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Abstract  9 

Primate responses to habitat alteration vary depending on the species’ dietary guild and 10 

forest type. Leaves from secondary vegetation can provide nutritious resources to folivorous 11 

primates, whereas frugivores, burdened with a scattered spatial and temporal distribution of 12 

fruiting resources, require larger home ranges, potentially limiting their ability to cope with 13 

altered landscapes. Within coastal south-eastern Madagascar, we sought to determine whether 14 

two lemur species occupying contrasting ecological niches (i.e., dietary guilds) respond 15 

differently to the changing features of their degraded and fragmented habitat. We conducted 16 

behavioural observations between 2011 and 2013 on frugivorous collared brown lemurs 17 

(Eulemur collaris) and folivorous southern bamboo lemurs (Hapalemur meridionalis). In order 18 

to estimate the ability of lemurs to use pioneer species, we categorised all plants used for feeding 19 

and resting as either ‘fast-growing’, ‘mid-growing’, or ‘slow-growing’. We fitted linear mixed-20 

effects models, one for each plant growth category with monthly proportional use rates as the 21 

dependent variable, and included species (E. collaris and H. meridionalis), activity (feeding and 22 

resting), and season (dry and wet) as fixed effects. Our results show that E. collaris used both 23 
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slow- and mid-growing plant species most often, while H. meridionalis were more likely to use 24 

fast-growing plants, which indicated an ability to utilise secondary/disturbed vegetation. 25 

Frugivorous E. collaris appear more limited by climax plants, while folivorous H. meridionalis 26 

appear to be slightly more adaptable, a finding that is consistent with other primate folivores.  27 

 28 

Introduction 29 

Tropical deforestation is one of the primary threats to global biodiversity (Achard et al. 30 

2002; Asner et al. 2009; Dirzo and Raven 2003; Gibson et al. 2011; Sala et al. 2000). The 31 

destruction, fragmentation, and degradation of remaining habitats threaten many species’ ability 32 

to survive (Oates 2013). While forest fragments typically persist after deforestation, they 33 

effectively become islands within an anthropogenic landscape, most of which are unsuitable 34 

habitat for the majority of forest species (Broadbent et al. 2008; Laurance et al. 2009, 2011). 35 

Ecological flexibility is loosely defined as the ability of an organism to adjust to changes, 36 

e.g., anthropogenic, gradual, and stochastic, within its environment (Isaac and Cowlishaw 2004; 37 

Nowak and Lee 2013; Wieczkowski 2003). In more specific terms, flexibility may encapsulate 38 

various behavioural modifications including the diet, i.e., exploitation of alternative food 39 

sources, as well as altering activity, ranging pattern and vertical strata use in response to new 40 

dietary opportunities. This ability to expand niche breadth is key to withstanding the risks of 41 

anthropogenic and/or stochastic habitat modification (Lee 2003).  42 

  It is important to understand behavioural responses of forest dwelling primates to habitat 43 

degradation and fragmentation due to the increasing rate of habitat alteration and limited ability 44 

of most species to move between forest fragments (Marsh 2003). How a primate responds to 45 

habitat degradation, however, seems to vary depending on species and type of forest (Chapman 46 
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et al. 2000; Cowlishaw and Dunbar 2000; Onderdonk and Chapman 2000). Secondary growth 47 

may produce foods of higher dietary quality compared to foods available in mature forests, thus 48 

making folivorous (i.e., leaf-eating) primates less affected by habitat degradation (Chapman et al. 49 

2002; Ganzhorn 1995; Ganzhorn et al. 1999b; Plumptre and Reynolds 1994). For example, 50 

populations of folivorous black howler monkeys (Alouatta caraya and A. pigra), have been 51 

documented to use and rely heavily on fast-growing, exotic plant species (e.g., Eucalyptus and 52 

shaded cocoa plantations) for both occasional food and resting/sleeping within fragmented, 53 

anthropogenic landscapes (Bicca-Marques and Calegaro-Marques 1994; Bonilla-Sánchez et al. 54 

2012; Zárate et al. 2014). Similarly, black-and-white colobus (Colobus guereza) appear to do 55 

well in some disturbed (i.e., previously logged) habitats (Chapman et al. 2000; Tutin et al. 56 

1997b). Frugivorous (i.e., fruit-eating) primates, however, have to cope with the scattered spatial 57 

and temporal distribution of fruiting resources, thus often requiring larger home ranges (Estrada 58 

and Coates-Estrada 1996; Rode et al. 2006; but see Tutin et al. 1997a). Many frugivorous 59 

primates avoid forest fragments, e.g., grey-cheeked mangabeys (Lophocebus albigena) and 60 

Mexican spider monkeys (Ateles geoffroyi vellerosus), and appear to be restricted to continuous 61 

forests (Estrada and Coates-Estrada 1996; Tutin et al. 1997b). Despite these potential limitations, 62 

some frugivorous primates, such as chimpanzees (Pan troglodytes) and Sumatran orangutans 63 

(Pongo abelii), demonstrate an ability to survive within degraded, anthropogenic landscapes, 64 

foraging on a mixture of crops and wild fruits (Campbell-Smith et al. 2011; Hockings and 65 

McLennan 2012; McLennan and Hockings 2014). As frugivorous primates are important seed 66 

dispersers, their ability to cope within anthropogenic landscapes has major implications for the 67 

maintenance of forest diversity: they are fundamental in the regeneration of degraded habitats 68 

(Chapman 1995; Ganzhorn 1995; Razafindratsima and Dunham 2014). 69 
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On a global scale, frugivorous strepsirrhines from Madagascar contribute on a larger 70 

scale to their respective ecosystems, e.g., seed dispersal, compared to primates in the Neotropics 71 

or mainland Africa (Jernvall and Wright 1998). As frugivorous lemurs are essential to 72 

maintaining the unique forests of Madagascar, their demise would likely trigger extinction 73 

cascades (Federman et al. 2016; Ganzhorn et al. 1999a; Jernvall and Wright 1998; 74 

Razafindratsima and Dunham 2014). Within Madagascar, for example, greater than 80% of 75 

forest area exists less than 1 kilometre from an edge (Harper et al. 2007), and thus fragmentation 76 

is of great concern for the survival of forest fauna and flora species (Hannah et al. 2008; Waeber 77 

et al. 2015). This can be further complicated by introduced exotic and invasive species that 78 

threaten the preservation of endemic biodiversity as well as ecosystem restoration efforts 79 

(Braithwaite et al. 1989; D'Antonio and Vitousek 1992). While the limits of lemurs’ tolerance, 80 

i.e., coping strategies, to fragmented, secondary, and degraded habitats are poorly understood 81 

(Campera et al. 2014; Donati et al. 2011; Eppley et al. 2015a; Gardner 2009; Irwin et al. 2010; 82 

Lehman et al. 2006), it is imperative to understand the relationship between species and these 83 

altered habitats if we are to properly conserve primates and other species (Cristóbal-Azkarate 84 

and Arroyo-Rodríguez 2007; Isabirye-Basuta and Lwanga 2008; Onderdonk and Chapman 85 

2000).  86 

The Anosy region along the southeast coast of Madagascar provides a complex mosaic of 87 

heavily fragmented upland and swamp forest habitats, mono-dominant exotic species, old and 88 

new timber plantations, and a large-scale ilmenite ore mine and separation plant facility 89 

(Barthlott et al. 1996; Ramanamanjato et al. 2002; Ganzhorn et al. 2007b). This area provides an 90 

excellent model with which to explore the behavioural and feeding ecological flexibilities 91 

amongst the lemurs which inhabit it (Bollen and Donati 2006; Eppley et al. 2015a; 92 
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Rabenantoandro et al. 2007), and how they cope with habitat disturbance. Within southeast 93 

Madagascar, sympatric collared brown lemur (Eulemur collaris) and southern bamboo lemur 94 

(Hapalemur meridionalis) occupy different ecological niches, the frugivorous and folivorous 95 

dietary guild, respectively. Previous research has shown that E. collaris is tolerant to habitat 96 

degradation and strong seasonal resource availability by flexibly modifying many aspects of its 97 

behavioural ecology, such as feeding strategies and home range use (Campera et al. 2014; Donati 98 

et al. 2011). Similarly, H. meridionalis display a flexible ecology, utilising three distinct habitats 99 

(littoral forest, littoral swamp, and Melaleuca-dominated swamp) for both resting and feeding 100 

purposes (Eppley et al. 2015a). 101 

While the use of disturbed habitats by these two lemurids has been increasingly 102 

documented (Campera et al. 2014; Eppley et al. 2015a), our study sought to contrast the two taxa 103 

and specifically determine to what extent their ecological flexibility played a role in their ability 104 

to use altered and degraded habitats. Habitat edges often contain a higher abundance of pioneer, 105 

i.e., fast-growing, species as compared to climax habitat (Laurance et al. 2006, 2007). 106 

Furthermore, climax, i.e., slow-growing, plants struggle to regenerate in open habitats as is very 107 

often the case in edge areas and/or plantations (Benitez-Malvido 1998). The general observation 108 

that folivores are able to cope better within degraded environments led us to predict that H. 109 

meridionalis will use more forest edge habitat compared to E. collaris. In terms of utilising plant 110 

species as feeding and/or resting resources, we sought to determine whether the dietary guilds of 111 

our two taxa are predictive of an ability to use fast growing plant species, typically represented 112 

by pioneer species, and how this is a potential signal of ecological flexibility to altered habitats. 113 

As fast-growing tropical plant species often provide a continuous (i.e., non-seasonal) and 114 

relatively large biomass presence of young leaves (Coley et al. 1985; Poorter 1999), which 115 
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consequently produce more protein (Wasserman and Chapman 2003), we predict that H. 116 

meridionalis will use fast-growing tree species more often than sympatric frugivorous E. 117 

collaris. Due to the contrasting dietary guilds of our two study species, we predict that there will 118 

be little overlap in feeding resources. As these are the two largest lemur species within the 119 

southeast coastal landscape, however, we predict that they will use similar tree species for 120 

resting, as this degraded littoral environment has a limited number of mature trees. We expect 121 

the largest differences in feeding tree use to be evident for E. collaris during the dry season, i.e., 122 

when there are fewer available food resources (Bollen and Donati 2005; Campera et al. 2014). 123 

Lastly, exotic plant species (e.g., introduced, non-endemic), are shown to incur lower levels of 124 

leaf herbivory compared to endemic plant species (Lake and Leishman 2004). Thus, we predict 125 

that the folivorous H. meridionalis would avoid exotic plant species. 126 

 127 

Methods 128 

Study site 129 

We conducted our study in the Mandena Conservation Zone (24°95’S 46°99’E; hereafter 130 

Mandena), along the southeast coast of Madagascar, approximately 10 km north of Fort-Dauphin 131 

(Tolagnaro). Located within three kilometres of the coast and characterized by a low canopy 132 

growing on sandy substrate (Dumetz 1999), this protected area consists of approximately 82 ha 133 

of seasonally inundated swamp among 148 ha of degraded littoral forest fragments (Ganzhorn et 134 

al. 2007a). This littoral zone experiences less seasonality than the humid eastern forests (Bollen 135 

and Donati 2005), with a mean temperature of 22.5°C (range: 9.5 – 35.0°C) and total annual 136 

precipitation of 2,808mm, typically generating a wet season between November and April 137 

(Eppley et al. 2015a, 2016b). Compared to the less degraded littoral forests further north (Bollen 138 
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and Donati, 2006), the degree of anthropogenic degradation in Mandena resulted from the 139 

historical extraction of utilitarian timber species and charcoal production due to the close 140 

proximity of the Anosy region capital (Ingram and Dawson 2006; Vincelette et al. 2007b). The 141 

area immediately surrounding these fragmented forests is composed of mono-dominant timber 142 

plantations, an exposed sand-scrub matrix, and the large-scale ilmenite mining concession and 143 

associated administration and extraction/separation facilities (Ganzhorn et al. 2007b). In addition 144 

to the two cathemeral lemurids, i.e., E. collaris and H. meridionalis, this littoral area is inhabited 145 

by four nocturnal strepsirrhines: Ganzhorn’s mouse lemur (Microcebus ganzhorni), eastern fat-146 

tailed dwarf lemur (Cheirogaleus medius), greater dwarf lemur (C. major), and the southern 147 

woolly lemur (Avahi meridionalis).  148 

 149 

Study species 150 

Our study focuses on two sympatric lemurs inhabiting Mandena: E. collaris and H. 151 

meridionalis. Both are medium-sized lemurs, although E. collaris is considerably larger, with a 152 

mean body mass of 2.2 kg (Donati et al. 2011), compared to the mean body mass of H. 153 

meridionalis which is 1.1 kg (Eppley et al. 2015b). Both of these lemurid species exhibit a 154 

cathemeral activity pattern (Donati et al. 2007; Eppley et al. 2015c). Species are classified 155 

according to dietary guild based on diets comprising ≥50% of a specific food category 156 

(Ganzhorn 1997). As the annual diet of E. collaris consists of ≥70% fruits, it is classified as 157 

frugivorous (Donati et al. 2007, 2011). The annual diet of H. meridionalis consists of ≥70% 158 

foliose matter, thus this species is classified as folivorous (Eppley et al. 2011, 2016a).  159 

We captured lemur subjects via Telinject® blow darts (administered by an experienced 160 

Malagasy technician) containing a hypnotic anaesthesia (4-5 mg/kg of ketamine hydrochloride or 161 
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tiletamine hydrochloride. Four individuals (one for each group) of E. collaris were captured and 162 

equipped with radio-collars (TW-3, Biotrack, 29 g). We captured ten individuals of H. 163 

meridionalis from four social groups, and radio-collared with data-logging tags (ARC400, 164 

Advanced Telemetry Systems, Inc.; Isanti, MN, USA). We utilised radio-collars to expedite the 165 

amount of time it took to locate lemur groups each day; however, not all adult focal individuals 166 

were radio-collared. All subjects recovered from anaesthesia within 1.5 h and were not moved 167 

from the capture area. Furthermore, we followed lemurs until they regained full mobility in trees. 168 

There were no injuries as a consequence of the captures. The collars were below the 5% 169 

threshold of the subjects’ weight. For more specific information on the capturing/collaring 170 

processes of E. collaris, see Campera et al. (2014), and for H. meridionalis, see Eppley et al. 171 

(2015c, 2016c). 172 

 173 

Data collection 174 

 We collected data for each species during different years. For E. collaris, MB and MC 175 

observed group AB from March 2011 to January 2012, and group C from June 2011 to January 176 

2012. Data collection was conducted on a focal individual from 06:00 to 18:00 h. We collected 177 

behavioural data in 5 min intervals via instantaneous sampling (Altmann 1974), specifically 178 

noting the tree species used for feeding and resting. Furthermore, we recorded the position of the 179 

focal E. collaris individual in 30 min intervals via a handheld GPS. For H. meridionalis, TME 180 

conducted full-day focal observations (from sunrise to sunset) with groups 1, 2, and 4 (we used 181 

group 3 exclusively for home range data collection) between January and December 2013. We 182 

identified all observed plant food items consumed by the focal individual, noting the plant 183 

species’ scientific name, and recorded feeding duration via continuous sampling (Altmann 184 
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1974). Furthermore, we recorded all instances ≥ 15 min for continuous resting. Lastly, we 185 

recorded H. meridionalis focal waypoint locations via GPS in 15 min intervals. 186 

JR and FR identified all plant species used for feeding and resting by both lemur species, 187 

and we categorized these into three successive growth rates as they occur under natural 188 

conditions. As such, fast-growing plant species reached maturity < 2 years, mid-growing plant 189 

species reached maturity between 2 – 5 years, while slow-growing species reached maturity in > 190 

5 years, with categories based on previous botanical assessments (cf. Vincelette et al. 2007a). 191 

Furthermore, JR identified exotic plant species (i.e., non-endemic), which we validated with an 192 

index of exotic and invasive species in Madagascar (Gérard et al. 2015). 193 

 194 

Ethical Note 195 

Our research protocols were approved and permits authorized by the Commission 196 

Tripartite of the Direction des Eaux et Forêts de Madagascar (Autorisation de Recherché 197 

n.29/11/MEF/ SG/DGF/DCB.SAP/SCB du 20/01/11 and 198 

n.240/12/MEF/SG/DGF/DCB.SAP/SCB du 17/09/12), adhering to the legal requirements of 199 

Madagascar. We conducted research under the collaboration agreement between the Department 200 

of Animal Biology of the University of Antananarivo and the Department of Animal Ecology 201 

and Conservation of the University of Hamburg, and QIT Madagascar Minerals (QMM). 202 

 203 

Data analyses 204 

We entered all ranging data into ArcGIS 10.2 (ESRI) using the Geospatial Modelling 205 

Environment (GME) spatial ecology interface (Beyer 2012). Ranging and statistical analyses 206 

were conducted using R statistical software version 3.2.3 (R Development Core Team 2015). We 207 
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determined each group home range with a 95% kernel density estimate, while core areas were 208 

determined as a 50% kernel density estimate (Worton 1989). We then created a forest edge 209 

polygon buffer 100 m inside the littoral forest boundary which allowed us to calculate the total 210 

amount of forest edge and non-edge habitat within each lemur species’ home range and core 211 

areas within Mandena (Laurance et al. 2007; Lehman et al. 2006).  212 

 From our behavioural sampling of E. collaris and H. meridionalis, we calculated monthly 213 

proportional utilisation rates for all feeding and resting trees. For each of the three plant species 214 

growth categorizations, we fitted General Linear Mixed-effects Models (LMM) using the lmer 215 

function of the lme4 package developed for R (Bates et al. 2012). For each LMM, our dependent 216 

response variable was the monthly proportion of plant species used (i.e., fast-growing plants, 217 

mid-growing plants, and slow-growing plants), while our fixed effects were the lemur species (E. 218 

collaris and H. meridionalis), activity (feeding and resting), and season (dry and wet). We 219 

included lemur social group as random effect to control for repeated sampling. We then used the 220 

ANOVA function to calculate likelihood ratio tests for model comparison, allowing us to 221 

determine which model had the best explanatory power by comparing Akaike’s Information 222 

Criterion (AIC) values for all possible models. P-values were obtained with a likelihood ratio 223 

test using the afex package (Singmann 2014) developed for R, with significance considered at P 224 

< 0.05. Residuals from the analyses did not deviate from normality according to the 225 

Kolmogorov-Smirnov test.  226 

 To determine which factors are linked to the utilisation of exotic plants within Mandena, 227 

we fitted Generalized Linear Mixed-effects Models (GLMM) using the glmer function of the 228 

lme4 package developed for R (Bates et al. 2012), with the monthly use of an exotic plant as a 229 

binomial dependent variable, as opposed to endemic plants. As with the LMMs, our fixed effects 230 
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were lemur species, activity, and season, with group included as random effect to control for 231 

repeated sampling. We then used the ANOVA function to calculate likelihood ratio tests for 232 

model comparison and determined which model had the most explanatory power by comparing 233 

the AIC values for all possible models. 234 

 235 

Results 236 

Ranging 237 

We observed E. collaris for 962 h, while H. meridionalis were observed for 1,762 h. Both 238 

lemurid species’ home ranges were within the central to northern portions of Mandena, and were 239 

not limited to only littoral forest areas, but rather encompassed a mixture of both littoral forest 240 

and swamp (Fig. 1). Considering species’ home ranges, E. collaris used considerably larger areas 241 

than H. meridionalis (Table 1). The proportion of edge habitat used by both species within their 242 

home range were similar, with forest edge comprising a mean of 37.4% of E. collaris home 243 

ranges (N = 2), and 45.6% of H. meridionalis home ranges (N = 4) (Table 1). Considering only 244 

the core areas, forest edge comprised similar mean percentages of E. collaris (50.6%) and H. 245 

meridionalis (42.6%) habitat. 246 

 247 
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 248 

Fig. 1. Location of E. collaris and H. meridionalis group home ranges (95% kernel density 249 
estimates) within the Mandena littoral forest and swamp. Portions of the swamp are composed of 250 
mono-dominant strands of exotic Melaleuca, while lighter grey areas to the east are a sand-scrub 251 
matrix and those to the west are a matrix of sand-scrub and Eucalyptus plantations. Data on E. 252 
collaris were collected between March 2011 and January 2012, and H. meridionalis between 253 
January and December 2013. 254 
 255 
Table 1. Area (in hectares) of both home range (95% kernel density estimate) and core area 256 
(50% kernel density estimate) for E. collaris and H. meridionalis groups in Mandena. Edge 257 
habitat was calculated as the area (ha) within 100 m buffer from the forest edge. Data were 258 
collected on E. collaris between March 2011 and January 2012, and on H. meridionalis between 259 
January and December 2013. 260 

   Home range (ha)   Core area (ha)   

Species Group 
Months of 

observation  Edge (ha) Edge (%)  Edge (ha) Edge (%) 
E. collaris         
 AB 11 41.16 19.07 46.33 5.61 4.31 76.83 
 C 8 83.32 23.68 28.42 17.98 4.39 24.42 
H. meridionalis         
 1 12 18.39 8.40 45.68 7.76 1.20 15.46 
 2 12 17.66 9.75 55.21 3.74 2.68 71.66 
 3 12 6.60 3.65 55.30 N/A N/A N/A 
 4 12 10.43 2.75 26.37 2.09 0.85 40.67 
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 261 

Diet 262 

We identified 105 different plant species used by E. collaris and 112 species used by H. 263 

meridionalis for feeding and resting (Table 2). Twenty-four plant species were eaten by both 264 

lemurs. More specifically, E. collaris food resources comprised 16.9% fast-growing, 28.6% mid-265 

growing, and 54.6% slow-growing plants. For H. meridionalis, food resources comprised 38.0% 266 

fast-growing, 16.9% mid-growing, and 45.1% slow-growing plants. Twenty-seven plant species 267 

were used for resting by both lemur species. For E. collaris, we categorized 14.3% of all resting 268 

plants as fast-growing, 24.8% as mid-growing, and 61.0% as slow-growing, while for H. 269 

meridionalis, we categorized 27.7% of their used plants as fast-growing, 14.3% as mid-growing, 270 

and 58.0% as slow-growing. Both E. collaris and H. meridionalis displayed large differences in 271 

their utilisation of these plant growth categories between activity (Fig. 2) and season (Fig. 3). 272 

 273 

Table 2. Number of species within feeding and resting plant species’ growth categorization for 274 
E. collaris (March 2011 to January 2012) and H. meridionalis (January to December 2013) in 275 
Mandena. 276 
 E. collaris   H. meridionalis   
Plant categories Feed Rest Total Feed Rest Total 
Fast-growing 13 2 15 27 5 31 
Mid-growing 22 11 26 12 8 16 
Slow-growing 42 43 64 33 57 65 
Note: E. collaris also relied on six unidentified plant species that were not included in the 277 
analyses 278 
 279 
  280 
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 281 
Fig. 2. Comparison of monthly proportional medians (including interquartiles and ranges) 282 
between E. collaris and H. meridionalis on their selection of (a) fast-growing, (b) mid-growing, 283 
and (c) slow-growing plants for feeding and resting. Data were collected between March 2011 284 
and January 2012 on E. collaris, and between January and December 2013 on H. meridionalis. 285 
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 286 

 287 
Fig. 3. Comparison of monthly proportional medians (including interquartiles and ranges) 288 
between E. collaris and H. meridionalis on their selection of (a) fast-growing, (b) mid-growing, 289 
and (c) slow-growing plants during the dry and wet seasons. Data were collected between March 290 
2011 and January 2012 on E. collaris, and between January and December 2013 on H. 291 
meridionalis. 292 
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 293 

 The model with the best predictive value for fast-growing plants (AIC = -93.06, χ2 = 294 

21.59, df = 1, P < 0.001) showed that both lemur species and activity were likely to influence 295 

their use (Table 3) while season had no effect. Specifically, fast-growing plants were most likely 296 

to be used by H. meridionalis, and most often for feeding (Fig. 2a). Season was not significantly 297 

predictive (Fig. 3a). The model with the best predictive value for mid-growing plants (AIC = -298 

163.11, χ2 = 9.29, df = 1, P < 0.01) showed that all fixed-effects, i.e., species, activity, and 299 

season, influenced use of these plants (Table 3). Specifically, E. collaris was most likely to use 300 

mid-growing plants. Furthermore, these plants were more likely to be used for feeding (Fig. 2b), 301 

and to be used in the dry season (Fig. 3b). The model with the best predictive value for slow-302 

growing plants (AIC = -63.90, χ2 = 21.87, df = 1, P < 0.001) showed again that all fixed-effects, 303 

i.e., species, activity, and season, influenced use of these plants (Table 3). E. collaris was most 304 

likely to use slow-growing plants, with these plants most often used for resting (Fig. 2c), 305 

specifically during the wet season (Fig. 3c). 306 

 307 

 308 
 309 
 310 
 311 
 312 
 313 
 314 
 315 
 316 
 317 
 318 
 319 
 320 
 321 
 322 
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Table 3. Linear mixed models predicting increased monthly proportion of using fast-growing 323 
plants, mid-growing plants, and slow-growing plants by E. collaris and H. meridionalis in 324 
Mandena, Madagascar. Data were collected between March 2011 and January 2012 on E. 325 
collaris, and between January and December 2013 on H. meridionalis. 326 
Growth class Variable β SE 95% CI t P 
Fast-growing       
 Fixed effects      
     Intercept 0.13 0.04 0.06, 0.21 3.42  
     Species 0.41 0.42 0.33, 0.49 9.78 <0.0001 
     Activity -0.19 0.29 -0.25, -0.14 -6.66 <0.0001 
     Season -0.02 0.03 -0.08, 0.03 -0.85 0.39 
 Random effect      
     Group Variance 0.03    
     Residual Variance 0.15    
Mid-growing       
 Fixed effects      
     Intercept 0.29 0.02 0.24, 0.34 12.24  
     Species -0.10 0.02 -0.15, -0.06 -4.67 <0.001 
     Activity -0.12 0.02 -0.16, -0.08 -5.47 <0.0001 
     Season -0.06 0.02 -0.10, -0.02 -2.74 <0.01 
 Random effect      
     Group Variance 0.00    
     Residual Variance 0.11    
Slow-growing       
 Fixed effects      
     Intercept 0.55 0.04 0.48, 0.63 14.86  
     Species -0.29 0.04 -0.36, -0.22 -8.29 <0.0001 
     Activity 0.32 0.03 0.25, 0.38 9.52 <0.0001 
     Season 0.08 0.03 0.02, 0.15 2.45 0.01 
 Random effect      
     Group Variance 0.00    
     Residual Variance 0.17    
Bold indicates factors significant at P < 0.05, with values obtained using likelihood-ratio test. 327 
β standardised regression coefficient, SE standard error, CI confidence interval, t t-value 328 
 329 

Exotic species in Mandena 330 

There were five plant species in Mandena classified as exotics, likely the consequence of 331 

human activities and then dispersed in various ways (e.g., wind). These were broad-leaved 332 

paperbark tree (Melaleuca quinquenervia), guava (Psidium spp.), Pemba grass (Stenotaphrum 333 

dimidiatum), Polynesian arrowroot (Tacca leontopetaloides) and soapbush (Clidemia hirta). We 334 
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observed H. meridionalis feeding on M. quinquenervia flowers and resting in this species, while 335 

they fed on the leaves (grass blades) of S. dimidiatum. We observed E. collaris using four exotic 336 

species, feeding on the ripe fruits of C. hirta, Psidium spp., and T. leontopetaloides, and resting 337 

in M. quinquenervia. H. meridionalis used exotics in 33 of 36 total months (6.6 ± 1.5% of plants 338 

used monthly), whereas E. collaris only used exotic plant species in four of 19 total months (0.3 339 

± 0.2% of plants used monthly). The model with the best predictive value (AIC = 105.91, χ2 = 340 

1.33, df = 1, P < 0.001) showed that exotic plants were most likely to be used by H. meridionalis, 341 

and most often for feeding (Table 4). Season was not included in the best-fit model. 342 

 343 

Table 4. Generalized linear mixed model predicting monthly utilisation of exotic plants. Data 344 
were collected between March 2011 and January 2012 on E. collaris, and between January and 345 
December 2013 on H. meridionalis. 346 
Variable Β SE 95% CI Z P 
Fixed effects      
    Intercept -1.52 0.74 -3.24, 0.07 -2.07  
    Lemur species 3.39 0.94 1.47, 5.68 3.63 <0.01 
    Activity -2.45 0.61 -3.78, -1.35 -4.05 <0.0001 
Random effect      
    Group Variance 0.66    
Bold indicates factors significant at P < 0.05. 347 
SE standard error, CI confidence interval 348 
 349 

Discussion 350 

 Similar to Lehman et al. (2006), we found that both E. collaris and H. meridionalis used 351 

similar proportions of forest edge habitat within their home ranges and core areas, thus our 352 

prediction that H. meridionalis would use greater edge habitat was not supported. As predicted, 353 

the frugivorous E. collaris was more likely to use both slow- and mid-growing plant species, 354 

while the folivorous H. meridionalis was more likely to use fast-growing plants in Mandena. In 355 

terms of activity, slow-growing trees were particularly important for E. collaris resting, in line 356 
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with our prediction, while H. meridionalis used a similarly large amount of slow-growing trees 357 

for resting. As expected, fast-growing plants (comprising mostly herbs and scrubs) seem to be 358 

preferred by H. meridionalis which exhibited greater ability to include pioneer species in its diet, 359 

a finding that is consistent with other studies of folivorous primates (Bicca-Marques and 360 

Calegaro-Marques 1994; Bonilla-Sánchez et al. 2012; Ganzhorn et al. 1999b). However, the use 361 

of exotic (non-endemic) plant species for feeding by H. meridionalis did not support our 362 

prediction, as these small-bodied folivores consumed items from these non-native plants nearly 363 

every month.  364 

Although bamboo lemurs are folivores, they are often considered to be dietary specialists 365 

due to the large proportion of their feeding focused on bamboos (Ballhorn et al. 2016; Tan 1999). 366 

However, when there are alternative habitats adjacent to a degraded habitat (e.g., mangrove 367 

swamp, mono-dominant plantation), even dietary specialists can adapt and exploit them (Galat-368 

Luong and Galat 2005; Grimes and Paterson 2000; Nowak 2008). Such is the case with bamboo 369 

lemurs which have been observed to use alternative and/or degraded habitats (Grassi 2006; 370 

Martinez 2008; Wright et al. 2008; Eppley et al. 2015a). Furthermore, the occasional use of 371 

wetland habitat by primates may become obligate if preferred upland habitat becomes 372 

increasingly disturbed (Nowak 2008, 2013; Quinten et al. 2010); however, when species are 373 

highly selective within their habitat, the loss of key resources may result in their ultimate demise 374 

(Lee and Hauser 1998). In contrast, low selectivity may enhance a species’ chances for survival, 375 

even in heavily disturbed habitats (Guo et al. 2008).  376 

In general, bamboo lemurs (Hapalemur spp. / Prolemur simus) appear less susceptible to 377 

habitat degradation than more frugivorous species, i.e., Propithecus spp., Eulemur spp., Varecia 378 

spp. (Arrigo-Nelson 2006; Dehgan 2003; Irwin et al. 2010; Schwitzer et al. 2007). Despite this, 379 
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there appears to be some variation in bamboo lemur responses to degraded habitats. For example, 380 

H. occidentalis have been observed to feed on invasive C. hirta and crop forage on rice (Oryza 381 

sativa) in agricultural fields adjacent to Masoala National Park (Martinez 2008), while H. griseus 382 

have been observed shift their diet to exotic guava (P. cattleianum) during fruiting periods in a 383 

previously selectively logged area of Ranomafana National Park (Grassi 2006). Furthermore, the 384 

greater bamboo lemur (P. simus) is known to inhabit shaded coffee plantations (Wright et al. 385 

2008). Similar to these fragment-tolerant bamboo lemurs, H. meridionalis displayed an ability to 386 

adjust across various habitats (i.e., littoral forest, littoral swamp, and an invasive Melaleuca-387 

dominated swamp), and though this was slightly seasonal, they were able to feed and rest for 388 

large portions of time in each habitat in all seasons (Eppley et al. 2015a). Additionally, they 389 

exhibited the highest dietary diversity recorded for a bamboo lemur species (Eppley et al. 390 

2016a). In addition to the flexible activity pattern exhibited by H. meridionalis in Mandena, 391 

these lemurs are also able to adjust flexibly to contrasting floristic and structural habitats, 392 

exploiting resources that are specific to each environment (Eppley et al. 2015a, 2016a).  393 

Two previous studies on E. collaris in Mandena indicate that these lemurs in the 394 

fragmented littoral forest tend to remain highly frugivorous but they expand their home range 395 

when compared to less disturbed forests (Campera et al. 2014; Donati et al. 2011). This flexible 396 

strategy differs from other brown lemur populations that seem to be able to shift seasonally to a 397 

more folivorous diet (e.g., E. macaco macaco; Colquhoun 1997, E. mongoz; Curtis 2004, E. 398 

rufifrons; Sussman 1977), and for a detailed meta-analysis, see Sato et al. (2016). The feeding 399 

preference of E. collaris for mid- and slow-growing species, that tend to represent large trees 400 

rather than herbs/scrubs and thus are rarer in highly fragmented areas than in pristine forest, is in 401 

line with an expansion of the threshold of area requirement. Our results show a preference of E. 402 



Do lemurid diets shape ecological flexibilities? 

 21 

collaris for mid-growing species in the dry seasons while slow-growing, usually climax trees, are 403 

selected more often in the wet season. This is an indication that E. collaris may tend to use 404 

pioneer species more frequently during periods of low resource abundance (e.g., the dry season 405 

in Mandena) when climax trees show phenological bottlenecks. This hypothesis is worth 406 

exploring in future studies matching fine-grained phenological data with lemur seasonal feeding.  407 

The preference for fruiting trees does not mean that E. collaris is not capable of using 408 

pioneer or exotic species growing in edge areas both for feeding and for resting, as indicated by 409 

the similar values of edge use and their use of four exotic plant species. In Mandena, E. collaris 410 

have been seen to move in the periphery of forest fragments in order to feed on fruits of the 411 

exotic Psidium spp. (Campera et al. 2014; Donati et al. 2011) and domestic lychee (Litchi 412 

chinensis; Donati pers. observ.). In Ste. Luce (20 km north of Mandena), E. collaris have also 413 

been observed to move to the forest edge, or even outside of it, to feed on the fruits of exotic 414 

and/or pioneer species, e.g., the fruits of the pioneer meramaintso (Sarcolaena multiflora; 415 

Campera et al. 2014). This pattern does not seem to be unusual for brown lemurs even in less 416 

disturbed forests as migrations from familiar areas to feed on exotic Psidium spp. have also been 417 

recorded in E. rufifrons in Ranomafana (Overdorff 1993; Wright 1999).  418 

In areas more heavily affected by habitat alteration, the genus Eulemur may rely heavily 419 

on exotic trees, in most cases for fruits or for resting/sleeping. In the gallery forest fragment of 420 

Berenty, during specific periods of the year the hybrids E. rufifrons x E. collaris base the 421 

majority of their diet on fruits of the exotic Manilla tamarind (Pithecellobium dulce; Donati, 422 

unpublished data). In Ampasikely, a 50-ha coastal private landholding located in northwestern 423 

Madagascar, E. macaco feed on 23 exotic plant species that were introduced as cash crops, such 424 

as coffee (Coffea spp.), papaya (Carica papaya), mango (Mangifera indica), and lebbeck or 425 
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woman’s tongue (Albizia lebbeck; Simmen et al. 2007). Thus, the low level of reliance on exotic 426 

species by E. collaris recorded in our study seems to be more the consequence of the low 427 

frequency of suitable exotic species than the lack of flexibility of these collared brown lemurs to 428 

include unusual food species in their diet.  429 

Habitat disturbance may benefit folivorous lemurs in several ways. It can increase the 430 

heterogeneity of a forest and therefore increase the amount or density of food resources (Oates 431 

1996). Disturbance can increase the relative abundance of certain plant species that may be 432 

preferred food sources, such as pioneer and light-gap species, and terrestrial herbaceous 433 

vegetation (Oates 1996). Light gaps created by tree falls and/or selective felling may help to 434 

maintain floristic diversity by harbouring a higher density of tree stems (Brokaw and Busing 435 

2000). These gaps can also increase the number of early successional specialists, which tend to 436 

have leaves with increased protein, less fibre, and lower phenolic content, as well as increasing 437 

the quantity of young leaves and improving the quality of mature leaves (Chapman et al. 2002; 438 

Ganzhorn 1992, 1995; Oates, 1996). Our finding that H. meridionalis exhibit a flexible 439 

behavioural and feeding ecology is not all that surprising. Bamboo lemur congeners exploit 440 

bamboo, which is highly prevalent in their habitat and thrives particularly well in slightly 441 

disturbed areas. The increased sunlight reaching both the canopy and forest floor further 442 

increases the quantity and quality of staple foods (bamboo and leaves) and provides higher 443 

quality supplemental foods (light-gap species and introduced species). Furthermore, similar to 444 

our H. meridionalis results, H. griseus in Ranomafana National Park exhibit a tolerance to forest 445 

edge (Lehman et al. 2006). Ultimately, the ability to use forest edge may have future benefits, in 446 

that altered landscapes with habitat matrices could provide potential conservation value as vital 447 

refuges (Chapman and Lambert 2000; Riley 2007). 448 
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 Various folivorous primates, i.e., Alouatta spp., are able to inhabit 449 

anthropogenically-disturbed habitats, likely due to a broad range of behavioural adaptations 450 

(Bonilla-Sánchez et al. 2012; Zárate et al. 2014). Notably, within these habitats howler 451 

monkeys are able to flexibly increase their dietary breadth (Bicca-Marques 2003), similar to 452 

observations of H. meridionalis in Mandena (Eppley et al. 2016a). By comparison, arboreal 453 

frugivores such as brown spider monkeys (Ateles hybridus) are not as flexible, and have 454 

been shown to be adversely affected by the constraints of living in an anthropogenic, 455 

degraded forest (Marsh et al. 2016). This is not always the case, however, as even 456 

frugivorous primates, e.g., red-bellied lemurs (E. rubriventer), display an ability to utilise 457 

and be tolerant of forest edge (Lehman et al. 2006). Although E. collaris and H. 458 

meridionalis displayed differences in the degree of pioneer exotic plant species they used, 459 

the both used similar proportions of forest edge within their home ranges and core areas. 460 

The further fragmentation of remaining forests is of great concern if forest species of 461 

Madagascar are to persist (Ganzhorn et al. 2014). Although the fate of all lemur species should 462 

be considered precarious due to increasing habitat destruction, the knowledge that some lemurs 463 

are able to cope with this degradation (to a certain degree) should be seen as positive. Some 464 

primate species adapted to narrow ecological specializations may be sensitive to natural or 465 

anthropogenic habitat perturbations (Harcourt et al. 2005; Kamilar and Paciulli 2008), whereas 466 

others have been shown to adjust to changing environments (Anderson et al. 2007; Nowak and 467 

Lee 2013). Not surprisingly, our study on two lemurids living in the highly disturbed littoral 468 

forest fragments shows that the lemurs are able to use both pioneer and exotic species for feeding 469 

and resting. However, while frugivorous E. collaris appear more limited by climax plants, 470 
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folivorous H. meridionalis show a wider range of adaptability, probably favoured by its diet and 471 

smaller body size.  472 

 473 
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