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Abstract 

 

Background: Delivering insulin in type 1 diabetes is a challenging, and potentially risky, activity; hence 

the importance of including safety measures as part of any insulin dosing or recommender system. This 

work presents and clinically evaluates a modular safety system that is part of an intelligent insulin dose 

recommender platform developed within the EU-funded PEPPER project. 

 

Methods: The proposed safety system is composed of four modules which use a novel glucose forecasting 

algorithm. These modules are: predictive glucose alerts and alarms; a predictive low-glucose basal insulin 

suspension module; an advanced rescue carbohydrate recommender for resolving hypoglycaemia; and a 

personalised safety constraint applied to insulin recommendations. The technical feasibility of the proposed 

safety system was evaluated in a pilot study including eight adult subjects with type 1 diabetes on multiple 

daily injections over a duration of six weeks. Glycaemic control and safety system functioning were 
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compared between the two-weeks run-in period and the end-point at eight weeks. A standard insulin bolus 

calculator was employed to recommend insulin doses. 

 

Results: Overall, glycaemic control improved over the evaluated period. In particular, percentage time in 

the hypoglycaemia range (<3.0mmol/l) significantly decreased from 0.82 (0.05-4.79) % at run-in to 0.33 

(0.00-0.93) % at endpoint (p=0.02). This was associated with a significant increase in percentage time in 

target range (3.9-10.0mmol/l) from 52.8 (38.3-61.5) % to 61.3 (47.5-71.7) % (p=0.03). There was also a 

reduction in number of carbohydrate recommendations.  

 

Conclusion: A safety system for an insulin dose recommender has been proven to be a viable solution to 

reduce the number of adverse events associated to glucose control in type 1 diabetes. 
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1 Introduction 

Type 1 diabetes (T1D) is a long-term condition characterized by a loss of insulin secretion by the pancreatic 

𝛽 cells [1]. Currently, people with T1D measure capillary blood glucose several times daily and administer 

exogenous insulin via multiple daily injections (MDI) or continuous subcutaneous insulin infusion (CSII). 

Continuous glucose monitoring (CGM) technology [2] has opened the door to more advanced technologies 

to control glucose levels, such as sensor-augmented insulin pumps with low-glucose insulin suspend [3], 

the artificial pancreas [4], and decision support systems for insulin dosing [5]. However, although these 

advanced delivery systems have been associated with improvements in glycaemic control, they are not able 

to wholly eliminate hypo- and hyperglycaemia and introduce the additional risk of malfunctioning of one 

of their components [6][7]. Therefore, there is a clear need to include a safety system to minimise such 

adverse events.  

Current real-time CGM systems incorporate glucose alarms, and more recently predictive glucose alerts, 

that notify the user of hypo- and hyperglycaemia events [8]. In addition, existing sensor-augmented pumps 

incorporate a predictive low-glucose insulin suspension system (Medtronic MiniMed 640G with 

SmartGuard; Tandem t:slim X2 pump with Basal-IQ) to reduce nocturnal hypoglycaemia [3]. Various 

automated strategies have been proposed to recommend carbohydrate doses to avoid or revert 

hypoglycaemia [9,10]. Finally, different methods have been proposed to minimize the risk of adverse events 

due to CGM and pump failures [11]. 

In this work, we present a modular safety system developed within the framework of the EU-funded 

PEPPER (Patient Empowerment through Predictive PERsonalised decision support) project [12]. 

PEPPER, is a personalised decision support system for T1D self-management, which includes an insulin 

bolus recommender based on the artificial intelligence technique of case-based reasoning [13,14] and a 

safety system.  

PEPPER offers a dual architecture to cater for both MDI or CSII treatment, the latter via the Cellnovo 

patch-pump (Cellnovo Ltd., UK; Figure 1). In both cases, the user wears real-time CGM (Dexcom G5, CA, 

US) which communicates to the hand-held device via xDrip+ [15]. An activity monitor (MiBand 1s, 
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Xiaomi, China) is included to determine physical activity. Additional data such as food intake, alcohol 

consumption, stress, hormonal cycles are input through the user interface (Figure 2) of the hand-held unit 

(smartphone or Cellnovo handset). The hand-held unit remotely communicates to a secure web server where 

all collected data is uploaded and stored. Finally, a web-based user interface enables the clinical team to 

monitor the functioning of the system (PEPPER clinical platform). Although the presented safety system 

has been developed to integrate within the PEPPER platform, it can easily be adapted to other insulin dosing 

systems (e.g. artificial pancreas).  

 

Figure 1. Left) PEPPER system MDI and CSII architectures and Right) PEPPER system components 
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Figure 2. PEPPER graphical user interface corresponding to the smartphone version. Blue square displays 

an estimate of the active insulin bolus; yellow circle shows an estimate of the remaining carbohydrates on-

board; pink circle displays the blood glucose level coming from the CGM; The upper graph shows the CGM 

measurements in dotted (pink line) and the 30-minute forecasted glucose values (dotted green line); the 

remaining graphs display the injected insulin boluses, the ingested carbohydrates, and the step counts, 

respectively. ‘Get bolus advice’ button triggers an insulin dose recommendation that is displayed to the 

user. 

2 Methods 

The PEPPER safety system comprises of four modules: the first module consists of predictive glucose 

threshold crossing alerts and standard glucose threshold crossing alarms. The second module is designed 

for insulin pump users and automatically suspends basal insulin delivery when predicted glucose levels are 

low. A third module recommends an individualized carbohydrate to harmlessly return glucose to safe levels. 

Finally, the fourth module, referred to as dynamic bolus insulin constraint, restricts the amount of insulin 
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that can be safely recommended to the user (Figure 3). Details of these four modules are given in the 

following sections.  

 

Figure 3. Block diagram of the safety system with the four modules, and corresponding inputs and 

outputs. 

2.1 Module 1: Glucose Alerts and Alarms Module 

The glucose alerts and alarms module consists of two predictive alerts using a 30-minute glucose 

forecasting algorithm (Appendix A) to notify the user before reaching predefined high and low glucose 

thresholds. In addition, standard glucose alarms notify the user when thresholds measured by the CGM are 

exceeded. The user is able to choose the thresholds for when alerts are triggered, while the alarm thresholds 

are hard-coded and cannot be modified (3.9mmol/l for hypoglycemia and 16.6mmol/l for hyperglycemia). 

To prevent alarm fatigue, once an alert, or alarm, has been snoozed by the user, another alert, or alarm, 

cannot be triggered until a predefined time interval of 30minutes has elapsed. In addition, alerts can be 

muted, but alarms cannot for safety reasons. Finally, if the user does not address a hypoglycaemia alarm 

before a predefined time interval of 30minutes, an SMS message containing the type of alarm (i.e. 

hypoglycemia or hyperglycemia) and the time it was triggered, is sent to a designated carer. The system 

keeps sending messages every 30minutes until the alarm is snoozed on the handheld unit. Figure 4 shows 

a real example of functioning of the predictive glucose alerts and alarms module. 
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2.2 Module 2: Predictive Low-glucose Basal Insulin Suspend Module 

The predictive low glucose basal insulin suspension (PLGBI) module aims at minimising the incidence and 

severity of hypoglycemia by suspending, or partially suspending, basal insulin delivery when predicted 

glucose levels are low. Basal insulin delivery is reduced by 50% (partial suspension) if the 30-minute 

forecasted glucose value (Appendix A) falls below a predefined threshold (Threshold 1).  Insulin delivery 

is fully suspended when glucose falls below a second predefined threshold (Threshold 2), which is lower 

than Threshold 1. Due to a technical limitation, full suspension of the pump is not possible and is set at a 

rate of 0.01 U/h, which is negligible for most people with T1D. This was done because it was the only way 

to make the pump resume without manual intervention. While suspended, insulin is resumed to 50% when 

forecasted glucose is above Threshold 2 and is fully resumed when forecasted above Threshold 1. A total 

suspension time limit of 90minutes prevents excessive insulin deficiency and rebound hyperglycaemia. 

After this time limit, insulin is resumed to 50% for up to 30minutes. Basal insulin delivery can be resumed 

at any time by the user. For this clinical trial, Threshold 1 was set to 4.5mmol/l and Threshold 2 to 

3.9mmol/l. Figure 4 shows the functioning of the PLGBI module over a real clinical scenario. Note, low-

glucose suspend was not applied since the displayed data corresponds to an MDI participant. 

 

2.3 Module 3: Adaptive Carbohydrate Recommender 

If neither glucose alerts/alarms module nor the predictive PLGBI module are enough to prevent 

hypoglycemia, the adaptive carbohydrate recommender module recommends a rescue dose of oral 

carbohydrates with the aim of reverting hypoglycaemia and minimizing rebound hyperglycemia. In 

particular, if the CGM glucose measurement falls below a pre-defined hypoglycaemic threshold 

(2.8mmol/l), the carbohydrate recommendation (𝐶𝐻𝑂𝑟𝑒𝑠𝑐𝑢𝑒) is calculated as follows 

𝐶𝐻𝑂𝑟𝑒𝑠𝑐𝑢𝑒 = |
𝐺𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡−𝐺𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝐶𝑆𝐹
− 𝐶𝑂𝐵|,  (1) 

where 𝐺𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 is a predefined setpoint where glucose concertation is aimed to be after ingesting the rescue 

carbohydrates (6.7mmol/l), 𝐺𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡  is the 30-minute predicted glucose concentration (Appendix A), 𝐶𝑆𝐹 
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is the carbohydrate sensitivity factor defined as the glucose concentration increase (mmol/l) per 1 gram of 

carbohydrates, and COB are the estimated rescue carbohydrates-on-board, which are as follows 

𝐶𝑂𝐵(𝑡) = 𝐶𝐻𝑂𝑟𝑒𝑠𝑐𝑢𝑒 − ∫ 𝑅𝑎(𝜏)𝑑𝑡,
𝑡

𝑡𝑚𝑒𝑎𝑙
  (2) 

where 𝑅𝑎 is the rate of glucose appearance from previously ingested rescue carbohydrates and estimated 

with the model proposed by Dalla Man et al. [16], tmeal is the time the previous rescue’s dose was ingested 

and t is the current time.  

The CSF is initialized with the guidelines provided by Walsh et al. [17] based on body weight. If such 

initialization is not accurate, CSF is updated using a run-to-run (R2R) control algorithm [18] that adapts 

such parameter to effectively minimize both hypoglycaemia and rebound hyperglycaemia. The R2R control 

law is defined as follows 

𝐶𝑆𝐹𝑘+1 = 𝐶𝑆𝐹𝑘 − 𝐾1|(𝑇ℎℎ𝑦𝑝𝑜 − 𝐺𝑚𝑖𝑛)| + 𝐾2|𝐺𝑚𝑎𝑥 − 𝑇ℎℎ𝑦𝑝𝑒𝑟|,  (3) 

where Thhypo and Thhyper are predefined hypoglycaemia and hyperglycaemia thresholds, Gmin and Gmax are 

the minimum and maximum glucose values within the time window that spams from 20 minutes to one 

hour after the rescue dose intake. Finally, K1 and K2 are tuning gains which are subject specific and 

correlated to CSF. In this work, Thhypo=4.4mmol/l, Thhyper=8.3mmol/l, K1=0.05 and K2=0.01 were 

employed. Figure 4 shows on a real scenario the recommendation of a carbohydrate dose. 
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Figure 4. Clinical scenario showing the functioning of the PEPPER safety system. Dotted blue line 

corresponds to the CGM measurements and the dotted red line to the forecasted glucose values. 

Horizontal dashed lines are the glucose thresholds for the predictive alerts (4.4mmol/l) and for the alarms 

(3.9mmol/l). Dark-blue bars and red bars are the meals and insulin boluses respectively. Solid magenta 

line represents the percentage of basal delivery as a result of the low-glucose insulin suspend module. 

Cyan bars and black bar correspond to the alerts and alarms respectively. Green bars represent the 

carbohydrate recommendations. 

2.4 Module 4: Dynamic Bolus Insulin Constraint 

The Dynamic Bolus Insulin Constraint (DBIC) module aims to eliminate potentially dangerous insulin 

boluses being recommended to the user, which could induce severe hypo- or hyperglycaemia. DBIC 

represents an additional safety layer to the ones already set in place by the CBR-based insulin recommender 

[13,14]. 

DBIC is based on an insulin bolus calculator [19], which is expressed by  

 

𝐵𝑜𝑙𝑢𝑠 =
𝐶𝐻𝑂

𝐼𝐶𝑅
+

𝐺−𝐺𝑇

𝐼𝑆𝐹
− 𝐼𝑂𝐵,  (4)    
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where CHO (gram) is the amount of estimated carbohydrate, G (mmol/l) is the blood glucose measurement, 

GT (mmol/l) is the blood glucose target, ICR (g/U) and ISF (mmol/l/U) are two patient-specific parameters 

namely the carbohydrate-to-insulin ratio and the insulin sensitivity factor, and IOB (U) is the insulin-on-

board, which can be calculated using a linear decay expressed as 

𝐼𝑂𝐵 = 𝐵𝑝 (1 −
𝑇𝑖𝑛𝑡

𝑇𝑎𝑐𝑡
),     (5) 

where Bp the previously administered insulin bolus, Tint is the elapsed time since the last administered 

insulin bolus and Tact is the insulin action time, which is subject dependent.  

The inherent uncertainty of the bolus calculator parameters and inputs are bounded by means of numerical 

intervals [a, b], where a and b are real numbers and a ≤ b. For instance, assuming a 15% misestimation 

error in carbohydrate counting, a meal containing 100grams of carbohydrates is represented by the interval 

CHO=[85, 115]grams. Interval arithmetic [20] is then used to propagate such uncertainty to the output; 

hence the resulting bolus insulin dose is also an interval. As a matter of example, assume the uncertainty 

on the insulin bolus calculator parameters and inputs to be: ICR (±30%), ISF (±30%), Tact (±30min), G 

(±9%), and CHO (±15%). Also, assume the scenario where G=8.3mmol/l, GT=6.7mmol/l, CHO=70grams, 

ICR=10gram/U, ISF=2.2mmol/l/U and IOB=0 U. Then, the resulting bolus insulin interval is Bolus = 

[4.8,13.0] U. Hence, if the recommended insulin dose is outside such interval, it is saturated to the 

corresponding lower or upper bound. Finally, the resulting value is displayed on the user when the advice 

button is pressed.  

To summarize, the interval-based standard formula above is used to calculate the bound constraints, whilst 

the CBR-based insulin recommender is used to calculate the bolus in real time. It is important to remark 

that, in this work, the CBR-based insulin recommender was not active during the feasibility trials and 

insulin bolus recommendations were based on a standard bolus calculator, which corresponds to the mid-

point of the bound constraints. 
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2.5 Clinical evaluation 

To analyse the PEPPER system, the design of the study is completed over three phases. Phase 1 assesses 

the safety and feasibility of the PEPPER safety system (without the CBR-based insulin recommender). 

Phase 2 evaluates the overall PEPPER system (integrated with the CBR-based insulin recommender). Phase 

3 is a randomised open-label cross-over trial comparing the complete PEPPER system to a standard bolus 

calculator. 

In this work, preliminary data from participants on MDI is presented only. Hence, Module 3 (PLGBI) is 

not evaluated since it is exclusive to pump users. In addition, as the PEPPER Insulin Recommender is not 

being evaluated, Module 4 (Dynamic Bolus Insulin Constraint) is not properly evaluated and, instead, is 

used as standard meal-insulin bolus calculator. 

 

2.5.1 Study Design and Participants 

Phase 1 is a non-randomised, open label study. Ethics approval was obtained from the relevant Ethics 

Committees at each of the sites. Adult participants with T1D for >1 year and on MDI treatment for >6 

months. All participants had to have completed a structured education programme and be competent at 

carbohydrate counting. 

Exclusion criteria included: an episode of diabetic ketoacidosis (DKA) or severe hypoglycaemia requiring 

third-party assistance (within the last 6 months), use of regular paracetamol, pregnancy, breastfeeding, 

active malignancy or endocrinopathy, abnormal renal function or liver cirrhosis, or macrovascular 

complications in the past year. All participants gave informed written consent.  

 

2.5.2 Procedures 

At study enrolment, participants gave a full medical history and underwent a physical examination. Random 

venous bloods, including HbA1c, were taken. A urine sample was taken to measure albumin/creatinine 

ratio.  The Gold Score questionnaire was completed, which is a subjected rating given by the participant on 
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a scale from 1 (always) to 7 (never) in response to the question “Do you know when your hypos are 

commencing?”.  

 

Participants meeting the inclusion criteria were provided the PEPPER system. For Phase 1, the PEPPER 

CBR-based insulin recommender was disabled and a standard bolus calculator was used. Participants were 

instructed to use the equipment according to its license.  

The study comprised of four visits over 8 weeks. There was a two-week initial run-in period using the 

PEPPER system with the safety system disabled but with xDrip+ glucose alarms activated. A second visit 

was schedule at the end of Week 2, and the PEPPER safety system was activated on the handset. A third 

visit was scheduled at the end of Week 4 and a final visit at the end of the study.  

At each visit, CGM data were reviewed by the researcher with the participant and changes were made to 

the basal insulin/ISF/ICR as required. Verbal feedback from participants was obtained regarding any 

technical issues encountered. Technical issues identified in the assessment were dealt with system 

redevelopment. At visit 4, the PEPPER system was switched off and returned.  

 

2.5.3 Outcomes 

The primary outcome was percentage (%) time in hypoglycaemia (<3.9mmol/l) from baseline to endpoint. 

Secondary outcomes included low and high glucose alarms, carbohydrate recommendations, low glucose 

suspend (CSII users only), technical faults of the PEPPER system. Secondary outcomes regarding 

glycaemic control include: %time in target (3.9-10mmol/l), %time in hyperglycaemia (>10mmol/l) and 

lower thresholds of hypoglycaemia (<3.3mmol/l and 3.0mmol/l).  

 

2.5.4 Statistical Analysis 

All glycaemic outcomes from baseline (weeks 1 and 2) were compared with endpoint (weeks 7 and 8). 

Non-normally distributed data were analysed with the Wilcoxon matched-pairs signed-rank test. For data 
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analysed on a fortnightly basis, an analysis of variance (ANOVA) was used. All outcomes are reported as 

median (interquartile range [IQR]), unless stated otherwise. P-values <0.05 were considered statistically 

significant.  

 

The glycaemia and safety system data for each participant were stored on the PEPPER Server Application 

(PSA), which were exported as a test file and run on MATLAB script to calculate the primary and secondary 

outcomes for each week of the study. A formal power calculation was not performed for Phase 1 pilot 

studies assessing feasibility and safety of new technology.  

3 Results 

Eight participants were recruited at two sites, namely Imperial College Healthcare NHS Trust, London, UK 

(n=4) and Hospital Universitari de Girona Dr Josep Trueta, Spain (n=4). Participants (3 men and 5 female) 

had a median (IQR) age of 37.5 (31.8-53.5) years, duration of diabetes 22.5 (18.0-26.5) years, BMI 23.8 

(23.2-27.5) and HbA1c 63.0 (57.4-66.1) mmol/mol (table 1). All participants had good awareness of 

hypoglycaemia with a gold score of 2.0 (1.75-2.25).    

Six participants completed the 8-week Phase 1 study. The reasons for the two participants not included in 

the final analysis were due to one drop out for personal commitments and one participant having handset 

issues.  

3.1.1 Glycaemic Outcomes 

A comparison of glucose outcomes was derived from the run-in CGM data (baseline weeks 1 and 2) and 

compared with endpoint (weeks 7 and 8). Median %time<3.0mmol/l fell from 0.8% during run-in (weeks 

1 and 2) to 0.3% at end-point (weeks 7 and 8; p=0.02; Table 1; Figure 5). For the primary outcome 

comparison (%time <3.9mmol/l) and %time <3.3mmol/l, no significant difference was observed between 

the two groups.  
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Percentage time in target (3.9-10mmol/l) significantly increased with use of the PEPPER safety system 

compared to standard system (p<0.05). No significant difference for time in hyperglycaemia (>10mmol/l) 

was observed. 

 

No adverse incidents of DKA or severe hypoglycaemia requiring third-party assistance occurred during the 

eight weeks. One participant was admitted to hospital due to hyperglycaemia precipitated by a mild lower 

respiratory tract infection.  

 

Table 1: Median percentage(%) time (and IQR) spent within various glucose ranges at baselines (weeks 1 

and 2) and endpoint (weeks 7 and 8). Reduction of % time in hypoglycaemia <3.0mmol/L, was observed 

in all 6 individuals. For % time in hypoglycaemia <3.3mmol/L, reduction was observed in 5 out of 6 

individuals. 

 

 

 Run-in (n=6) 
Weeks 1 and 2 

Endpoint (n=6) 
Weeks 7 and 8 

P-value 

% time in hypoglycaemia 
<3.9mmol/l 
<3.3mmol/l 
<3.0mmol/l 

 
3.6 (1.5-6.3) 
1.8 (0.6-5.6) 
0.8 (0.0-4.7) 

 
2.7 (0.9-7.2) 
0.7 (0.0-1.5) 
0.3 (0.0-0.9) 

 
0.15 
0.05 
0.02 

% time in target  
3.9-10mmol/l 

 
52.8 (38.3-61.5) 

 
61.3 (47.5-71.7) 

 

 
0.02 

% time in hyperglycaemia 
>10mmol/l 

 
44.3 (37.3-57.8) 

 
33.8 (27.5-49.2) 

 

 
0.09 
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Figure 5. Box plot graphs showing the change in glycaemic outcomes on a fortnightly basis over the 

eight-week study. (a) Change in percentage time in hypoglycaemia (<3.0mmol/l), (b) change in 

percentage time in target (3.9-10.0mmol/l), (c) change in percentage time in hyperglycaemia 

(>10mmol/l).   * ANOVA p<0.05 

 

3.1.2 Safety System Outcomes 

The total incidence of PEPPER safety system outcomes (i.e. glucose alerts, alarms and carbohydrate 

recommendations) between run-in and end-point are shown in Table 2. It is important to remark that during 

the run-in period, the safety system was disabled but still running in the background, hence the glucose 

alerts, alarms, and carbohydrate recommendations were blinded to the user. Nevertheless, the user had the 

xDrip+ glucose alarms activated with the same thresholds as with the PEPPER safety system. This makes 

the comparison of glucose alerts and carbohydrate recommendations not completely fair because the user 

was not able to react to these events during the run-in period. However, we consider that these results are 

still informative of the improvement on glycaemic control. 
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The total incidence of glucose alerts significantly reduced by approximately one-third at endpoint compared 

to run-in (p<0.05; Table 2), but no difference was observed when categorised into type of alert (i.e. 

hypoglycaemia/ hyperglycaemia). Note that the observed difference in the incidence of glucose alerts might 

be due to the users changing the glucose alerts thresholds during the trial. Incidence of glucose alarms did 

not change.  

All carbohydrate recommendations were considered, regardless of whether the user acted upon the advice 

recommended by the PEPPER system. The median total number of carbohydrate recommendations reduced 

to zero by endpoint, which correlates with the reduction in hypoglycaemia <3.0mmol/l observed. 

 

Table 2. Safety system outcomes comparing run-in and endpoint. Data expressed as median (IQR). 

 Run-in (n=6) 

Weeks 1 and 2 

Endpoint (n=6) 

Weeks 7 and 8 

P-value 

Incidence of all glucose alerts 

 

For hypoglycaemia 

For hyperglycaemia 

31.5 (24.5-38.8) 

 

7.0 (3.7-12.0) 

18.0 (10.0-26.0) 

20.0 (12.8-25.3) 

 

3.5 (2.0-14.0) 

10.5 (6.7-14.0) 

0.03 

 

0.36 

0.06 

Incidence of all glucose alarms 

 

For hypoglycaemia 

For hyperglycaemia 

15.0 (7.2-23.5) 

 

5.5 (4.0-9.3) 

4.0 (0.7-6.2) 

12.0 (8.2-20.8) 

 

5.5 (3.0-8.2) 

3.5 (1.5-6.0) 

0.18 

 

0.41 

0.33 

Incidence of all carbohydrate 

recommendations 

4.5 (1.0-88.3) 

 

0.0 (0.0-25.3) 

 

0.18 
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Data loss was observed for periods of time between the CGM device and handset. Approximately 49.6% 

of missed signals were observed in the initial run-in period and was reduced to 19.1% by end-point.  

4 Discussion 

This feasibility study has demonstrated proof of concept, safety and feasibility of the PEPPER safety system 

in MDI participants with T1D. The results suggest that a 6-week intervention with the PEPPER safety 

system and CGM has benefit in improving glycaemic control by reducing %time in clinically significant 

hypoglycaemia (<3.0mmol/l) and increasing %time in target (3.9-10mmol/l).   

Our study is limited by small numbers and a short follow‐up period, but the population and study design 

are comparable with previous reports for a feasibility study. Additionally, the feasibility study is not 

designed to show superiority. The results are encouraging and the overall system has been shown to be safe 

for use. However, without a control group, it is difficult to determine how much of the improvement was 

due to the safety system and how much to the prolonged CGM use. 

The baseline data was derived from weeks 1 and 2 (with standard safety system), and compared to endpoint 

(with PEPPER system). Although no significance was observed in the primary endpoint, the International 

Hypoglycaemia Study Group [21] recommend that <3.0mmol/l is a low enough but safe value to report 

‘clinically relevant’ hypoglycaemia in clinical trials. People with T1D who are unaware of their 

hypoglycaemia at <3.0mmol/l have a four-fold increased risk of severe hypoglycaemia [22]. This study was 

designed before this recommendation was published and had originally defined the level of hypoglycaemia 

at <3.9mmol/l.  

The reduction in total number of alerts decreased as the study progressed, correlating with the improved 

glycaemic control with continued use of the PEPPER safety system. One limitation in this analysis includes 

the alert threshold being altered by participants due to “alarm fatigue”. A suggestion from several users was 

to include a vibration feature, which is to be incorporated into the system. It is also difficult to establish 

whether the handset had been switched off by the participants, and therefore if the alarm/alert had been 

acted upon. 
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Signal loss between the CGM sensor and the PEPPER handset was a consistent issue amongst most 

participants. Participants found that the handset and CGM could only connect within a 5-metre range. Data 

loss was addressed during the course of the study and is currently a main focus for improvement within the 

system.  

During the course of the study, changes to insulin regime were made by clinicians to ensure participant 

safety. However, no significant changes to basal insulin dosing was found between run-in and endpoint to 

account for the significant reduction in hypoglycaemia.  

All participants using the PEPPER system expressed a wish to continue using the system in to Phase 2 of 

the study. However, participants did experience and reported alarm fatigue on a regular basis. For this 

reason, alterations have made been made to new feature releases, which include a vibration feature (instead 

of sound) and to downgrade hyperglycaemia alarms to alerts. 

As only MDI participants were assessed in this feasibility study, the other module components (ie. the 

Dynamic Insulin Constraint and Low-glucose suspend modules) could not be tested. Further work with 

pump participants and in the form of a powered, randomised cross-over trial is planned to assess whether 

the complete PEPPER system, integrated with the case-based reasoning component, is superior to standard 

safety system and bolus calculator.  

5 Conclusion 

In conclusion, the PEPPER safety system is acceptable, safe and maintains improved glycaemic control in 

a small pilot population within an out-of-clinic environment. Despite being a short study, significant 

reduction in percentage time in hypoglycaemia with increase in time in target was observed. These results 

are promising for the day-to-day use of PEPPER for self-management of T1D.  

 

Appendix A: Glucose Forecasting Algorithm 

The glucose forecasting employed by three of the Safety System modules (i.e., predicted alerts; predictive 

low-glucose insulin suspend; and carbohydrate recommender) uses a compartmental model of glucose-
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insulin dynamics composed by the minimal model of glucose-insulin regulation [23], the Hovorka’s insulin 

absorption and glucose absorption models [24]. 

 

The algorithm forecasts glucose levels 30 minutes ahead by evaluating 30 times a discretised version (Euler 

method with 1-minute integration step) of the aforementioned composite minimal model, and detailed in 

[25]. In addition, every time (k) a new CGM value is received (e.g. every 5minutes), the states of the 

composite model are updated as follows. First, the model is simulated over the time window [k-1, k] (e.g. 

5minutes) to obtain an estimate of the model states, i.e., rate of glucose appearance (𝑅𝑎), plasma insulin 

concentration (𝐼𝑝), plasma glucose concentration (G). Then, the deconvolution technique described by 

Herrero et al. [26] is used to obtain a second estimate of the rate of glucose appearance (�̂�𝑎). Subsequently, 

the current model’s 𝑅𝑎 state is updated by means of a weighted averaged between the model-estimated and 

the corresponding deconvoluted-estimate, 

𝑅𝑎: =  Q · �̂�𝑎 + (1 − Q) · 𝑅𝑎, (6) 

where 𝑄 is a tuning factor, such as 𝑄𝜖[0,1]). 

Similarly, the current model’s glucose concentration (G) is updated by means of a weighted average 

between the model-estimated and measured glucose values,  

G ≔ Q · CGM + (1 − Q) · G. (7) 

This averaging strategy can be seen as a way to decide how much trust is put on the measurements and how 

much on the model estimation. In this work, a Q=0.6 was employed. Figure 6 shows a graphical 

representation of the described glucose forecasting algorithm. 
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Figure 6. Block diagram corresponding to the proposed glucose forecasting algorithm. The whole 

diagram is executed every time a glucose value (CGM) is received. Then, the model represented by the 

physiological model represented by the green blocks is simulated over a 30-minute horizon to obtain the 

forecasted glucose. 

In addition to the standard inputs (insulin and carbohydrates), the employed forecasting algorithm allows 

for the additional inputs of meal absorption information (slow, medium, fast) and physical exercise 

information (none, yes) to enhance prediction accuracy. Meal absorption information is accounted by 

changing the time-to-maximum glucose appearance parameter (tmaxG) of the meal absorption model (e.g. 

45, 55, 90 minutes), while exercise is accounted by increasing the insulin sensitivity (SI) parameter by 30% 

over the exercise duration. 

Parameters of the endogenous glucose-insulin (SI, V, and p2) are individualized using retrospective clinical 

data from the studied individual, including CGM measurements, carbohydrate estimations and bolus 

insulin. A standard least-square parameter estimation technique aiming at minimising the forecasted 

glucose root mean square error was employed for this purpose. The remaining model parameters are fixed 

to mean population values. 
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The proposed algorithm has shown superior performance on retrospective clinical data from 10 adult 

subjects, when compared against a baseline glucose forecasting algorithm [27]. Root mean square errors 

expressed as mean±std in mmol/l were: 1.6±0.5 vs. 1.4±0.3 [28].  

6 References 

1. Atkinson, M. A., Eisenbarth, G. S., & Michels, A. W. (2014). Type 1 diabetes. The Lancet, 

383(9911), 69–82. 

2. Facchinetti, A. (2016). Continuous Glucose Monitoring Sensors: Past, Present and Future 

Algorithmic Challenges. Sensors, 16(12), 2093–12. 

3. Forlenza, G. P., Li, Z., Buckingham, B. A., Pinsker, J. E., Cengiz, E., Wadwa, R. P., et al. (2018). 

Predictive Low-Glucose Suspend Reduces Hypoglycemia in Adults, Adolescents, and Children 

With Type 1 Diabetes in an At-Home Randomized Crossover Study: Results of the PROLOG Trial. 

Diabetes Care, 41(10), 2155–2161.  

4. Kovatchev, B. (2018). Automated closed-loop control of diabetes: the artificial pancreas. 

Bioelectronic Medicine, 4(14). 

5. Klonoff, D. C. (2012). The Current Status of Bolus Calculator Decision-Support Software. Journal 

of Diabetes Science and Technology, 6(5), 990–994. 

6. Yeh HC(1), Brown TT, Maruthur N, Ranasinghe P, Berger Z, Suh YD, Wilson LM, Haberl EB, 

Brick J, Bass EB, Golden SH. Comparative effectiveness and safety of methods of insulin delivery 

and glucose monitoring for diabetes mellitus: a systematic review and meta-analysis. Ann Intern 

Med. 2012. 4;157(5):336-47. 

7. Ramkissoon, C. M., Aufderheide, B., Bequette, B. W., & Vehi, J. (2017). A Review of Safety and 

Hazards Associated with the Artificial Pancreas. IEEE Reviews in Biomedical Engineering, 10, 44–

62.  



Page 23 of 24 

 

8. Buckingham, B., Cobry, E., Clinton, P., Gage, V., Caswell, K., Kunselman, E., et al. (2009). 

Preventing Hypoglycemia Using Predictive Alarm Algorithms and Insulin Pump Suspension. 

Diabetes Technology & Therapeutics, 11(2), 93–97.  

9. Turksoy, K., Kilkus, J., Hajizadeh, I., Samadi, S., Feng, J., Sevil, M., et al. (2016). Hypoglycemia 

Detection and Carbohydrate Suggestion in an Artificial Pancreas. Journal of Diabetes Science and 

Technology, 10(6), 1236–1244.  

10. Beneyto, A., Bertachi, A., Bondia, J., & Vehi, J. (2018). A New Blood Glucose Control Scheme 

for Unannounced Exercise in Type 1 Diabetic Subjects. IEEE Transactions on Control Systems 

Technology, PP(99), 1–8. 

11. Bequette, B. W. (2014). Fault Detection and Safety in Closed-Loop Artificial Pancreas Systems. 

Journal of Diabetes Science and Technology, 8(6), 1204–1214.  

12. Herrero, P., López, B., & Martin, C. (2016). Pepper: Patient empowerment through predictive 

personalised decision support. In ECAI Workshop on Artificial Intelligence for Diabetes (pp. 8-9). 

13. Herrero, P., Pesl, P., Reddy, M., Oliver, N., Georgiou, P., & Toumazou, C. (2015). Advanced 

Insulin Bolus Advisor Based on Run-To-Run Control and Case-Based Reasoning. IEEE Journal of 

Biomedical and Health Informatics, 19(3), 1087–1096.  

14. Torrent-Fontbona, F., & Ibanez, B. L. (2018). Personalised Adaptive CBR Bolus Recommender 

System for Type 1 Diabetes. IEEE Journal of Biomedical and Health Informatics, PP(99), 1–1. 

15. Omer, T. (2016). Empowered citizen “health hackers” who are not waiting. BMC Medicine, 1–3.  

16. Man, C. D., Camilleri, M., & Cobelli, C. (2006). A System Model of Oral Glucose Absorption: 

Validation on Gold Standard Data. IEEE Transactions on Biomedical Engineering, 53(12), 2472–

2478.  

17. Walsh, J.,   Roberts, R. , Varma, C. , Bailey, T. Using Insulin: Everything You Need for Success 

with Insulin. Torrey Pines Press. 2003. 

18. F. Gao, Y. Wang, and F. J. Doyle, “Survey on iterative learning control, repetitive control, and run-

to-run control,” J. Process Control, vol. 19, no. 10, pp. 1589–1600, 2009.  



Page 24 of 24 

 

19. Schmidt, S., & Nørgaard, K. (2014). Bolus Calculators. Journal of Diabetes Science and 

Technology, 8(5), 1035–1041. 

20. Moore, R. E., Kearfott, R. B., & Cloud, M. J. (2009). Introduction to interval analysis (Vol. 110). 

Siam. 

21. International Hypoglycaemia Study Group. (2016). Glucose Concentrations of Less Than 3.0 

mmol/L (54 mg/dl) Should Be Reported in Clinical Trials: A Joint Position Statement of the 

American Diabetes Association and the European Association for the Study of Diabetes: Table 1. 

Diabetes Care, 40(1), 155–157.  

22. Cranston I, Lomas J, Maran A, Macdonald I, Amiel SA. Restoration of hypoglycemia awareness 

in patients with long-duration insulindependent diabetes. Lancet 1994;344:283:287 

23. Cobelli, C., Dalla Man, C., Toffolo, G., Basu, R., Vella, A., & Rizza, R. (2014). The Oral Minimal 

Model Method. Diabetes, 63(4), 1203–1213.  

24. Hovorka, R., Canonico, V., Chassin, L. J., Haueter, U., Massi-Benedetti, M., Federici, M. O., et al. 

(2004). Nonlinear model predictive control of glucose concentration in subjects with type 1 

diabetes. Physiological Measurement, 25(4), 905–920.  

25. Herrero, P., Calm, R., Vehí, J., Armengol, J., Georgiou, P., Oliver, N., & Tomazou, C. (2012). 

Robust fault detection system for insulin pump therapy using continuous glucose 

monitoring. Journal of diabetes science and technology, 6(5), 1131-1141. 

26. Herrero, P., Bondia, J., Palerm, C. C., Georgiou, P., Oliver, N., & Toumazou, C. (2012). A Simple 

Robust Method for Estimating the Glucose Rate of Appearance from Mixed Meals. Journal of 

Diabetes Science and Technology, 6(1), 153–162. 

27. C. Zhao, E. Dassau, L. Jovanovic, H. C. Zisser, F. J. Doyle III, and D. E. Seborg, “Predicting 

subcutaneous glucose concentration using a latentvariable- based statistical method for type 1 

diabetes mellitus,” Journal of diabetes science and technology, vol. 6, no. 3, pp. 617–633, 2012. 

28. Liu, C., Vehí, J., Oliver, N. Georgiou, P. Enhancing Blood Glucose Prediction with Meal 

Absorption and Physical Exercise Information. www.arXiv.org/ 

http://www.arxiv.org/

