouped with slow lorises due to their exudativorous feeding ecologies (Smith 2010). Although data are 280 

limited, they also grouped together when MRT was plotted against body mass (Figure 1). Slow lorises 281 

and marmosets are similar in their response to increased dietary fibre. Both groups of primates have 282 

unique traits and ecology, such as a low metabolic rate, the ability to ingest a diet high in plant secondary 283 

metabolites and the ability to subsist on a diet of mostly plant exudates (Nekaris 2014). Marmosets and 284 

slow lorises have basal metabolic rates 72 and 60% of expected primate values (Genoud et al. 1997, 285 
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Muller 1979). Their low-quality diet coupled with a slow metabolism probably culminate to the high 286 

MRT values observed for exudativorous primates.  287 

288 

Slow lorises are well adapted to a high fibre diets. This may be important for their health (Campbell et al. 289 

2001). Captive slow lorises suffer from many ailments including obesity, dental diseases and kidney 290 

diseases (Cabana 2014, Cabana and Nekaris 2015, Debyser 1995, Fuller et al. 2013). Overall, captive 291 

diets are lacking or low in gum (and coincidentally in fibre compared to the wild) and are high in soluble 292 

carbohydrates (Cabana and Nekaris 2015). A longer MRT means an increased opportunity for 293 

fermentation, resulting in higher concentration of short-chain fatty acids (Blaine and Lambert 2012, 294 

Lambert and Fellner 2012). A longer MRT also results in better digestive efficiencies for many nutrients. 295 

Moreover, the properties of volatile fatty acids created at the end of fermentation are associated with gut 296 

health benefits (Plaami 1997). These acids may contribute to positive gastrointestinal cell proliferation 297 

and increased substrate for cellular energy production, as well as a more stable luminal pH that allows 298 

bacterial metabolic functions to be most efficient (Walker and Buckley 2006). The acids can also have a 299 

protective effect against potential pathogens and diarrhoea, and reduce the negative effects of high soluble 300 

carbohydrates in the diet (Bailey and Coe 2002, Johnson et al. 1984). Increasing fibre in the diet may also 301 

increase satiation, possibly reducing stereotypies and other abnormal heath patterns (Britt et al. 2015, 302 

Remis and Dierenfeld 2004). There are no obvious downsides to increasing fibre in the diets of captive 303 

exudativorous primates and many possible benefits.  304 

305 

In conclusion, slow lorises, like marmosets, increase their MRT values when dietary fibre increases . 306 

Their response to a higher fibre diet is similar to folivorous primates. Exudativorous primates seem to 307 

digest low quality food slowly, presumably to allow fermentation, rather than quickly eating a larger 308 

amount of food with little to no opportunity for fermentation. Future studies should modify only fibre to 309 
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derive more robust conclusions about the plasticity of exudativorous digestion, free from the possible 310 

effects of other nutrients.  311 
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FIGURE LEGENDS 531 

Figure I Published values for body mass and mean retention times for primates <20 kg with their 532 

ecological feeding niche: exudativores (orange diamond), granivores (grey triangle), folivores (blue 533 

circle) and frugivores (yellow X). Lines indicate lines of best fit where a steeper slope indicates a slower 534 

food passage rate per kg of body mass. Values and references are in supplementary Table S1.  535 
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Table I Transit and mean retention times for gut passage rates of Nycticebus javanicus, coucang and 
menagensis at Cikananga Wildife Rescue Centre (Sukabumi, Indonesia) in June 2015 under two different 
diet treatments, and N. pygmaeus and N. bengalensis at Shaldon Wildlife Trust (Shaldon, United 
Kingdom) in August 2015, on a diet of refined gum, vegetables and insects. 

Species 

N 

N. javanicus
15

N. coucang
15

N. menagensis
4 

N. pygmaeus
2 

N. bengalensis
2 

Mean (± SD) animal mass (g) 1050 (±236) 936 (±312) 902 (±53) 423(±25) 1020 (±93) 

Mean (± SD)  
Transit Time (hours) 

Captive Diet 25.6 (±2.6) 25.00 (±3.5) 24.2 (±3.2) - - 

Wild Diet 25.9 (±3.4) 24.4(±2.1) 24.5 (±2.9) - - 

SWT Diet - - - 29.0 (±2.0) 25.3 (±2.2) 

Mean (± SD) 
Retention Time 

(hours) 

Captive Diet 33.40 (±1.0) 29.70 (±1.5) 32.88 (±3.1) - - 

Wild Diet 38.50 (±2.0) 38.0 (±2.5) 34.13 (±4.1) - - 

SWT Diet - - - 39.75 (±1.5) 24.32 (±0.5) 

Tables 1 2 and 3
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Table II Mean +/- SD daily nutrient intake for Nycticebus javanicus, coucang and menagensis at 
Cikananga Wildlife Rescue Centre (Sukabumi, Indonesia) in June 2015 under two dietary treatments and 
of N. pygmaeus and N. bengalensis at Shaldon Wildlife Trust (SWT - Shaldon, United Kingdom) in 
August 2015. 

N. javanicus N. coucang N. menagensis N. pygmaeus N. bengalensis 

Nutrient Captive Diet Wild Diet Captive Diet Wild Diet Captive Diet Wild Diet SWT Diet SWT Diet 

Ash (%) 2.90 (±2.51) 2.64 (±0.53) 3.11 (±2.65) 2.44 (±0.43) 2.88 (±2.44) 2.76 (±0.62) 5.67 (±2.34) 5.43 (±2.21) 

Crude Protein (%) 12.79 (±4.59) 26.23 (±5.58) 12.11 (±4.91) 25.64 (±5.48) 13.69 (±4.34) 24.35 (±6.01) 24.08 (±3.56) 22.56 (±3.31) 

Crude Fat (%) 7.58 (±2.03) 10.41 (±2.09) 7.81 (±1.98) 11.15 (±2.37) 8.30 (±2.00) 9.62 (±2.56) 14.75 (±6.75) 13.65 (±5.23) 

Energy (Kcal/g)  3.92 (±0.68) 4.17 (±0.61) 3.91 (±0.74) 4.31 (±0.48) 4.25 (±0.51) 4.09 (±0.73) 4.02 (±0.34) 3.96 (±0.12) 

Soluble fibre (%) 0.72 (±1.27) 3.11 (±2.71) 0.71 (±1.11) 3.09 (±2.31) 0.78 (±1.19) 3.24 (±3.01) NA NA 
Acid Detergent Fibre 

(%) 5.28 (±4.05) 15.04 (±6.73) 4.35 (±3.93) 14.13 (±5.19) 8.41 (±3.99) 14.56 (±6.87) 9.24 (±2.59) 10.34 (±2.46) 

Neutral Detergent 
Fibre (% 8.56 (±3.00) 18.72 (±6.81) 7.31 (±3.16) 17.72 (±6.27) 10.50 (±2.69) 19.01 (±7.23) 12.04 (±2.99) 13.56 (±2.64) 

Sugars (%) 9.60 (±6.86) 3.88 (±10.76) 9.20 (±5.12) 4.10 (±10.32) 9.14 (±6.73) 3.56 (±11.38) NA NA 

Calcium (%) 0.17 (±0.04) 0.33 (±0.09) 0.14 (±0.10) 0.35 (±0.12) 0.15 (±0.12) 0.31 (±0.11) 0.35 (±0.09) 0.37 (±0.11) 

Phosphorous (%) 0.19 (±0.06) 0.30 (±0.08) 0.16 (±.09) 0.32 (±0.10) 0.20 (±0.11) 0.28 (±0.13) 0.40 (±0.13) 0.38 (±0.06) 

Magnesium (%) 0.27 (±0.13) 0.54 (±0.24) 0.29 (±0.17) 0.49 (± 20) 0.24 (±0.11) 0.51 (±0.29) 0.10 (±0.02) 0.09 (±0.03) 

Iron (mg/kg) 59.47(±13.71) 123.00 (±38.17) 57.26 (±11.57) 113.45 (±39.62) 69.12 (±13.56) 119.57 (±41.67) 43.69 (±9.16) 46.97 (±8.82) 

Sodium (%) 0.43 (±0.63) 0.11 (±0.10) 0.36 (±0.72) 0.10 (±0.15) 0.12 (±0.59) 0.11 (±0.07) 0.24 (±0.14) 0.20 (±0.12) 

Copper (mg/kg) 7.45 (±2.88) 6.67 (±1.46) 6.96 (±2.81) 6.79 (±)1.86 7.2 (±2.63) 6.41 (±1.75) 3.70 (±1.04) 3.98 (±0.94) 

Calcium:Phosphorous 0.89 1.10 0.88 1.09 0.75 1.11 0.88 0.98 



Table III Wilcoxon Signed Rank Test results comparing the nutrient intake of 34 slow lorises 
(Nycticebus javanicus, coucang and menagensis) at Cikananga Wildlife Rescue Centre (Sukabumi, 
Indonesia) under two different diet treatments: a captive diet high in fruits and a wild type diet high in 
gum. 

Nutrient Z P 

Higher in 
Captive 

Diet 

Ash -3.17 0.0020 
Sugar -7.73 0.0001 

Copper -6.77 0.0001 

Higher in 
Wild Diet 

Crude Protein -8.94 0.0001 
Crude Fat -9.38 0.0001 

Energy Density -4.59 0.0001 
Soluble Fibre -7.73 0.0001 

Acid Detergent 
Fibre -7.99 0.0001 

Neutral 
Detergent Fibre -7.48 0.0001 

Calcium -9.62 0.0001 
Phosphorous -8.39 0.0001 
Magnesium -5.30 0.0001 

Sodium -8.14 0.0001 
No 

Difference Iron -1.48 0.2780 
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