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Abstract. The existing temperature different between the cornea and the pupil induces the 

aqueous humour (AH) to circulate in the anterior chamber (AC). The buoyancy forces produced 

by the temperature gradient has driven the AH to flow. Previous studies have shown that cornea 

indentation changes the structure of the AC. This imply that the cornea indentation may change 

the fluid flow behaviour in the AC. A mathematical model of AH flow has been developed in 

order to analyse the fluid mechanics concerning the indentation of the cornea. Naiver-Stokes 

equations is used to describe the flow of AH in the AC. The governing equations have been 

solved numerically using finite element method. The results show that the cornea indentation 

has slow down the circulation the AH in the AC. 

1.  Introduction 

Buoyancy force due to temperature differences, secretory flow from the ciliary body through the pupil 

aperture and ultimately to the trabecular meshwork, and movement of the eye itself are the suggested 

mechanisms that drive the AH to flow in the AC [1]. A simple fluid dynamical models was used by the 

authors to study each of the mechanisms and the solutions was obtained by the aiding of asymptotic 

analysis methods. The authors concluded that the buoyancy induced by temperature gradient in the eye 

is the main mechanism for causing AC flow. Besides, [2] applied a simple standard fluid dynamical 

model to examine the flow in the AC which is driven by thermal processes. The formation of a hyphema 

or a Krukenberg spindle were predicted by them with the aiding of the model. They had justified that 

the buoyancy driven flows in the AC play a significant role and indicates that only very small 

temperature gradient are required to drive such flows. Further, a Boussinesq model of natural convection 

in the AC was developed by [3] in order to predict the magnitude of the natural convection flow of the 

AH. The model also used to estimate the movement of pigment particles in the AC. The lubrication 

theory was used by [2] in order to determine the analytical solutions of the governing equations, was 

not applied by [3]. However, [3] solved the model numerically with the help of FIDP computer package. 

The governing equations were formulated using the finite element method and the domain was divided 

into 27-node brick elements. The authors found a same results as shown in [2] that was the temperature 

gradients within the AC of the human eye are sufficient to create significant natural convection currents 

of AH. [4] used a commercial CFD package FLUENT to study the fluid dynamics of the AH in the AC 

of eye. In addition, the drainage mechanisms through the Trabecular Meshwork (TM) was also 

considered. The authors concluded that the buoyancy force is the dominant source to drive the AH flow. 
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[5], developed a 3D model of the human eye which include the TM, Schlemm’s canal and collecting 

channels structures. The AH flow characteristics under physiological and pathological conditions such 

as primary open-angle glaucoma was simulated by ANSYS CFX (ANSYS Inc., Canonsburg, PA, USA). 

Recently, [6] developed a fluid mechanical model of buoyancy driven AH flow in the AC around 

Descemet Membrane Detachment (DMD) to investigate the spontaneous reattachment phenomena of 

the DMD. They concluded that, the clinical outcomes for DMDs were depended on the temperature 

difference across the eye.  

 On the other hand, a research was conducted by [7] to investigate the alteration of the angle between 

the iris and cornea and the change of the iris contour during indentation of cornea or sclera. The 

indentation of the cornea or sclera consequently rotate the iris root. Moreover, [8-11] had shown that 

the AC angle can be wider by indent the cornea. [12] extended their research to investigate the fluid 

structure interaction between the iris and AH, driven by iris root rotation due to the indentation of cornea 

or sclera. These indicate that the structure of the AC is changed when the cornea is indented, then it may 

alter the behaviour of the AH flow in the AC. However, there is limit discussion on the effect of the 

cornea indentation to the circulation of the AH driven by the temperature gradient in the AC. Therefore, 

the objective of this paper is to study the influence of the cornea indentation to the AH flow in AC 

numerically by using finite element method (FEM). Matlab software is utilized to compute and visualize 

the numerical solutions.  

2.  Mathematical formulation 

AC is an approximately ellipsoidal shape region that bounded by the cornea, iris and lens, which has 

depth in range 2.5 to 3 [mm] and diameter in the plane of the iris root is in range 9 to 12 [mm] ([2, 4, 6, 

13]). Hence, the AC is modelled as a “half-moon” shape as illustrated in figure 1 in this study. Besides, 

the diameter of the AC is assumed to be 11 [mm] and the depth to be 2.75 [mm] as follow [2, 6]. The 

iris is assumed as a rigid surface at the bottom and the curvature of the iris surface is neglected and 

assumed it as a flat plane. It is justified by [1, 2, 4, 6] that those assumptions incorporate insignificant 

error in the results. The circulation of AH in the AC is assumed mainly driven by the buoyancy forces. 

The temperature gradient between the iris and the cornea has generated the buoyant force to drive the 

AH. The temperature drop between the cornea and the iris is taken to be 2-4 [0C] for the open eye ([2, 

4, 6]). 98 % of the AH is built up by water and the other 2 % is made up by protein, several of amino 

acids, oxygen, lactate and glucose ([13, 14]). Thus, the density and viscosity of the AH is similar to 

water ([15, 16]). 

 

 

Figure 1. Schematic diagram of the AC. 

In the plane z = 0, a two-dimensional AH flow driven by buoyancy effects in the AC has been 

considered, as shown in figure 1. The temperature at the back of the AC is assumed close to core body 

temperature (37 [0C]). Due to the ambient temperature (say 25 [0C]), the cornea is assumed to has 

Cornea, y=h(x) 
y 

x 
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Pupil/Iris, y=0 
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temperature 35 [0C]. Therefore in Cartesian coordinate system (x, y), the AH is supposed flows between 

the plane formed by pupil aperture and the iris, y = 0 and the anterior surface of the cornea, y = h(x). At 

the iris, the temperature is fixed at Tp which is close to the human body temperature, 37 [0C], and the 

temperature at the cornea is assumed to be Tc, around 35 [0C]. The gravity, g is acted along the positive 

x-axis as seen in figure 1. To be realistic, a set of typical values for human eye is used such as h0 = 2.75 

[mm], a = 5.5 [mm], gravity g = 9.8 [ms-2] and the AH has a typical velocity of U = 10-4[ms-1], density 

1000   [kgm-3], viscosity 
30.9 10    [kgm-1s-1], specific heat 4200Pc  [Jkg-1K-1], thermal 

conductivity 0.57k   [Wm-1K-1] and coefficient of thermal expansion 43 10   [K-1]. The AH is 

assumed to be Newtonian, viscous and incompressible. The governing equations are  
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Following [2], the boundary conditions are 
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where Pa is the normal atmospheric pressure and equal to 101325 [Pa]. FEM is applied to solve equation 

(1) with subjected to the boundary conditions (2). To the best of authors’ knowledge, the application of 

the finite element analysis to solve this problem is not yet adequately provided. Initially, the domain is 

discretized into nonuniform and unstructured triangular Taylor-Hood elements ([17-19]) and in each 

finite element , 1,2, ,ie i n the variables ,  ,  and i i i ie e e eu v T P are approximated as 
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where, ie
j  and ie

k are the shape functions for the dependent variables velocity, temperature and the 

pressure respectively. Galerkin finite element methods is practiced in this study. After discretises the 

equations (1) by the method, the equations (1) can be represented in a matrix form as  

 

(1) 

(2) 

(3) 
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Assembly the element matrix (4) for each finite element into a global matrix and then determine the 

solutions by solving the global matrix with subjecting to the boundary conditions (2). Nevertheless, the 

global matrix is a nonlinear system since equation (4) is nonlinear, thus it is needed to solve the system 

in an iteration manner. Newton-Raphson methods is applied to solve the global nonlinear system. 

On the others hand, in [7] four kind of cornea indentation had considered. As an early stage of the 

study, only one of the instance is proposed in this paper which is the manual indentation of the central 

cornea. In addition, this nature of indentation obey the assumption of the iris surface as a flat plane. 

Generally, squint hook, cotton bud, glass rod, and gonioprism are the instruments used by the 

ophthalmologist to indent the central or peripheral surface of the cornea. However in this paper, a glass 

rod, which has 7 [mm] diameter is used to indent the central of cornea as shown in figure 2(a). This 

specific diameter is used so that the indentation formed with depth d, in range 0 to 0.5 [mm] always 

produces a flat indention on the surface of the cornea (see figure 2(b)). The consequence of the 

indentation to the fluid flow of the AH in the AC is investigated. 

 

 

(a) 

 

(b) 

Figure 2. (a) A glass rod and (b) the indentation of the central cornea by the rod. 

3.  Results and discussion 

A Matlab coding was developed to compute the numerical results and a personal computer with a 

processor speed of 2.30 GHz and a RAM of 8GB was used to run all the computation in the study. A 

mesh test was conducted first in order to show that the results is independent from the total number of 

elements used to mesh the domain. Figure 3 shows the u-velocity profiles along a vertical line passing 

7 [mm] 

d 
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through the geometric center of the cornea with total number of elements 6413, 7374, 8546, 9266 and 

10224 respectively. The figure illustrates that the results are excellent match. Therefore, we have shown 

that the results do not depend on the number of elements used. For the following study, the domain is 

meshed with 8000-10000 elements, 19000-20000 nodes and contained 60000-70000 degreed of 

freedoms. In other word, the global stiffness matrix that produced by the sources code are in size between 

60000 60000 - 70000 70000 . 

 

 

Figure 3. The u-velocity profiles along a vertical line passing through the geometric centre of the 

cornea with mesh 1 = 6413 elements, mesh 2 = 7374 elements, mesh 3 = 8546 elements, mesh 4 = 

9266 elements and mesh 5 = 10224 elements.  

 

Table 1 has shown the result of maximum u-velocity and the locations in the AC with the given 
results in [2, 6]. A slightly different between the results is illustrated in the table but it is in an acceptable 
range and may say it is in a great agreement. The quantitative agreement is very encouraging and has 
enhanced the confidence to the correctness of the obtained solutions. Besides that, Comsol Multiphysics, 
which is a commercial software applying FEM, was also used to simulate the fluid flow. 8848 elements 
were generated to mesh the domain and the solutions are in a great agreement with the present result as 
seen in table 1. Moreover, Comsol Multiphysics was also used to plot the velocity contour for the fluid 
flow in AC. The results generated by the present computer code (see figure 4(a)) are concurrent to the 
results determined by the commercial software (see figure 4(b). 
 

Table 1. Comparisons of the maximum u-velocity and its location in the AC for 

the present results with the previous obtained results in the literature. 

 Location maximum u-velocity 
|Present|  -4×10  (0, 0.0005600) 3.71976 

|[2]|  -4×10  (0, 0.0005775) 3.96000 

|[6]|  -4×10  (0, 0.0005811) 3.96200 

|Comsol|  -4×10  (0, 0.0005645) 3.80686 
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(a)  

 

(b) 

Figure 4. Velocity contour of the AH flow in the AC (a) Present (b) Comsol. 

 
The effect of the cornea indentation to the behavior of the AH flow in AC are shown in figure 5. 

When comparing figure 5 with figure 4(a), the indentation decreases the maximum velocity magnitude 
in the AC. Moreover, the location of the maximum value exist also move upward near to the cornea as 
seen in Figure 5. Further, when d is increased from 0.3 [mm] to 0.5 [mm], the maximum velocity 
magnitude is slightly decreased. The location that the maximum velocity magnitude to be found is also 
changing and is moving further away to the left hand side of the y-axis. The results show that the scale 
effects which arises from difference in depth of the indentation, do effect the fluid behaviour in the 
human eye. [6] had stated that the position of the DMD and the fluid flow in AC do induce the 
spontaneous reattachment of the detached Descemet membrane. They concluded that the upper DMD, 
which the Descemet membrane is attached to the cornea above the centre of the cornea, are likely to 
naturally resolve themselves than lower DMD (the Descemet membrane is attached to the cornea below 
the centre of the cornea). As elaborated in [6], the normal pressure that act form the left hand side of the 
upper DMD is higher the other side, thus the detached Descemet membrane is pushing closer to the 

cornea. The indentation of the cornea has decrease the velocity of the AH flow in the AC, therefore, 
based on the Bernoulli principle the normal pressure the act on the left hand side of the upper DMD may 
increase. This possible increase the percentage of happening spontaneous attachment of the upper DMD. 
Further research is needed to fully understand the real mechanism of the AH flow with the DMD and 
then induce the attachment of the DMD. Besides, in this study only one type of indentation is considered 
and also the shape of the instrument used to indent the cornea may change the movement of the AH in 
the AC.  
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Figure 5. Velocity contour of the AH flow in the AC for the cornea indentation with depth d= (a) 0.3 

[mm], (b) 0.4 [mm] and (c) 0.5 [mm]. 

4.  Conclusions 

The behaviour of the AH in the AC under the influence of the cornea indentation have been analyzed. 

Some figures are plotted to show the behaviour of the fluid under different depth of indentation. Some 

interesting finding of the study can be concluded as follows: 

1. The velocity of the AH is effected by the depth of the indentation.  

2. The computation model and the Matlab coding that developed in this study can be used to 

analyze the fluid flow in human eye with cornea indentation and also suggested to be applied 

to investigate a more advance research in the future. 

3. The indentation of the cornea may increase the possibility of occurring the spontaneous 

reattachment of the DMD. 

As suggestion, the fluid flow in the real shape of the AC and the effect of the shape of the indentation 

to the cornea should be considered in the future. Furthermore, the influence of the cornea indentation to 

the phenomena of the spontaneous attachment of DMD need further investigation.  
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