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Abstract 

Previous research has shown that adults with Developmental Coordination Disorder (DCD) 

show increased variability of foot placement measures and movement of the centre of mass 

(CoM) while walking. The current study considered the gait patterns of young and older 

children with DCD. Fourteen young children with DCD (7-12 years), 15 older children with 

DCD (12-17 years) and 29 age and gender matched typically developing children took part. 

Children were asked to walk up and down a flat 10m long pathway for one minute while the 

movement of their feet and trunk was recorded using motion analysis. The gait pattern of 

children with DCD was characterised by wider steps, elevated variability in the time spent in 

double support and stride time and greater medio-lateral velocity and acceleration compared 

to their peers. An elevated variability in medio-lateral acceleration was also seen in the young 

but not the older children with DCD. In addition, the young children showed a greater 

variability in velocity and acceleration in all three directions compared to the older children. 

The data suggest that the high incidence of trips and falls seen in children with DCD may be 

due to differences in the control of the centre of mass. 

 

Keywords: Developmental Coordination Disorder, Gait, Movement Variability, Centre of 

Mass, Children  

 

Introduction 

Walking from place to place while avoiding tripping or falling over is an essential skill 

needed in everyday life. However, there are some individuals who find this skill difficult. 

Amongst these are children with Developmental Coordination Disorder (DCD). DCD is 

characterised by difficulties with fine and gross motor skill in the absence of an intellectual 

impairment or identifiable physical/neurological disorder.  The skills usually cited as 

problematic for this population are handwriting, doing up shoelaces, participating in team 

sport and riding a bicycle. A UK population based study showed a prevalence rate of 

approximately 2% (Lingam, Hunt, Golding, Jongmans, & Emond, 2009) while other research 

demonstrates that the majority of children with DCD continue to have problems with motor 

skill in adolescence and early adulthood (Kirby, Edwards, Sugden, & Rosenblum, 2010). 

Researchers and therapists working with children with DCD often comment that these 

children seem to have a different gait pattern from typically developing (TD) children 

(Gillberg, 2003). Furthermore, children with DCD are reported to be awkward in their gait, 

frequently stumbling and bumping into objects in their pathway (Gillberg, 2003; Parker & 
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Larkin, 2003). Despite this there remains a paucity of data concerning the exact nature of 

walking in children with DCD. What has been done is described below. 

  

In an attempt to capture the gait patterns of children with DCD, Woodruff et al. devised a 

one-dimensional measure of gait which combined the usual foot placement measures into one 

value of gait. This measure classified six out of the seven children with DCD as having an 

‘abnormal’ gait pattern (Woodruff, Bothwell-Myers, Tingley, & Albert, 2002). Although this 

study seems to capture what researchers and therapists commonly observe, it fails to identify 

which aspects of gait are abnormal. Subsequent studies which have tried to do this have 

produced mixed results. Deconinck et al. (2006a) examined the same foot placement 

measures in a group of 10 children with DCD while they walked on a treadmill. This study 

found that children with DCD walked with shorter steps and at a higher frequency compared 

to their peers. It was concluded that the shorter step length was due to a difficulty with 

balance control. However, given that a treadmill enforces a specific walking speed this 

difference may be an artefact of the task rather than descriptive of walking in DCD. Two 

further studies have considered the walking patterns of children with DCD while walking on 

level ground and both reported no quantitative difference between children with and without 

DCD (Cherng, Liang, Chen, & Chen, 2009; Deconinck, Savelsberg, De Clercq, & Lenoir, 

2010). In a recent study Du, Wilmut, & Barnett (2015) found no differences between adults 

with and without DCD in terms of absolute measures of foot placement (step length, step 

width, time in double support, stride time). However, this study also considered the 

variability of these measures by determining the standard deviation across the steps for 

individual participants. The adults with DCD showed higher variability in normalised step 

length, normalised step width, double support and stride time compared to their matched 

controls (Du et al., 2015). Along similar lines, Rosengren et al. (2009) used elliptical Fourier 

analysis (EFA) to examine differences in the variability of gait in children with DCD. 

Generally, changes in joint angular position vs. velocity (phase portraits) represents an 

elliptical shape, EFA allows quantification of both complexity and variability of these phase 

portraits. Complexity is measured by identifying the number of harmonics needed in the 

Fourier series to describe the shape of the phase portrait while variability measures are based 

on the change in phase portrait centroid location between consecutive gait cycles. Rosengren 

et al. (2009) found that children with DCD exhibited larger variation in the movement 

patterns of the right and left lower limbs as compared to their TD peers (for more detail on 

EFA see Hsiao-Wecksler Polk, Rosengren, Sosnoff & Hong, 2010). Although Rosengren et al. 
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identified an increased variability in children with DCD, it is not clear whether it is all 

aspects of locomotion or just some aspects which show an increase in variability in this 

population. Variability of movement is commonly measured in gait research in the elderly, 

with increased variability commonly taken as a sign of impaired motor control (Moe-Nilssen 

& Helbostad, 2005).  Specifically, elderly walkers tend to show a higher step length 

variability and step width variability compared to young walkers (Brach, Berlin, Van 

Swearingen, Newman, & Studenski, 2005; Menz, Stephen, & Fitzpatrick, 2003; Woledge, 

Birtles, & Newham, 2005). Furthermore, an increased variability in step length and time 

spent in double support is linked with an increased risk of falling in older adults (Maki, 

1997). Other measures which have been widely used in studies of the ageing population 

during normal walking are velocity and acceleration of the centre of mass (CoM). With 

studies highlighting an increase in medio-lateral (ML) trunk movement and acceleration with 

increasing age along with an associated increase in variability of acceleration in the ML 

direction (Marigold & Patla, 2007; Woledge et al., 2005). Furthermore, similar studies have 

highlighted that increased variability in these measures is associated with an increased risk of 

falls in older adults (Maki, 1997).  

 

O'Connor & Kuo (2009) considered control of movement during walking, their study was 

initially motivated by the observations that there is more ML compared to AP variability in 

walking (Bauby & Kuo, 2000) and that removal of visual feedback results in a larger increase 

in ML but not AP variability. They found that an artificial visual perturbation moving in a 

ML direction while walking increased ML variability (illustrated by an increase in step width 

variability), however, neither visual perturbations in the AP or ML direction influenced AP 

variability. This suggests that visual feedback is needed in the control of ML movement but 

not AP movement. O'Connor & Kuo (2009) concluded that walking is dynamically unstable 

in the ML direction and is therefore actively stabilised using sensory feedback (sensory 

information is used when determining foot placement). In contrast walking is passively stable 

(regulated by propriospinal control) in the AP direction and so little control is needed for foot 

placement in this direction. Supplementing this finding is an earlier study by Courtine, De 

Nunzio, Schmid, Beretta, & Schieppati (2007) which demonstrated that proprioceptive 

perturbations had very little influence on AP control while walking (despite a large influence 

on AP control while standing still). In terms of the findings from the ageing population the 

increase in ML velocity and acceleration suggests a loss of control in this direction which 

may be a direct result of a difficulty integrating sensory feedback.  
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Du et al’s study (2015) which focused on adults with DCD was the first to consider such 

measures in this population. No differences were found in the absolute measures of velocity 

and acceleration of CoM. However, adults with DCD showed a higher variability in the AP 

velocity of CoM, the vertical velocity of CoM and the vertical acceleration of CoM compared 

to their peers. Du et al. (2015) concluded that adults with DCD may be able to integrate 

visual information well to control gait in the ML direction, but may have some difficulty in 

controlling gait in the AP direction due to some difficulty at the propriospinal level.   

 

Although previous studies have shown that DCD persists into adolescence and adulthood 

(Kirby et al., 2010; Losse et al., 1991) the presentation of the condition changes with age. In a 

series of studies focusing on reach-to-grasp, adults with DCD showed a more mature pattern 

of movement compared to children with DCD although this was still different to the typical 

adult level (Wilmut & Byrne, 2014; Wilmut, Byrne, & Barnett, 2013). Therefore, it cannot be 

assumed that children with DCD will perform in the same way as adults with DCD. In the 

current study we considered gait patterns of children with DCD, how these differ from 

typically developing children and how they compare to the pattern of results from our 

previous paper which considered adults with DCD. Firstly we considered the absolute 

measures of foot placement variables that have previously been considered in this population. 

Given no group differences have been seen in these measures while walking on flat terrain 

we expected no group differences in the current study. We then extended these foot 

placement measures to consider the variability with which they are executed. In a previous 

study it was found that that adults with DCD exhibit higher levels of variability in these 

measures (Du et al., 2015), furthermore, children with DCD have been shown to exhibit 

higher variability in movement patterns compared to their peers (Rosengren et al., 2009). 

Therefore, we expected to see differences in these measures, whereby the children with DCD 

show an elevated variability in these foot placement measures compared to their typically 

developing peers. Finally, we considered the measures of trunk movement (velocity and 

acceleration) in the medial-lateral, anterior-posterior and vertical directions. Du et al. (2015) 

found that adults with DCD showed no differences in the absolute measures of these 

compared to their peers but that they showed an elevated variability in the velocity and 

acceleration of the trunk in the anterior-posterior and vertical direction(Du et al., 2015). 

Whether this pattern is mirrored in children with DCD remains to be seen.  
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This study included children aged from 7 to 17 years of age. A seminal study by Sutherland, 

Olshen, Cooper, & Woo (1980) describes the development of gait in typical children aged 

from 1-7 years and in adults. Sutherland et al. (1980) argue that there are five determinants of 

mature gait; duration of double-support, walking speed, cadence, stride length and step width. 

Of the five measures identified by Sutherland et al. (1980) the only measure that matured 

after 7 years of age in typically developing (TD) children was the ratio of pelvic span to step 

width, (typically maturing after 10 years) which is wider in children than adults. A more 

recent study found data which mirrored that of Sutherland’s, with no maturational changes in 

normalised velocity, cadence, step length and step width after 5 years of age (Dusing and 

Thorpe, 2007). Our measures of foot placement (step length, step width, double support and 

stride time) directly map onto these five measures with the cadence and walking speed 

measures of Sutherland being represented by stride time and step length. Therefore, we 

would not expect to see any developmental difference in the foot placement measures for the 

typically developing population. To date there have been no studies on the developmental 

time course of the movement of the CoM while walking and so any age differences in these 

measures will be described. 

 

Method 

Participants 

This project was approved by Oxford Brookes University Research Ethics Committee and 

was performed in line with the ethical standards as laid out in the 1964 Declaration of 

Helsinki. Twenty nine participants with DCD took part, divided into a young and an older 

child group: the young group (N=14) were aged between 7 years 8 months  to 12 years 5 

months and; the older group (N=15) were aged between 12 years 8 months to 17 years 10 

months. In addition 29 age (to within 6 months) and gender matched typically developing 

(TD) individuals took part. Details regarding these participants can be found in Table 1. 

Participants with DCD were recruited from a group known to the authors from previous 

studies and from a local support group for individuals with DCD and their families. All 

participants with DCD were assessed and selected in line with the DSM-5 criteria for DCD 

and with recent UK guidelines (Barnett, Hill, Kirby, & Sugden, 2015 ). For criterion A the 

test component of the Movement Assessment Battery for Children second edition (MABC-2; 

Henderson, Sugden, & Barnett, 2007) was used to determine motor skill below the level 

expected for the individual’s chronological age. Participants with DCD scored below the 16th 

percentile on this test. The MABC-2 Checklist, the Developmental Coordination Disorder 
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Questionnaire (DCD-Q Wilson, Kaplan, Crawford, Campbell, & Dewey, 2000) and a 

telephone interview with the parent were used to determine that the motor impartment 

significantly impacted on daily living (criterion B) and that the onset of the motor difficulty 

was in early childhood (criterion C). The telephone interview was also used to determine that 

the difficulties were not due to a known neurological impairment or intellectual disability 

(criterion D).  Parents of the typically developing participants completed a telephone 

interview, the MABC-2 Checklist and DCD-Q to confirm that no movement difficulties were 

present.  

 

Given the co-occurrence of motor difficulties and attention difficulties all parents completed 

the Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997). We focused on the 

inattention/hyperactivity subscale and used the classifications specified by the test. Ten of the 

participants with DCD had high or very high scores on this subscale compared to none of the 

typically developing participants. Running analyses both with and without these children with 

high or very high scores did not alter the outcome of the findings and so these individuals 

were included in the study. 

 

INSERT TABLE 1 HERE 

 

Apparatus and procedure 

Participants completed a single walking task during which they walked bare foot on a surface 

made from high-density foam sports mats. Movement was tracked using a VICON Nexus 3D 

motion capture system with 16 cameras running at 100 Hz. Six reflective markers (9.5 mm in 

diameter) were attached to the skin at bony landmarks: the seventh cervical vertebrae, the 

sacral wand, the second metatarsal head (toe) on the left and right foot, and the lateral 

malleolus (ankle) of the left and right foot. Participants walked at a comfortable pace up and 

down an 11 m long by 1 m wide walkway for one minute. Movement data were captured 

during the middle 4 m of the 11 m walkway in order to eliminate periods of acceleration and 

deceleration. Data capture was initiated when the participant starting walking and then 

stopped and re-started each time the participant reached the end of the walkway; in this way 

we obtained one trial for each 11m length that the participant completed.  

 

Data analysis 
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VICON movement data were filtered using an optimised low pass Woltring filter with a 12Hz 

cut off point and then analysed using tailored matlab routines. For each stride we classified 

heel strike (HS) and toe off (TO) events, based upon the foot velocity algorithm (FVA, C. M. 

O'Connor, Thorpe, O'Malley, & Vaughan, 2007). The FVA identifies TO and HS using peaks 

and troughs in the vertical velocity of the midpoint between the heel and toe marker. This 

method was compared against force plate data in a data set of 54 typically development 

children and errors in the order of ±15ms were found, furthermore, when compared to other 

kinematic methods the FVA was favourable (C.M. O’Connor et al., 2007). One major 

advantage of this method is that it requires first derivates only compared to other methods 

which use second derivates and therefore may include an inherent error due to higher order 

derivative estimation.  

 

We analysed the maximum number of strides we had for each participant in order to 

maximise our dataset. This resulted in an average of 43 strides for the older children with 

DCD compared to 41 strides for the TD older children and 43 strides for the young children 

with DCD compared to 38 strides for the TD young children. No age or group effect was seen 

in terms of the number of strides. Four measures pertaining to foot placement were 

determined, these are described below and are in line with those used by Du et al. (2015): 

Step length ratio: the AP distance between the ankle marker of the front foot and the toe 

marker of the back foot at each HS, normalized by leg length. A measure between ankle and 

toe was taken so to remove the length of the foot as a factor given that this may have been 

different for the two groups; Step width ratio: the ML distance between the two ankle 

markers at each HS, normalized to hip width; Stride time (s): the time between subsequent 

HS with the same foot; Double support (%): the proportion of stride time that both feet are in 

contact with the floor during that stride. For each step, sacral root mean squared velocity (ms-

1) and acceleration (ms-2) was calculated over the three axes of movement: ML; AP; and 

vertical (V). Due to the wide age range and hence height of our participants all velocity and 

acceleration measures were normalised to leg length (in line with the methods used by Hsue, 

Miller, & Su (2009). For the foot placement measures and the velocity and acceleration of 

CoM we report the average value of the measures for each participant across the trials 

(indicating the absolute measures) and we report the standard deviation across trials for each 

participant (indicating variability measures). 

 

Results 
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Absolute measures 

The absolute value of each variable was considered across age and group using a two-way 

ANOVA (age x group). Data can be found in Table 2. For the measures of foot placement an 

effect of group was found for normalised step width [F(1,54)=4.47 p=.039 η2=.10], whereby 

the participants with DCD had a larger normalised step width compared to the TD 

participants. In addition, a main effect of age was found [F(1,54)=10.42 p=.002 η2=.16] with 

the young children showing a higher normalised step width compared to the older children. A 

main effect of age was also found for stride time [F(1,54)=36.63 p<.001 η2=.40], with the 

young children showing a significantly longer stride time compared to the older children. No 

significant group or age effects were found for the normalised step length or double support 

(F<1). 

 

For the normalised measures of velocity and acceleration of CoM a main effect of group was 

found for ML velocity [F(1,54)=5.44 p=.023 η2=.09] and acceleration [F(1,54)=4.40 p=.041 

η2=.08].The participants with DCD showed a higher normalised velocity and acceleration 

compared to the typically developing participants. No other significant group differences 

were found for the AP or V direction. Main effects of age were found for all velocity [ML 

F(1,54)=33.60 p<.001 η2=.38, AP F(1,54)=52.87 p<.001 η2=.50 and V F(1,54)=29.39 p<.001 

η2=.35] and acceleration [ML F(1,54)=21.33 p<.001 η2=.28, AP F(1,54)=22.26 p<.001 

η2=.29 and V F(1,54)=34.23 p<.001 η2=.39] measures. In all cases this was due to a higher 

velocity and acceleration in the young children compared to the older children. 

 

No significant interactions between age and group were found for either the measures of foot 

placement or the measures of velocity and acceleration of CoM. 

 

INSERT TABLE 2 HERE 

 

Variability measures 

The standard deviation (or variability measure) of each variable was compared across age and 

group using a two-way ANOVA (age x group). Data can be found in Table 3. For the foot 

placement measures an effect of group was found for double support [F(1,54)=10.46 p=.002 

η2=.16] and stride time [F(1,54)=10.408 p=.002 η2=.16]. These effects demonstrate a higher 

variability in time spent in double support and a higher variability in stride time in the 

participants with DCD compared to the TD participants. In addition a main effect of age was 
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found for normalised step length variability [F(1,54)=13.16 p<.001 η2=.20], normalised step 

width variability [F(1,54)=16.52 p<.001 η2=.08], double support variability [F(1,54)=10.77 

p=.002 η2=.17] and stride time variability [F(1,54)=7.16 p=.01 η2=.12]. The young children 

showed a higher variability in normalised step length, normalised step width, time spent in 

double support and stride time compared to the older children. 

 

In terms of the measures of velocity and acceleration a main effect of group was found for 

normalised ML acceleration variability [F(1,54)=5.41 p=.024 η2=.08].The participants with 

DCD showed a higher variability in the velocity and acceleration compared to the typically 

developing participants. A main effect of age was found for normalised velocity and 

acceleration variability in all three directions [Velocity: ML, F(1,54)=66.75 p<.001 η2=.35, 

AP, F(1,54)=33.50 p<.001 η2=.38, V, F(1,54)=64.65 p<.001 η2=.55. Acceleration: ML, 

F(1,54)=48.66 p<.001 η2=.47, AP, F(1,54)=39.47 p<.001 η2=.42, V, F(1,54)=100.51 p<.001 

η2=.65]. For each of these measures this was due to a higher variability in the young children 

compared to the older children. In addition, an interaction was seen between group and age 

for normalised ML acceleration variability [F(1,54)=4.10 p=.048 η2=.07]. Simple main 

effects tests indicated that this was due to a group difference for the younger children 

[F(1,54)=9.34 p=.003 η2=.15] but not the older children [F<1]. 

 

No other significant interactions between age and group were found for either the measures 

of variability of foot placement or the measures of variability of velocity and acceleration of 

CoM. 

 

INSERT TABLE 3 HERE 
 

Discussion 

 

This study considered a range of measures to examine walking in young and older children 

with DCD. In terms of foot placement measures the participants with DCD showed a higher 

normalised step width and a higher level of variability in time spent in double support and 

stride time compared to their peers. Previous research which has considered absolute foot 

placement measures in children with DCD has had mixed findings. Cherng et al. (2009) and 

Deconinck et al. (2010) found no differences in absolute foot placement measures when 

walking over a flat terrain between a group of children with DCD and age matched peers. 
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Using similar measures we recently found no difference between adults with DCD and age-

matched controls. The increased step width found in children with DCD in the current study 

suggests a need for a wider base of support which in turn may suggest dynamic balance 

difficulties in this population. In support of this conclusion Deconinck et al. (2006a) found 

that children with DCD bend further forward at the waist while walking which he attributed 

to a need to lower the CoM due to balance difficulties. However, these difficulties were not 

demonstrated in terms of an increase in normalised step width in the Deconinck et al. (2006a) 

study which is in contrast to the current study. This difference may be due to the smaller 

sample size in their study (N=10) and the different task whereby the children with DCD in 

Deconinck’s study walked on a treadmill. In addition to these differences in the absolute 

measures of foot placement we also saw group differences in the variability of foot placement 

measures. Specifically, the children with DCD in the current study showed an increase in 

variability of the time spent in double support and variability in stride time compared to their 

peers. In a study focusing on typically developing children Hausdorff, Zemany, Peng, & 

Goldberger (1999) found an increase in stride-to-stride variability (i.e. the difference between 

stride time for one stride as compared to the subsequent stride) which was higher in younger 

compared to older children. These findings demonstrate that the temporal structure of gait is 

not fully developed in 7 year-old children (Hausdorff et al. 1999). Hausdorff et al. (1999) 

suggested that given locomotion is a complex system the dynamics of mature locomotion 

may only arise when all of the interacting individual components are fully developed. They 

propose that components that may affect stride dynamics include biomechanical and neural 

properties that are known to mature at a later age. . This explanation could also hold true for 

children with DCD who may show an immature pattern of locomotion until all component 

parts have matured, a process that could simply take longer for children with DCD compared 

to their typically developing counterparts.  

 

In our previous study, adults with DCD showed an elevated pattern of variability in all of the 

foot placement measures (normalised step length, normalised step width, double support and 

stride time) (Du et al., 2015). In the current study this pattern is only seen in two of the four 

foot placement measures. The wide-spread group difference seen in adults may only emerge 

once variability in the typical population decreases, i.e. the higher variability which is seen in 

typical children compared to typical adults may be masking this effect. 
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In terms of the measures of velocity and acceleration of the CoM the children with DCD 

exhibited a greater velocity and acceleration in the medio-lateral direction. Du et al. (2015) 

found no differences between the adults with DCD and their peers in terms of absolute 

measures. This is the first study to consider these variables in children with DCD. Research 

on an ageing population has shown that medio-lateral trunk movement velocity and 

acceleration both show an increase with increasing age (Marigold & Patla, 2007; Woledge et 

al., 2005). From this it may be possible to draw parallels between balance difficulties in an 

ageing population and in children with DCD which are demonstrated by these subtle 

differences in CoM movement. However, in our recent study on adults with DCD these 

absolute velocity and acceleration differences were not present which suggests that the adults 

with DCD may have adopted a more mature way of controlling their CoM which brings their 

behaviour in line with their peers. In terms of variability Du et al. (2015) demonstrated that 

adults with DCD showed a higher variability in the vertical and anterior-posterior direction 

for velocity and in the vertical direction for acceleration. Du et al. (2015) concluded that 

adults with DCD may be able to integrate visual information sufficiently in order to control 

gait in the ML direction, but may show a deficit in the control of gait in the AP direction due 

to some difficulty at the propriospinal level. This was on the basis that previous studies have 

suggested that medio-lateral movement during walking relies on the integration of sensory 

information while anterior–posterior movement relies on lower-level propriospinal actions 

(O'Connor & Kuo, 2009). In contrast, in the current study we have demonstrated an elevated 

variability in medio-lateral acceleration in children with DCD compared to their peers. These 

current findings are in line with what is seen in an ageing population (Marigold & Patla, 

2007; Woledge et al., 2005) and would suggest a difficulty or a deficit in the integration and 

use of sensory information to control gait. Previous work in children with DCD has 

demonstrated a difficulty with the integration of multiple sources of sensory feedback (i.e. 

vision and proprioception) which leads to an over-reliance on visual information. For 

example, children with DCD show a poorer control of gait when the availability of visual 

information is reduced (Deconinck et al. 2006b) and show a greater postural sway when the 

eyes are closed compared to open (Cherng, Hsu, Chen, & Chen, 2007; Tsai, Wu, & Huang, 

2007). Although it is difficult to draw parallels between these types of motor control given 

that clinical tests of posture do not always predict gait control (Visser, Carpenter, van der 

Kooij, & Bloem, 2008; Shimada, Obuchi, Kamide, Shiba, Okamoto, & Kakurai, 2003) it 

would seem that a common finding is that these children have some difficulty in integrating 

sensory information to make accurate movements. This explanation does not preclude that of 
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Hausdorff et al. (1999), it may simply be that the immature gait pattern seen in the children 

with DCD in this study is a consequence of a difficulty integrating sensory information into 

their control of gait and it is this component of walking which needs to be fully matured 

before a mature pattern of gait can be seen. 

 

The intriguing finding here is that in the current study we have found a difficulty with control 

of movement in the ML direction in children with DCD while our previous study found a 

difficulty in the control of movement in the AP direction in adults. Using the O’Connor and 

Kuo explanation this would suggest a well-functioning propriospinal control in children 

while the use of sensory information is poor and then a relatively poor functioning 

propriospinal control in adults when the use of sensory information is good. Some support for 

the conclusion that children with DCD mature their gait pattern and reduce medio-lateral 

acceleration as they get older is provided by the interaction we found between group and age 

for variability of medio-lateral acceleration; this interaction demonstrates increased medio-

lateral acceleration variability in young children with DCD compared to their peers, but not 

older children with DCD compared to their peers, thus a move towards a mature medio-

lateral control in older children with DCD. However, this does not explain why we then see a 

loss of control in the AP direction in adults with DCD compared to their peers. There are two 

explanations for this: AP control improves in typical adults and that the development of the 

adults with DCD does not reflect this; or that some aspect of development in the adults with 

DCD leads to a loss of control in the AP direction. A full developmental trajectory of the 

control of movement while walking in typical individuals is needed before we can rule out 

the first explanation. However, in terms of the second explanation it is possible that after 

individuals with DCD start effectively using sensory feedback to control movement in the 

ML direction while walking this is then also adopted for control of movement in the AP 

direction, i.e. moving away from using propriospinal control. Individual trajectories of 

development across these age groups are needed to address these possible explanations.  

  

In addition to the group findings outlined above we also saw age differences in both the foot 

placement and the CoM movement measures. The young children showed a greater 

normalised step width and stride time compared to the older children and they showed a 

greater velocity and acceleration of the CoM in all three directions compared to the older 

children. In previous work Sutherland et al. (1980) suggested that all aspects of gait aside 
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from step width ratio were fully developed by 7 years of age. However, Sutherland only 

measured four foot placement measures (normalised step length, normalised step width, 

double support and cadence). This is the first study to have considered development of the 

movement of the CoM and we have demonstrated development between 7-17 years of age in 

terms of CoM control. As suggested above it is possible that these developments in dynamic 

balance of typically developing children are in line with the development of static balance. 

Previous studies have demonstrated that younger  children are less efficient in the control of 

static balance with adult-like balance strategies beginning to appear at around 7-8 years of 

age (Kirshenbaum, Riach, & Starkes, 2001) which is explained by refinement of muscle 

activity (Williams, Fisher, & Tritschler, 1983) and an improvement in feedback-based control 

of balance (Hatzitaki, Zisi, Kollias, & Kioumourtzoglou, 2002). 

 

In addition to the age difference described above we also saw an elevated level of variability 

in all of the measures in the young compared to the older children.  Generally, children show 

a greater variability of movement compared to adults in reach-to-grasp (Schneiberg, 

Sveistrup, McFadyen, McKinley, & Levin, 2002), sit-to-stand (Guarrera-Bowlby & Gentile, 

2004) and gait (Hausdorff et al., 1999), this pattern is once again replicated here. As 

described above, Hausdorff et al. (1999) saw a higher variability in stride time variability 

while walking in younger children (6-7years) compared to older children (11-14years). We 

have found a similar result in the current study and have also replicated this with additional 

foot placement measures such as normalised step length, normalised step width and 

percentage of time in double support. In the ageing population an increase in variability has 

been linked to an increased risk of falls in older adults (Maki, 1997).  

 

One possible explanation for these age differences may be the difference in gender ratio seen 

between the younger and the older age group. Some studies which have aimed to explore the 

maturational changes in gait patterns have ensured an equal gender ratio in every age group 

(for example see Hausdorff et al. 1999) although this is not true of them all (for example see 

Dusing et al. 2007). Given that the main aim of the current study was to consider gait patterns 

of children with and without DCD our gender ratio was driven by the availability of our 

clinical population and therefore is not equal across age groups. However, given that previous 

research has demonstrated difference in gait across adult males and adult females (Nigg, 

Fisher, & Ronsky, 1994) it is important for future research to exclude this as an explanation 

for these possible developmental differences.  
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In conclusion, in this study measurements of CoM movement and measures of variability 

have highlighted several differences in the control of gait in children with DCD compared to 

a typical population. Specifically we see wider steps, elevated variability in the time spent in 

double support and stride time and greater medio-lateral velocity and acceleration compared 

to their peers. Furthermore, an elevated variability in medio-lateral acceleration was also seen 

in the young but not the older children with DCD. In addition, the young children showed a 

greater variability in velocity and acceleration in all three directions compared to the older 

children. The data suggest that the high incidence of trips and falls seen in children with DCD 

may be due to differences in the control of the centre of mass which may be due to a 

difficulty with the integration of sensory information for the control of gait. 
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Table 1. Descriptive information for the four cohorts.  

 Older children Young children 

 TD DCD TD DCD 

N 15 15 14 14 

Mean age (yrs:mo) 14:7 14:11 9:3 9:3 

Gender ratio (F:M) 1:3 1:3 1:6 1:6 

MABC-2 test mean 

percentile 

- 2.55 -   3.71 

MABC-2 test 

percentile range 

- 

 

0.1 – 5 - 0.5 – 9 

MABC-2 checklist 

number of children 

score in lowest range 

3 15 0 13 

DCD-Q total score 70.2 33.1 65.5 34.6 
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Table 2. Absolute values for foot placement measures and velocity and acceleration of CoM. Standard deviation 
is given in brackets. 

 Older children Young children Sig. 

TD DCD TD DCD Group Age Group 

x age 

Measures of foot placement   

Normalised step length 0.60 (0.11) 0.54 (0.10) 0.64 (0.08) 0.60 (0.10) ns ns ns 

Normalised step width 0.55 (0.11) 0.64 (0.09) 0.67 (0.07) 0.70 (0.09) p=.039 p=.002 ns 

Double support (%) 12.2 (1.24) 12.3 (1.61) 12.1 (1.33) 11.8 (1.14) ns ns ns 

Stride time (s) 0.91 (0.04) 0.90 (0.05) 0.81 (0.05) 0.74 (0.15) ns p<.001 ns 

Measures of velocity and acceleration of CoM (all normalised)   

ML velocity 0.099 (0.02) 0.118 (0.03) 0.163 (0.02) 0.203 (0.09) p=.023 p<.001 ns 

AP velocity  1.380 (0.15) 1.342 (0.20) 1.998 (0.19) 2.345 (0.81) ns p<.001 ns 

V velocity  0.206 (0.05) 0.196 (0.06) 0.306 (0.08) 0.351 (0.14) ns p<.001 ns 

ML acceleration  1.427 (0.39) 1.595 (0.46) 2.259 (0.48) 3.195 (1.89) p=.041 p<.001 ns 

AP acceleration  1.521 (0.28) 1.495 (0.19) 2.559 (0.39) 3.728 (2.64) ns p<.001 ns 

V acceleration  2.643 (0.62) 2.412 (0.77) 4.380 (1.16) 5.473 (2.78) ns p<.001 ns 
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Table 3. Variability values for foot placement measures and velocity and acceleration of CoM. Standard 
deviation is given in brackets. 

 Older children Young children Sig 

TD DCD TD DCD Group Age Group x 

Age 

Measures of foot placement   

Normalised step length 0.03 (0.01) 0.03 (0.02) 0.05 (0.03) 0.05 (0.01) ns p=.001 ns 

Normalised step width 0.11 (0.03) 0.13 (0.04) 0.16 (0.03) 0.18 (0.06) ns p=.041 ns 

Double support (%) 1.14 (0.23) 1.43 (0.17) 1.43 (0.49) 1.70 (0.34) p=.002 p=.002 ns 

Stride time (s) 0.01 (0.01) 0.02 (0.01) 0.02 (0.01) 0.03 (0.02) p=.002 p=.01 ns 

Measures of velocity and acceleration of CoM (all normalised)   

ML velocity 0.023 (0.01) 0.030 (0.01) 0.059 (0.01) 0.070 (0.03) ns p<.001 ns 

AP velocity 0.057 (0.02) 0.067 (0.03) 0.142 (0.10) 0.187 (0.08) ns p<.001 ns 

V velocity 0.021 (0.01) 0.025 (0.01) 0.054 (0.02) 0.064 (0.03) ns p<.001 ns 

ML acceleration 0.276 (0.10) 0.295 (0.08) 0.545 (0.19) 0.784 (0.36) p=.021 p<.001 p<.05 

AP acceleration 0.217 (0.08) 0.233 (0.11) 0.497 (0.21) 0.642 (0.34) ns p<.001 ns 

V acceleration 0.309 (0.10) 0.339 (0.12) 0.786 (0.30) 0.947 (0.24) ns    p<.001 ns 

 

 


