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Abstract 

Ovarian cancer has a poor overall survival which is partly caused by resistance to drugs such as 

cisplatin. Resistance can be acquired as a result of changes to the tumour or due to altered 

interactions within the tumour microenvironment. Extracellular vesicles (EVs), small lipid-bound 

vesicles that are loaded with macromolecular cargo and released by cells, are emerging as mediators 

of communication in the tumour microenvironment. We previously showed that EVs mediate the 

bystander effect, a phenomenon in which stressed cells can communicate with neighbouring naïve 

cells leading to various effects including DNA damage; however, the role of EVs released following 

cisplatin treatment has not been tested. Here we show that treatment of cells with cisplatin led to 

the release of EVs that could induce invasion and increased resistance when taken up by bystander 

cells. This coincided with changes in p38 and JNK signalling, suggesting that these pathways may be 

involved in mediating the effects. We also show that EV uptake inhibitors could prevent this EV-

mediated adaptive response and thus sensitise cells in vitro to the effects of cisplatin. Our results 

suggest that preventing pro-tumourigenic EV crosstalk during chemotherapy is a potential 

therapeutic target for improving outcome in ovarian cancer patients.  
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Intro 

Ovarian cancer is the most fatal gynaecological cancer with more than 150,000 women succumbing 

to the disease each year worldwide (1). The five-year survival rate is less than 50% (2). Reasons for 

this high mortality rate include diagnosis at advanced stages and acquired resistance to 

chemotherapeutic drugs such as cisplatin and carboplatin (3-5). The causes for cisplatin resistance 

are complex and multifactorial (6-9). Along with numerous intracellular modulators, intercellular 

factors involving the tumour microenvironment have also been shown to play a crucial role in 
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cisplatin resistance; this can occur via altered communication between tumour cells and stromal 

cells (10), macrophages (11) or endothelial cells (12) as well as between tumour cells (13, 14).  

In recent years, exosomes and microvesicles (collectively referred to as extracellular vesicles (EVs)) 

have gained prominence as mediators of intercellular communication. They have been shown to 

transfer RNAs and proteins that are functional in the recipient cells (15, 16). They can be found in 

various body fluids and in the tumour microenvironment and can transmit messages to neighbouring 

cells as well as to distant cells (17, 18). miRNAs, short non-coding RNAs whose levels can be altered 

during stress response (19), can also be shuttled between cells in the tumour microenvironment via 

EVs. Extracellular vesicles have been shown to modulate numerous factors in tumour cells including 

proliferation (20), viability (21) and metastatic capability (22). The tumour microenvironment has 

also been shown to be modulated by EV-mediated communication between the tumour and other 

cells such as cancer associated fibroblasts (23, 24) and mesenchymal stem cells (25). EVs are able to 

modulate angiogenesis, an important factor in cancer progression (26-29). EVs have also been 

shown to modulate the anti-tumoral response by affecting the immune response, T-cell activation 

and natural killer cell induction (30-33). EVs can also contribute to drug resistance via various 

mechanisms, including the sequestration of drugs (34, 35) and the transfer of proteins or RNA  (36-

39) (40-45). The morphology and the proteomic profile of EVs from multi-drug resistant tumours has 

been shown to be different from those from sensitive tumours (46) and EVs could be used as 

prognostic and diagnostic biomarkers in cancer (47).   

Interestingly, EVs are involved in bystander effect (BE) (48). BE is a phenomenon in which stressed 

cells release soluble factors that when taken up by naïve recipient cells can induce phenotypic 

effects, including DNA damage (48-53).  The potential roles for EVs released from cisplatin-stressed 

ovarian cancer cells, particularly in the context of the tumour microenvironment, have not been 

investigated. Here we show that chemotherapeutic treatment of ovarian tumour cells induces the 

release of EVs that can influence the phenotype of neighbouring naïve cells. Specifically, we show 

that the EVs released following cisplatin-stress response can induce increased invasiveness and drug-

resistance in bystander cells. These effects coincided with changes in signalling via several pathways 

including p38 and JNK. Blocking the uptake of EVs during cisplatin treatment appeared to sensitise 

cells to the effect of the cytotoxic drug. Taken together these results suggest that EVs released by 

cells into the tumour microenvironment during chemotherapy could have an important role in 

mediating the progression of ovarian cancer.  

Materials and Methods 

Cell culture 

All cell lines were maintained in RPMI media (Hyclone) supplemented with 10% foetal bovine serum 

(Gibco) and sub-cultured every 5-6 d using 0.05% trypsin with EDTA (Thermo Fisher Scientific). Cells 

were maintained at 37°C in a humidified incubator at 5% CO2; fresh media was added every 2-3 d. 

A2780 and CP70 were kindly donated by Professor Robert Brown (University College London). 

IGROV­1 cells were purchased from National Cancer Institute, Frederick Cancer Division of Cancer 

Treatment and Diagnosis Tumor/Cell Line Repository (Bethesda, USA). 
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EV extraction 

Foetal bovine serum was ultracentrifuged at 120 000 xg for 16 hours; RPMI or DMEM was then 

supplemented with 10% EV-depleted bovine serum to obtain EV-depleted media (EDM). Cells in 

T175 flasks at 70­80% confluence (~2.0 x 107) were grown overnight in EDM. For cisplatin treatments 

cells at 70% confluence were treated with a final concentration of 40 µM cisplatin for 2 h at 37°C, 

cisplatin­containing media was removed, cells were washed with PBS, replenished with EDM and 

incubated for a further 2 h. After this time, media was removed to eliminate any cisplatin secreted 

by the treated cells and replenished with fresh EDM and this media was conditioned for 24 h.  EVs 

were extracted from this conditioned medium by differential ultracentrifugation. Initially, it was 

centrifuged at 300 G for 5 min followed by centrifugation at 16,500 G for 20 min at 4°C. The media 

was then filtered using 0.22 µm syringe filters blocked with 0.1% bovine serum albumin (BSA) (Sigma 

Aldrich). The supernatant was ultracentrifuged at 120,000 xg using Beckman Coulter Optima LE­80K 

ultracentrifuge for 90 mins at 4°C to pellet EVs. The extracted EVs were resuspended in PBS, and 

finally pelleted once more at 120,000 xg. EVs were resuspended in 50 µL PBS and used in subsequent 

experimentation. When not used immediately after extraction EVs were stored at ­80°C.  

Western blotting of whole cell and EV protein extracts 

Cells were scraped from the surface of a culture flask into ice cold PBS and pelleted at 300 G, washed 

with PBS and re-pelleted at 300 G. Cell preparations were then lysed in 1X radioimmunoprecipitation 

assay (RIPA) buffer (0.1 M Tris–hydrogen chloride, 0.3 M sodium chloride, 0.1% sodium dodecyl 

sulphate (SDS), 0.5% sodium deoxycholate, 1% Triton X 100) under constant agitation for 30 min at 

4°C. Nuclei and cell debris were removed by centrifugation at 14,000 xg. For exosomal protein, EVs 

were resuspended in RIPA buffer and sonicated thrice for 5 min each in Decon FS100 frequency 

sweep sonicating water bath (Decon) with 15 sec of vortex mixing between each cycle with a final 

centrifugation at 14,000 G for 20 min at 4°C to pellet non­protein debris. Protein concentration was 

quantified by the BCA assay kit (Life Technologies). Approximately 10 μg of cellular or exosomal 

protein was prepared in SDS–PAGE loading dye with dithiothreitol (DTT) and heated to 100 °C for 10 

min. Samples were loaded onto a 12% denaturing polyacrylamide gel, electrophoresed and 

transferred to a PVDF membrane (Bio-Rad). The membrane was blocked with 5% non-fat dried milk 

powder (Marvel) in TBS–0.05% Tween (TBST) for 1 h at room temperature (RT) and then incubated 

overnight at 4°C with rabbit or mouse anti­human primary antibodies (Abcam) specific to HSP70 

(ab5439) (EV marker) (1:2,000), cytochrome C oxidase (ab150422) (apoptotic body/mitochondrial 

marker) (1:1,700), GAPDH (ab128915) (cytoplasmic marker) (1:15,000), calnexin (ab22595) 

(endoplasmic reticulum marker) (1:120,000) and GM130 (ab31561) (Golgi marker) (1:1,000). 

Secondary anti-mouse Cy3­ (Fisher) or anti-rabbit horseradish peroxidase (HRP)­tagged antibody 

(Abcam) (1: 2,000) incubations were then performed for 60 min at room temperature. Blots were 

digitally imaged for chemiluminescence with ECL solution (Bio-Rad) according to manufacturer’s 

instructions or fluorescence for Cy3 using ChemiDoc MP (Bio­Rad).  

Transmission electron microscopy of EV samples 

A 12µl aliquot of each EV sample was combined with an equal volume of 4% paraformaldehyde 

(Sigma Aldrich) and incubated on ice for 15 min. A droplet of each sample was distributed using a 

pipette onto Parafilm (Thermo Fisher Scientific). Carbon­formvar coated copper 300 mesh grids 

(Agar Scientific, Stanstead) were placed dull­side downwards onto each sample droplet and left to 

incubate at room temperature for 30 min. Grids were then washed three times by placing dull­side 

downwards onto a droplet of 0.22 µm filtered ultrapure water. Between each wash, excess water 
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was removed using filter paper. Finally, each grid was placed onto a 30 µL droplet of 2% uranyl 

acetate (aqueous) (Sigma Aldrich) for 2 min. Excess solution was removed using filter paper and the 

samples were left to air dry for 60 min. Two grids were prepared from each aliquot. Grids were 

visualised using Hitachi H7650 Transmission Electron Microscope at 100 kV with x40,000 

magnification. EV diameter was measured using the measurement function in AMT software 

(Advanced Microscopy Techniques, Massachusetts, USA). 

EV size determination and quantification by Nanoparticle Tracking Analysis (NTA) 

EV size and concentration were determined by NTA with a NanoSight LM10 instrument equipped 

with the NTA 2.0 analytical software (Malvern Instruments Ltd, Malvern). Five 30 sec videos of each 

sample were recorded and from these the software calculated the mean diameter (nm) and EV 

concentrations (× 108/ml). Each sample was measured in duplicate.  

Matrigel transwell cell invasion assay 

A2780 or IGROV-1 cells were treated with EVs extracted from cisplatin treated cells or untreated 

cells and starved of serum for 24 h prior to seeding in transwell inserts. The cells were harvested by 

trypsinisation and seeded at 100 000 cells/ well in Matrigel-coated 8 µm pore membrane transwell 

inserts (BD Biosciences); a second dose of EVs was added into the respective wells at the same time. 

Complete medium supplemented with 10% FBS was loaded in the receiver wells to act as a 

chemoattractant. Cells were then incubated at 37°C for 24 h. The media was then removed from the 

inserts and the upper surface of the inserts swabbed with a cotton bud to remove any cells that had 

not invaded the membrane. The inserts were then washed with PBS and stained with 1% crystal 

violet (Sigma Aldrich) for 10 min, washed again with distilled water and mounted onto glass slides 

using di­N­butyle phthalate in xylene (DEPEX) and glass coverslips. The membranes were visualised 

using a Zeiss Axioplan inverted microscope using x125 magnification in differential interference 

contrast and all the cells were counted. 

Proteome Profiler 

EVs derived from control cells or cisplatin treated cells were added to fresh A2780 cells (EVs derived 

from 1 T175 flask to 1 x 106 cells) and incubated for 24 h. The Proteome Profiler Human 

PhosPho­MAPK Array (R&D Systems, Abingdon) array procedure was performed as outlined in the 

manufacturer’s protocol. 

Effect of EVs on cell viability and cisplatin response 

A2780 cells were seeded into 96 well plates (day 0) at 10 000 cells per well. 24 h later (day 1), cells 

were treated with EVs extracted from cisplatin-treated or untreated A2780 cells or PBS. On day 2, 

half of the wells in all groups were treated with 20 µM cisplatin (Fisher; stock solution - 16.7 mM 

made up in PBS) for 3 h diluted in media. For experiments with heparin, cells were pre-treated with 

10µg/ml heparin (Sigma, H3393) diluted in media for 30 min prior to cisplatin treatment at a final 

concentration of 20µM. 3 h after commencement of cisplatin treatment, the media containing 

cisplatin was removed, cells were washed with PBS and fresh media was added; heparin treatment 

was continued for cells in the heparin-treatment group. On day 4, MTT assay was performed as 

previously described (54, 55) to assess the viability of the cells in each group.  

Effect of EV uptake inhibitors on cisplatin response 

Cells were seeded in 96 well plates at 6,000, 10,000 and 15,000 cells per well for CP70, A2780 and 

IGROV-1 cells respectively. 48 h later, cells were pre-treated with EV uptake inhibitor as follows. 
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Heparin (Sigma Aldrich, H3393) was diluted to a concentration of 10 mg/ml in deionised distilled 

water, filtered through 0.22 µm filters and stored at -20°C; it was diluted in media and added to cells 

at a final concentration of 10 μg/ml. Amiloride (5-(N-ethyl-N-isopropyl) amiloride, or EIPA) (Sigma 

Aldrich, A3085) was stored in DMSO at a concentration of 108 mM and added to cells at 50 µM 

concentration. Dynasore (Sigma, D7693) was diluted in DMSO to a concentration of 31 mM, stored 

at -20°C and added to cells at a concentration of 50 µM. 30 min after the drug treatment, cisplatin 

was added at varying concentrations to give a cisplatin response curve. Three hours later, cisplatin 

was removed, cells were washed with PBS and fresh media added; inhibitors were added to the 

same wells as before. An MTT assay was carried out 48 h after cisplatin treatment to assess the 

viability of cells in each group.  

Xenograft experiments 

Xenograft experiments were carried out at the animal testing facility at Queen’s University, Belfast 

by Prof Helen McCarthy; A2780s for this experiment were kindly provided by Dr Fiona Furlong, 

Queen’s University, Belfast. Five million A2780 cells in matrigel were implanted subcutaneously into 

the flanks of BALB/c SCID mice. Animals were monitored regularly and body weights were measured 

three times a week. Tumour volume was calculated using the formula 

𝑉 =
4

3
𝜋𝑟3 

Where r is half of the geometric mean diameter (GMD), calculated as  

 

√L*B*D
3

 

 

Treatment was started when the tumour measured 100 mm3. Twenty four mice were then divided 

into four treatment groups (1) cisplatin 5mg/kg once weekly i.p. (2) Heparin (Sigma, H3393)  only – 

10 mg/kg every day i.p. (3) combination group – cisplatin 5mg/kg once weekly i.p. and heparin 10 

mg/kg once daily i.p. and (4) control group. Tumour volume was monitored three times a week; 

when the tumour quadrupled in size, the animal was sacrificed. Any mice that lost 20% of body 

weight during the experiment were sacrificed as the treatment was deemed too toxic. All animal 

experiments were performed in adherence to our home office license (PPL2678).  

Statistical Analysis  

The Student’s T­test was used to determine statistical significance unless otherwise stated. 

GraphPad Prism was used to calculate IC50s for curves and to analyse significance in differences 

between IC50s of curves using the extra sum-of-squares F test. For all experiments at least three 

biological replicates for each point were performed to enable statistical comparisons. P-values in 

figures are depicted as follows: <0.05 - *, <0.01 - **, <0.001 - ***. 

Results and discussion 

Characteristics of EVs from control and cisplatin treated cells 

As a first step in assessing the role of EVs in the tumour microenvironment following drug treatment 

we compared the characteristics of EVs from control cells (control EVs) and those from cells treated 

with cisplatin (cisplatin EVs). EVs were extracted by ultracentrifugation of media conditioned 

overnight with A2780 control cells or A2780 cells treated with cisplatin. Western blotting (figure 1A) 

confirmed the presence of GAPDH and HSP70 which are known to be present in EVs; the absence of 
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calnexin and cytochrome C in both EV pellets established the absence of cellular contamination in 

the EV preparations. Total particle number was estimated by nanoparticle tracking analysis. There 

was no significant difference between the concentration of control EVs (13.0 x 108 particles/mL) and 

cisplatin EVs (17.2 x 108 particles/mL) (figure 1B). Some groups have reported increases in EV-

production following various types of stress (49, 56-58); however, in our hands we observe small but 

non-significant increases in EV release following cisplatin (present work) and heat stress (59). This 

discrepancy could be due to experimental difference such as doses of treatment or the period of EV 

conditioning. Nevertheless, our results confirm the presence of EVs released by cancer cells 

following treatment.  

To further characterise EVs from the tumour cells we performed transmission electron microscopy 

(TEM). TEM of the EVs from both control and cisplatin-treated cells showed vesicles of the expected 

size and morphology (figure 1C), with diameters ranging from 30nm to 160nm; however, the mean 

diameter of the cisplatin EVs (49.3 nm) was significantly smaller than that of the control EVs (87.6 

nm) (student’s t-test p = 2.1 x 10­8) (figure 1D). Interestingly, we also find that TEM measurements of 

EVs released following heat (59) are smaller compared to those released under normal conditions. 

That the imaged EVs from stressed cells appear smaller could represent a genuine difference in size, 

or could represent a different biophysical property that causes an artefact of preparation in the TEM 

that leads to the EVs appearing smaller. Nevertheless, the results suggest there are qualitative 

differences between EVs that are released following cisplatin treatment, and is consistent with 

studies that have also demonstrated differences in the content of EVs that are released under 

conditions of stress (57, 58, 60-62). 

EVs released by cisplatin-treated cells have the capacity to induce invasion 

We hypothesise that treatment of cells with cytotoxic compounds such as cisplatin leads to the 

release of EVs into the tumour microenvironment with the capacity to influence other tumour cells. 

To test the effect of cisplatin EVs on invasiveness of A2780s we used the matrigel invasion assay. 

Treatment with cisplatin EVs increased the invasiveness of A2780s by approximately 6-fold 

compared to A2780s treated with control EVs (p = 0.0082) (figure 2A).  Similar results were obtained 

from IGROV-1, with cisplatin EVs increasing invasiveness by about 5-fold (p = 0.042) (figure 2B). 

Various studies have shown that EVs can induce an invasive and motile phenotype in recipient cells 

(63-65). Our results suggest that, at least in the case of A2780 and IGROV1 cells, the EVs released 

under normal conditions cannot induce greater levels of invasion when added to cells. However, the 

qualitative changes in EVs induced by cisplatin treatment confer the ability to induce greater 

invasion. Interestingly our unpublished data also show that EVs released following heat stress can 

also induce greater invasion in recipient cells(59), and others have shown that EVs released following 

exposure of cells to ionising radiation can induce increased metastatic ability (57).  These results 

suggest that the release of EVs with the ability to induce invasiveness in recipient cells may be part 

of a more general intercellular response to stress which could be occurring in the tumour 

microenvironment.  

Cisplatin EVs can cause bystander effect and an adaptive response to cisplatin 

The bystander effect (BE) is a phenomenon in which stressed cells can communicate with other cells, 

leading to apparently detrimental effects such as DNA damage in these bystander cells (48-50, 52, 

53, 66). Our recent work showed that EVs mediate BE following irradiation (48, 67). Subsequent 

findings have confirmed that EVs mediate BE following different stresses, including radiation (48, 49, 
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67) and heat shock(59). We therefore hypothesised that cancer cells stressed by the addition of 

cytotoxic chemotherapeutics could release EVs into the tumour microenvironment, which could 

then be taken up by other cells (including other cancer cells) leading to potential effects on tumour 

progression.   

To test the hypothesis that EVs released by stressed ovarian cancer cells could modulate the activity 

of bystander cells we studied the effect of cisplatin on A2780 cells. EVs derived from cisplatin-

treated cells appear to decrease the viability of bystander A2780 cells by 10% compared to cells 

treated with EVs from unstressed cells (p = 0.027) (figure 3A). Heparin has been shown to inhibit 

uptake of EVs (68, 69). Treating bystander cells with heparin, which in our hands also inhibits EV 

uptake by >95% (data not shown), abrogates the ability of cisplatin-EVs to mediate BE (figure 3A). 

These results are consistent with previous findings showing that cytotoxic agents including 

mitomycin C (53, 66, 70), bleomycin (66, 71) and vincristine (53) can induce BE. Our findings, which 

to our knowledge are the first to reveal an EV-mediated bystander effect induced by cisplatin, 

support the hypothesis that a wide range of stressors can induce the release of EVs into the tumour 

microenvironment that can potentially modulate an inter-cellular stress response in a tumour. 

The BE has been observed in several species, suggesting it provides a beneficial effect that has been 

conserved through evolution (72-74). One consequence of BE is an adaptive response which renders 

bystander cells more resistant to future stressors (52). Indeed, we have observed that bystander 

cells that take up EVs released from heat-shocked cells are more resistant to a repeated dose of 

heat-shock (59). To test whether a similar effect occurs in ovarian cancer cells following treatment 

with chemotherapeutics, we performed EV-mediated BE as described above, treated these 

bystander cells with a dose of cisplatin and by performing an MTT assay on these cells we effectively 

measured the effect of EV treatment on their resistance to cisplatin. When cells were pre-treated 

with cisplatin-EVs and then challenged with cisplatin they were significantly protected compared to 

cells pre-treated with PBS (figure 3B). This protective effect was reduced (but not completely 

abrogated, p = 0.052) when the cells were also treated with heparin to block the uptake of the EVs 

(figure 3B). The observation that heparin does not completely block this adaptive response could be 

because either additional non-vesicular factors are required for the response, or because some of 

the effects could be mediated by interaction of the EV with receptors at the cell surface without the 

need for EV uptake and cargo delivery. A recent study has also demonstrated that EVs released 

following treatment of pancreatic cancer cells with gemcitabine can induce an adaptive response in 

recipient cells, which may be mediated by enhanced reactive oxygen species detoxification and miR-

155-induced suppression of a gemcitabine metabolising enzyme (75). Taken together, our results are 

consistent with the hypothesis that treatment of cells with cisplatin- EVs induces a survival 

mechanism that allows them to adapt to resist the effects of cisplatin.  

Pathways differentially modulated by cisplatin EVs in cells 

To investigate the potential mechanisms by which cisplatin-EVs induce bystander effects (including 

increased invasiveness and the adaptive response) we analysed changes in phosphorylation status of 

important signalling proteins. A2780 cells were treated with cisplatin-EVs or control-EVs, proteins 

were extracted and changes in phosphorylation were measured using a Phospho­MAPK Array (figure 

4). Seven proteins had significantly different relative levels of phosphorylation between the cells 

treated with cisplatin EVs compared with control EV. CREB (p = 0.019), extracellular signal­regulated 

kinases (ERK) 2 (p = 0.050) and TOR (p = 0.0021) kinases were down-regulated in A2780s treated 
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with cisplatin EVs, whilst JNK2 (p = 0.00087), JNK-pan (p = 0.044), p38α (p = 0.038) and p53 

(p = 0.015) were up-regulated. These results suggest the involvement of these pathways in the 

effects specifically mediated by cisplatin EVs, some of which are consistent with previously 

implicated roles in cisplatin resistance. Knockdown of p38, for example, can lead to increased 

sensitivity to cisplatin (76), suggesting that the activation of p38 we observe in our cells could lead to 

increased resistance and therefore an adaptive response. JNK signaling is known to be involved in 

stress response and JNK phosphorylation is activated by a variety of stressors (77).  In the context of 

cisplatin treatment JNK may be a ‘double-edged sword’, in that it can have pro-apoptotic effects but 

can also be associated cisplatin resistance (78). These context-dependent effects may explain the 

observation that bystander cells appear to be simultaneously more stressed and more protected 

against future stress. Interestingly, JNK activation can also enhance the invasive and migratory 

behavior of cells (79), suggesting that this may also underlie our observation that EVs released 

following cisplatin-mediated stress induce greater invasion. Additional experiments are needed to 

elucidate whether delivery of vesicular cargo is required, whether signalling changes are responsible 

for the increased invasion, and whether increased vesicular delivery of matrix metalloproteinases to 

the extracellular environment is an important factor. Taken together our results suggest that 

changes in signalling activity are associated with the range of EV-mediated bystander effects 

observed following cisplatin treatment.  Further work is needed to assess whether these effects 

occur within the tumour microenvironment and how these could contribute to tumour progression 

in vivo.  

EV uptake inhibitors sensitise cells to cisplatin 

The results above indicate that EVs released by cisplatin-treated cells can induce an adaptive 

response in bystander cells. When treating a population of cells with cisplatin it would be difficult to 

disentangle the direct effect of the drug from any bystander effects that may be occurring; 

nevertheless, we reasoned that when such a cohort of cells is undergoing stress the transfer of 

cisplatin-EVs will occur, which could lead to the invasive and adaptive response we observe in 

bystander cells. If this is the case then the EV-mediated communication during cisplatin treatment 

would help the population to become more resistant to the drug. We therefore hypothesised that 

inhibiting this communication using heparin as an EV uptake blocker should prevent the adaptive 

response and thus sensitise the cells to the effects of cisplatin. To test this hypothesis, ovarian 

cancer cell lines were treated with EV uptake inhibitors and cisplatin and the effects on overall 

survival were measured using the MTT assay. Treatment of cells with heparin alone did not reduce 

overall survival of cells (data not shown), suggesting that heparin itself was not toxic at the doses 

used. Interestingly, pre-treatment of cells with heparin significantly decreased the IC50 of A2780 

cells from 31.3 μM to 21.2 μM (p < 0.0001) (figure 5A). Similar results were obtained in IGROV-1 

(figure 5B) and CP70 (figure 5C) cell lines with the IC50 decreasing from 60.4 μM and 146.8 μM to 

52.6 μM and 118.9 μM, respectively (p <0.0001). To test whether other EV uptake inhibitors also 

have the same cisplatin-sensitising effect we used amiloride and dynasore, which inhibit 

micropinocytosis and dynamin-requiring uptake pathways, respectively (80). As expected, amiloride 

and dynasore both significantly sensitised A2780 cells to cisplatin (figure 5D). These results suggest 

that blocking EV transfer between cells in the tumour microenvironment during chemotherapy could 

lead to more effective killing of cancer cells.  

Interestingly, heparin has previously been shown to increase sensitivity to cisplatin. In a recent study 

tinzaparin, a low-molecular weight heparin, was shown to sensitise A2780 cells to cisplatin, and that 
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cell surface heparan sulfate proteoglycans were involved (81). Heparin has also been shown to 

decrease invasion and migration in breast and lung cancer cell lines (82-84). Heparin was also shown 

to increase cytotoxicity caused by chemotherapeutic drugs in breast cancer cells; an effect on drug 

efflux transporters ABCG2 and ABCC1 was noted that led to increasing levels of cytotoxic drugs 

within cells (85). Our results suggest that sensitising effect of heparin may be at least in part due to 

inhibiting the EV-mediated cross-talk between cells during treatment.  

Heparin does not appear to increase cisplatin sensitivity in vivo 

The finding that treating ovarian cancer cells with heparin sensitises them to cisplatin has obvious 

therapeutic implications. To test whether heparin could sensitise ovarian cancer cells in vivo we 

utilised a xenograft model. A2780 cells were implanted subcutaneously in the flank of BALB/c SCID 

mice. The mice were then assigned to one of four groups a) control b) cisplatin treatment only c) 

heparin treatment only and d) heparin and cisplatin treatment; tumour volume was regularly 

monitored to test the effect of treatment on tumour progression. Tumour doubling-time, volume, 

and survival are shown in figures 6A, 6B and 6C, respectively. Contrary to our expectations, heparin 

when given alongside cisplatin did not slow the growth of the tumour nor did it decrease the 

survival. Indeed, the addition of heparin appeared to speed up doubling time compared to adding 

cisplatin alone. Thus, it appears from this experiment that either heparin does not have the same 

effect on EV communication in vivo, or that the drug has other pro-tumour side-effects in the 

xenograft setting that negate any beneficial effects.  

The discrepancy between in vitro and in vivo results could be due to the experimental conditions 

being used. The xenografts, for example, were injected into flanks and may not represent the best 

possible model for studying behaviour of ovarian cancer in situ. Heparin could also help tumour 

growth by other means, for example by inducing a higher degree of angiogenesis (86). Results from 

other xenograft studies that investigated the effect of xenograft sensitivity to drugs appear to be at 

odds with our own data. In one study, both tinzaparin (a low molecular weight heparin) and a non-

anticoagulant heparin, S-NACH, decreased tumour growth and increased apoptosis in pancreatic 

cancer cells (87, 88); S-NACH also increased chemotherapy sensitivity in breast cancer xenografts 

(89). Xenograft studies appear to suggest that heparin decreased tumour growth in lung cancer (90) 

and to confer sensitivity to gefitinib, a chemotherapeutic agent (91). Another study revealed that 

heparin decreases cisplatin resistance of lung cancer cells (92).  However other studies appear to 

suggest no benefit of adding heparin to conventional chemotherapy (93-95). The differences 

observed in these disparate studies may be down to subtle differences in methodology or the study 

model. Future experiments should be performed to ascertain the potential of heparin, and other EV 

uptake inhibitors in sensitising cancer cells to drug treatment.  

Conclusion 

Here we have demonstrated that EVs released following treatment of cells with a cisplatin are able 

to induce a range of effects in recipient cells. These include an adaptive response which yields 

greater resistance to drug treatment, and increased invasiveness. Blocking the transfer of EVs 

between cells may represent a means to sensitise tumours to chemotherapy, though further work is 

needed to establish whether these benefits can be translated to the in vivo setting. Future work is 

also needed to fully elucidate the pathways involved and how they contribute to tumour 

progression. These data further highlight the importance of intercellular communication via EVs in 

the tumour microenvironment.  
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Figures and figure legends 

Figure 1 Characterisation of cisplatin and control EVs derived from A2780 cells A) Control and 

cisplatin treated cell and EV protein lysates were characterised by Western blotting, samples were 

probed for GAPDH, Calnexin, HSP70 and Cytochrome C Oxidase. B) Quantification of EVs secreted by 

control and cisplatin treated A2780 cells by nanoparticle tracking analysis (at least two replicates). C) 

Images of electron microscopy grids of control and cisplatin EVs visualised by transmission electron 

microscopy. D) Average diameter of EVs secreted by cisplatin treated and control A2780 cells 

measured on electron microscopy grids (C).  

Figure 2 The effect of cisplatin treated cell­derived EVs upon the invasive capacity of ovarian 

cancer cell lines The Matrigel transwell invasion assay was used to determine the effect of cisplatin 

treated cell­derived EVs on invasive potential of two ovarian cancer cell lines, A2780 (A) and IGROV-

1 (B). Extracted EVs were administered to approximately 1 million cells and after 24 h 100,000 cells 

were distributed into each insert of the transwell assay and another dose of EVs was added. After 24 

h the Matrigel membranes were cleared of non­invasive cells and invasive cells were stained with 

crystal violet. The number of invasive cells on each membrane was counted. The graphs represent 

fold change in terms of the total number of cells that invaded the Matrigel membrane following 

treatment with either control or cisplatin treated cell­derived EVs. Each sample group contained six 

biological replicates. Error bars represent standard error of the mean of the biological replicates. P 

values were calculated using T­test. Representative images are shown below each group. 

Figure 3 Cisplatin derived EVs cause bystander effect and an adaptive response to cisplatin  

A. A2780 cells were seeded in 96-well plates. They were treated with PBS (control), EVs from 

cisplatin-treated cells (cis EV) or EVs from control cells (control EV) with or without 30 minutes pre-

treatment with 10µg/ml heparin to inhibit EV uptake. 4 d later overall viability was measured using 

the MTT assay. Cis EVs caused a significant decrease in viability; this effect was not present in the 

group treated with heparin. B. A2780 cells were treated with PBS, Cis EVs or Control EV (as in panel 
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A) with or without pre-treatment with heparin (10µg/ml); after 24 h cells were further treated with 

cisplatin and survival was assayed using the MTT assay (results are normalised to control). Cells pre-

treated with cis EVs are more resistant to cisplatin; this effect is decreased with heparin. Each 

column shows the mean of at least 6 replicates; error bars show standard error of mean. 

Figure 4 Relative phosphorylation levels of 26 proteins in A2780 cells following treatment with 

either control or cisplatin EVs determined using the Proteome Profiler Human Phospho­MAPK 

Array A) Blots showing intensity for each kinase on duplicate spots for each EV treatment. B) 

Intensity levels of each kinase in A­2780 cells treated with either control or cisplatin EVs. Differences 

in kinase phosphorylation were calculated using the two tailed T­test. 

Figure 5 EV inhibitors alter the cisplatin sensitivity of ovarian cancer cell lines 

Cells were seeded in 96-well plates (day 0); they were pre-treated on day 2 for 30 min with heparin 

(panels A, B and C), amiloride or dynasore (panel D). They were then treated with varying 

concentrations of cisplatin for 3 h. Viability was quantified by the MTT assay after 48 h. There was a 

significant increase in sensitivity to cisplatin in A2780 (A) (p < 0.0001), IGROV-1 (B) (p = 0.0006) and 

CP70 (C) (pe <0.0001) on pre-treatment with heparin. Similarly, there was an increased sensitivity to 

cisplatin in A2780 cells on pre-treatment with amiloride (D) (p <0.0001) and dynasore (D) (p <0.0001) 

Figure 6 The effect of heparin on cisplatin treatment in A2780 xenografts in mice 

A2780s were injected subcutaneously into the flanks of nude BALB/c SCID mice; when the tumours 

were 100 mm3 in volume 24 mice were divided into four treatment groups - control (no treatment), 

heparin only, cisplatin only or heparin and cisplatin.  Tumour volume was assessed regularly; the 

animal was sacrificed when the tumour quadrupled in size. Panel A shows tumour doubling times in 

the four groups; panel B shows average tumour volume in the four treatment groups while the 

Kaplan-Meier curve in Panel C shows survival after treatment.  


