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ABSTRACT 

This paper studies house price dynamics of the different property types in Scotland. We find 

evidence of i) breakpoints around the recent financial crisis in three property types (flats, 

terraced, semi-detached) and in the average house prices, ii) volatility clustering in the detached 

house prices, with the CGARCH being the optimal volatility model, iii) negative impact of the 

unemployment and interest rates on house prices irrespective of the property type and positive 

effect of the CPI in the prices of the detached, terraced and average houses. Our results have 

significant implications for appropriate economic policy selection and investment 

management. 
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1 INTRODUCTION 

The analysis of real estate markets has long been the subject of interest in different economies. 

Housing markets have important effects in an economy through many channels. For instance, 

they affect selling/buying prices directly and financial institutions indirectly through mortgage 

defaults. Moreover, housing is an important asset constituting a substantial input to the total 

asset of several households (Lee, 2009), while holding a twofold role through consumption and 

investment as opposed to several other assets and commodities (Lee, 2017). However, housing 

investment cannot be considered safe because of the numerous housing bubbles all over the 

world, while recent crises suggest a failure of the banking and financial sectors to appropriately 

price housing risk (Morley and Thomas, 2016).  

The most recent financial crisis, in particular, has drawn the attention of policymakers and 

investors alike towards the importance of house price volatility (Lee, 2009) and proved the 

importance of housing markets to the economy, as housing systems are related to the 

distribution of welfare and wealth, and housing finance is linked to the most recent international 

financial crisis (Schwartz and Seabrooke, 2009). As a result, studying house price dynamics is 

of high importance in different markets, such as financial, mortgage and housing. Moreover, 

analysing housing market volatility in particular is important for policy decision making and 

homeownership. Policy makers seek a less volatile housing market to increase homeownership. 

Lee and Reed (2014) found that first-time buyer schemes support housing affordability and 

housing price stabilisation. In addition, Stephens and Williams (2012) highlight the importance 

of stability to a socially sustainable housing market. 

It has been previously shown that house prices share some properties with financial time series 

(see, e.g., Campbell et al., 2009; Dolde and Tirtiroglu, 1997; Karoglou et al., 2013; Lin and 

Fuerst, 2014; Miles, 2011a). Following the vast literature on modelling the volatility of 

financial assets using the class of Generalised Autoregressive Conditional Heteroscedasticity 



(GARCH) models, recently there has been heightened interest in modelling house price 

volatility employing similar methods. However, there is rather limited literature on house price 

volatility that focuses on specific regions, instead of aggregate effects, or on different property 

types, even though there has been evidence of discrepancies in house price dynamics and 

volatility clustering as well as in risk-return relationships found not only across countries but 

also across regions and property types.  

Analysing real estate markets effectively is crucial for appropriate economic policy selection 

and portfolio management at both national and regional level. Real estate has become an 

important part for portfolio diversification. Although unsafe, direct and indirect investment 

(through funds) in real estate could still be considered as a relatively safer investment than other 

assets. Investors who want to eliminate risk want to include assets with different correlations. 

Diversification can be achieved not only among different assets (e.g., stocks, bonds, real estate) 

but also within the same asset class. For example, Eichholtz et al. (1995) examined real estate 

portfolio diversification across the US and UK and found diversification potential (by both 

property type and region) but did not find a common conclusion across different regions and 

property types. 

Real estate is a major part of the Scottish economy and supports the economic activity across 

Scotland (e.g., investment, jobs). According to the Fraser of Allender Institute (2018), the 

economic contribution of commercial property activity is 4% of Scotland’s economic output 

and is a valuable investment for trusts and pension funds. The property market plays a key role 

in capital circulation and as any market needs a social order to work properly. Apart from an 

important source of tax revenue, there are also significant spill-over effects in the whole 

economy. Housing is a central part of the national and local political-economic policies in 

general (Aalbers and Christophers, 2014). 



Nevertheless, previous studies of UK housing markets have focused mainly on England and 

Wales, often excluding Scotland, though. Exceptions include the studies of Maclennan and Tu 

(1998), Miles (2011b; 2015) and Begiazi and Katsiampa (2018). Interestingly, while 

Maclennan and Tu (1998), in their study of UK cities, included Glasgow, as its house prices 

continued to rise, similar to the rest of Scotland, and moved in the opposite direction of Bristol 

and Luton during 1989-1993, Miles (2015) found that Scotland exhibited the least variable 

returns in his sample. However, Bell and Blanchflower (2007), while considering various 

conditions, including housing, among others, found that Scotland’s well-being suffers more 

than any other UK region. Moreover, of these studies, only Miles (2011b) and Begiazi and 

Katsiampa (2018) examined the volatility of the Scottish housing market, both of which 

considered Scottish house prices in aggregate effects and not by property type, though. 

Furthermore, even though it is important to test for potential structural breaks if the period 

under examination includes an unstable time, such as a financial crisis, as ignoring structural 

breaks may result in an erroneous inference (Chien, 2010), there exists very limited literature 

on testing for structural breaks prior to modelling conditional volatility, especially for the 

Scottish housing market. What is more, to the best of the authors' knowledge, no previous study 

has examined the determinants of the Scottish housing market. 

Consequently, we aim to contribute to the literature not only by investigating whether the 

Scottish house prices exhibit constant or time-varying conditional variance and if the results 

are consistent with earlier studies, but also by testing for structural breaks and identifying 

potential breakpoints, which could help us correlate them with specific events (e.g., financial 

crises, etc.). Moreover, as different forms of housing are used for various purposes and attract 

different types of buyers (Morley and Thomas, 2016), not only do we study the average Scottish 

house prices, but we also examine whether house price dynamics vary across different property 

types in Scotland. These include flats, terraced, semi-detached and detached houses. Finally, 



we consider exogenous macroeconomic variables in order to study the determinants of the 

Scottish housing market. This is, therefore, the first study that comprehensively explores the 

price dynamics of the Scottish housing market. 

The paper is organised as follows: The next section reviews the relevant literature, followed by 

a description of the data and methodology used in the third and fourth sections, respectively. 

The fifth section details our empirical results, while the conclusions drawn and the implications 

for policy making are presented in the last section. 

 

2 LITERATURE REVIEW 

Over the last two decades, there has been an increased research interest in the analysis of house 

prices. House price volatility has been studied in different countries and economies. For 

instance, Lee (2009, 2017) and Lee and Reed (2013) examined house price volatility in 

Australia, Hossain and Latif (2009) and Lin and Fuerst (2014) studied Canadian house price 

volatility, while Coskun and Ertugrul (2016) modelled house price volatility in Turkey. 

However, the two countries that have drawn the most attention in terms of studying real estate, 

as well as other asset, prices and volatility are the US and the UK. Examples of authors who 

have studied US house prices include Dolde and Tirtiroglu (1997), Crawford and Fratantoni 

(2003), Miller and Peng (2006), Campbell et al. (2009), Miles (2008, 2011a), Miao et al. 

(2011), Karoglou et al. (2013), Zhu et al. (2013) and Webb et al. (2016). On the other hand, 

studies of regional house price volatility in the UK include those of Tsai et al. (2010), Willcocks 

(2010), Miles (2011b, 2015), Tsai (2015) and Morley and Thomas (2011, 2016). 

Nevertheless, despite the fact that the importance of modelling individual areas separately when 

studying house price volatility has been highlighted in various studies (see, e.g., Miller and 

Peng, 2006; Lee, 2009; Miles, 2008, 2011b; Morley and Thomas 2016), examining Scottish 

house price dynamics has been rather limited, even though previous studies have examined 



volatility of other areas of the UK, namely England and Wales. To the best of the authors' 

knowledge, only Willcocks (2010), Miles (2011b) and Katsiampa and Begiazi (2018) 

considered Scotland, among other regions, in their studies of conditional variances of quarterly 

UK regional house prices, all of whom found evidence of a lack of volatility clustering, though. 

Moreover, even though it could be expected that house price dynamics differ not only at 

regional but also at property type level, the literature on house prices by property type is 

extremely limited. Again to the best of the authors' knowledge, only Valadkhani et al. (2016), 

Morley and Thomas (2016) and Begiazi and Katsiampa (2018) have studied house price 

dynamics by property type. However, Valadkhani et al. (2016) examined regional seasonality 

in Australian house and apartment price returns, Morley and Thomas (2016) studied regional 

house prices by property type only for England and Wales, excluding Scotland, while Begiazi 

and Katsiampa (2018) considered only aggregate, and not regional, house prices by property 

type in the UK.  

Earlier studies of house price volatility have employed different GARCH-type models. For 

example, the simple ARMA-GARCH model has been used by, e.g., Hossain and Latif (2009), 

among others, in an attempt to identify the determinants of house price volatility, while the 

Exponential GARCH (EGARCH) model has been preferred when studying asymmetries in 

house price volatility (see, e.g., Lee, 2009). Nevertheless, the GARCH-in-Mean (GARCH-M) 

and Exponential GARCH-in-Mean (EGARCH-M) models seem to have been the most popular 

ones. For instance, Dolde and Tirtiroglu (1997) used an ARMA-GARCH-M model in order to 

examine patterns of temporal and spatial diffusion of real estate price changes, while Stevenson 

et al. (2007) used a GARCH-M model to study the sensitivity of real estate securities to changes 

in interest rates. On the other hand, examples of studies that employed the EGARCH-M model 

include those of Willcocks (2010), Lin and Fuerst (2014) and Morley and Thomas (2011, 2016) 

who found evidence suggesting that house prices in some regions exhibit characteristics similar 



to stock indices. Other GARCH-type models used in studies of house price volatility include 

the Regime Switching ARCH (SWARCH) model (Tsai et al., 2010), the Threshold GARCH 

(TGARCH) model (Miles, 2008, 2011b), the Component GARCH (CGARCH) model (Lee and 

Reed, 2013; Miles, 2011a) and the Asymmetric Component GARCH-in-Mean (ACGARCH-

M) model (Karoglou et al., 2013; Lee, 2017). However, even though previous studies have 

attempted to model house price volatility using the family of GARCH-type-models, most of 

them have not considered comparing different GARCH-type models.  

In addition, examining the model stability prior to testing for volatility clustering is of 

paramount importance. Although, previous studies have shown that some regions exhibit 

conditional volatilities (see, e.g., Miles, 2011a, 2011b; Morley and Thomas, 2016; Willcocks, 

2010), housing markets often face large shocks which may cause structural breaks, while breaks 

in the variance might appear as volatility clustering (Diebold, 1986). Furthermore, despite the 

fact that accurate forecasting could be affected by structural breaks (Lee et al., 2006; Rapach 

and Straus, 2008), there is rather limited literature on structural break analysis of house price 

dynamics, especially prior to modelling conditional volatilities. Among few authors who have 

investigated potential breakpoints of house prices are Chien (2010), who examined breakpoints 

in the Taiwan housing market, and Karoglou et al. (2013) and Canarella et al. (2012), who 

studied breakpoints in the US housing market, while authors who have investigated potential 

breakpoints in the UK house prices include Miles (2015), Zhang et al. (2017) and Begiazi and 

Katsiampa (2018). 

Finally, understanding the risk-return relationship in housing markets as well as the 

determinants of housing markets is of utmost importance to both investors and policymakers. 

Previous studies of risk-return relationships in real estate markets include those of Karoglou et 

al. (2013), Morley and Thomas (2016) and Lee (2017). On the other hand, earlier studies of the 

determinants of housing prices include those of Case and Shiller (1990), Abelson et al. (2005), 



Lee (2009, 2017) and Lee and Reed (2013). However, no earlier study has considered 

investigating the risk-return relationship or the determinants of the Scottish housing market. 

Moreover, earlier studies on the determinants of housing markets mostly consider first 

moments, with limited existing literature on the determinants of house price volatility (Lee, 

2009). 

Therefore, this paper extends the literature by studying house price dynamics in Scotland not 

only in average prices but also by UK property type, namely flats, terraced, semi-detached and 

detached houses. More specifically, we conduct structural break analysis aiming to identify any 

potential breakpoint dates and correlate them with specific events, prior to testing for ARCH 

effects. In addition, for the property types exhibiting volatility clustering, we consider various 

GARCH-type models in order to identify the optimal volatility model and then study the risk-

return relationship. Finally, we study the determinants of the Scottish housing market, not only 

in the first moments but also in volatility. 

 

3 DATA 

In order to investigate whether the Scottish housing market exhibits structural breaks and/or 

volatility, this paper uses monthly house price data by property type for Scotland from January 

2004 (as the earliest date available) to May 2017, giving a total of 161 observations for each 

property type. The dataset is derived from the UK House Price Index which is based on house 

price data collected by the UK Land Registry and covers the four property types of detached, 

semi-detached and terraced houses and flats/maisonettes as well as the average house price of 

the different property types in Scotland. The data are publicly available online at 

https://www.gov.uk/government/statistical-data-sets/. 

 



The data are converted to natural logarithms, and then we define the housing returns for each 

property type as 

 

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖𝑖𝑖−1,                                                         (1) 

 

where itR  is the logarithmic house price change in month t  for house property type i , and itP  

is the average monthly house price in month t  for house property type i . It should be noted, 

though, that following Willcocks (2010), the returns are not smoothed or adjusted for inflation, 

as this could hide the impact of volatility changes over adjacent time periods.4  

In addition, in order to study the determinants of the Scottish housing market, we also include 

the Scottish unemployment rate, UK interest rate and UK CPI index in our dataset. All of these 

variables are key macroeconomic policy instruments. Monthly data for the Scottish 

unemployment rate and UK CPI index were extracted from the Office for National Statistics 

(https://www.ons.gov.uk/), while the monthly data for the monthly UK interest rate are 

available online at the Bank of England's website (http://www.bankofengland.co.uk). 

 

4 METHODOLOGY 

In this section, the methodology employed in this study is discussed. More specifically, the 

unit-root and breakpoint tests conducted are first presented, followed by a discussion on the 

ARMA and volatility modelling procedures. Finally, we present the model where the three 

exogenous variables are incorporated as determinants of the Scottish housing market. 

 

                                            
4 Moreover, following Miles (2011a), Karoglou et al. (2013) and Lee (2017), among others, in our study we 
employ non-seasonally adjusted data, as seasonal adjustment could hide useful information about the data. It is 
also worth mentioning that the linear X-11 filter, which is one of the most common methods for seasonal 
adjustment, and the actual seasonal adjustment procedure produce serious downward biases in ARCH effects as 
well as in their persistence (Ghysels et al., 1997). 



Unit-root testing 

We start the empirical analysis by performing unit root tests, the Augmented Dickey-Fuller 

(ADF) (Dickey and Fuller, 1979) and Phillips-Perron (Phillips and Perron, 1988) tests in 

particular, in order to examine the stationarity of the house price returns, by allowing for 

changes in either the intercept only or in both the intercept and linear trend under each 

technique. However, in the presence of a breakpoint, structural changes need to be taken into 

consideration when testing for unit roots (Perron, 1989), as the conventional unit root tests may 

lead to a wrong decision when the null hypothesis is not rejected (Thornton, 2007; Chien, 

2010), while inconsistent results from unit root tests suggest the eventuality of a structural break 

in the series (Göktaş and Dişbudak, 2014). Hence, as the period under examination covers the 

recent financial crisis of 2007 which affected the house prices overall as well as other events 

(e.g., UK referendum) that could possibly cause instability, it is important to also test for 

structural breaks.  

Consequently, modified Dickey-Fuller tests are also performed allowing for either an 

innovational outlier break, assuming that the break occurs gradually and follows the same 

dynamic path as the innovations, or an additive outlier break, assuming that the break occurs 

immediately. In each case, we allow for non-trending data with an intercept break, or trending 

data with both intercept and trend breaks. The framework follows the work of Perron (1989), 

Perron and Vogelsang (1992), Banerjee et al. (1992) and Vogelsang and Perron (1998).  

 

Identification of structural breaks 

Once stationarity is ensured, following the methodology of Göktaş and Dişbudak (2014), we 

test for multiple unknown structural breakpoints using Sequential Bai-Perron (Bai, 1997; Bai 

and Perron, 1998) tests allowing for up to five breakpoints, after fitting an Autoregressive (AR) 

model with a constant to our house price return series, selecting the lag order according to the 



statistical significance of the estimated parameters. Any date identified as a potential breakpoint 

according to the Sequential Bai-Perron tests is further tested using Chow's breakpoint test 

(Chow, 1960) as well as the Quandt-Andrews test (Andrews, 1993; Andrews and Ploberger, 

1994) in order to verify the results.  

We also test for potential breakpoints in the variance. Consequently, following Göktaş and 

Dişbudak (2014) and Begiazi and Katsiampa (2018), the squared residuals of the AR models 

are regressed on a constant, and Sequential Bai-Perron tests are then re-performed. Once again 

any date identified as a potential breakpoint in the variance according to the Bai-Perron tests is 

also tested using Chow's test and the Quandt-Andrews test in order to confirm the results. 

 

ARMA modelling 

Next, following Willcocks (2010), we model each return series by an ARMA (p,q) process. It 

should be noted that for the property types exhibiting structural breaks, different ARMA models 

are fitted before and after the breakpoint as long as there is a sufficient number of observations 

in each interval. The ARMA (p,q) model has the following form 

 

𝑅𝑅𝑖𝑖,𝑖𝑖 = 𝜇𝜇 + 𝜑𝜑1𝑅𝑅𝑖𝑖−1,𝑖𝑖 + ⋯+ 𝜑𝜑𝑝𝑝𝑅𝑅𝑖𝑖−𝑝𝑝,𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑖𝑖 + 𝜃𝜃1𝜀𝜀𝑖𝑖−1,𝑖𝑖 + ⋯𝜃𝜃𝑞𝑞𝜀𝜀𝑖𝑖−𝑞𝑞,𝑖𝑖.                    (2) 

 

Similar to Willcocks (2010), the appropriate lag structure for each property type is selected 

according to information criteria, Akaike (AIC) and Bayesian (BIC) information criteria, in 

particular. We also use the LM test for autocorrelation in order to check whether there is any 

remaining autocorrelation in the residuals prior to testing for ARCH effects, as it is assumed in 

ARCH modelling that the residuals are uncorrelated, even though autocorrelation exists among 

the squared residuals (Miles, 2008, 2011b). Allowing for different lag orders across different 

property types is on the basis of assuming that expectations for each property type are 



heterogeneous, similar to the assumption of Miller and Peng (2006) and Willcocks (2010) that 

expectations in different areas are heterogeneous. 

 

Volatility modelling 

We then use Engle's (Engle, 1982) ARCH-LM test applied to the residuals from the ARMA 

models in order to test for potential ARCH effects and see whether volatility modelling is 

required. If volatility clustering is found in a series, we proceed by fitting six GARCH-type 

models, namely ARCH, GARCH, Exponential GARCH (EGARCH), GJR-GARCH, 

Component GARCH (CGARCH) and Asymmetric CGARCH (ACGARCH), to the given 

series. The conditional volatility model takes the following form 

 

𝜀𝜀𝑖𝑖 = ℎ𝑖𝑖𝑧𝑧𝑖𝑖, 𝑧𝑧𝑖𝑖 ~ i. i. d. (0,1),                                                        (3) 

 

where 𝜀𝜀𝑖𝑖 is the error term, 𝑧𝑧𝑖𝑖 is a white noise process, ℎ𝑖𝑖 is the conditional standard deviation, 

and hence ℎ𝑖𝑖2 is the conditional variance.  

In the simple ARCH model (Engle, 1982), the conditional variance depends on previous 

squared errors, and the first order model takes the following form 

 

ℎ𝑖𝑖2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑖𝑖−12 ,     (4) 

 

while in the GARCH model (Bollerslev, 1986), the conditional variance depends on both 

previous squared errors and past volatility, as follows 

 

ℎ𝑖𝑖2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑖𝑖−12 + 𝛽𝛽ℎ𝑖𝑖−12 ,     (5) 

 



with 𝜔𝜔 > 0, 𝛼𝛼 ≥ 0 and 𝛽𝛽 ≥ 0. However, although the GARCH model is a popular model for 

time-varying conditional variances, it cannot model the leverage effect which often appears in 

the behaviour of heteroskedastic time series. As opposed to the ARCH and GARCH models, 

the EGARCH, GJR-GARCH and ACGARCH models take asymmetric effects of positive and 

negative shocks in the conditional variance into consideration. More specifically, in the 

EGARCH model (Nelson, 1991), the conditional variance is written as 

 

log(ℎ𝑖𝑖2) = 𝜔𝜔 + 𝛼𝛼 ��𝜀𝜀𝑡𝑡−1
ℎ𝑡𝑡−1

� − �2 𝜋𝜋⁄ � + 𝛽𝛽 log(ℎ𝑖𝑖−12 ) + 𝛿𝛿 𝜀𝜀𝑡𝑡−1
ℎ𝑡𝑡−1

,   (6) 

 

allowing for asymmetric volatility responses to negative news, i.e. 𝜀𝜀𝑖𝑖−1 < 0, and positive news, 

i.e. 𝜀𝜀𝑖𝑖−1 > 0, as indicated by the sign of 𝛿𝛿. Similarly, in the GJR-GARCH model (Glosten et 

al., 1993), the conditional variance is defined as 

 

ℎ𝑖𝑖2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑖𝑖−12 + 𝛽𝛽ℎ𝑖𝑖−12 + 𝛾𝛾𝜀𝜀𝑖𝑖−12 𝐼𝐼𝑖𝑖−1,     (7) 

 

where 𝐼𝐼𝑖𝑖 is an indicator function, with 𝐼𝐼𝑖𝑖 = 1 if 𝜀𝜀𝑖𝑖−1 < 0 and 0 otherwise, indicating that 

positive and negative shocks have again different impact on volatility. A negative leverage 

EGARCH (δ) parameter estimate and a positive asymmetry GJR-GARCH (γ) parameter 

estimate suggest that negative return shocks have a greater impact on the conditional volatility 

than positive shocks of equal magnitude. 

Moreover, while the conditional variance of the GARCH model shows mean reversion to 𝜔𝜔, 

which is a constant for all time, the CGARCH model (Engle and Lee, 1999) decomposes the 

aggregate volatility into a short-term (transitory) component, ℎ𝑖𝑖2 −  𝑞𝑞𝑖𝑖, and a long-run 

(permanent) component, 𝑞𝑞𝑖𝑖, (Lee, 2017) which is time-varying and slowly mean-reverting. The 

CGARCH model can thus be expressed as 



 

ℎ𝑖𝑖2 = 𝑞𝑞𝑖𝑖 + 𝛼𝛼(𝜀𝜀𝑖𝑖−12 − 𝑞𝑞𝑖𝑖−1) + 𝛽𝛽(ℎ𝑖𝑖−12 − 𝑞𝑞𝑖𝑖−1),   (8) 

 𝑞𝑞𝑖𝑖 = 𝜔𝜔 + 𝜌𝜌(𝑞𝑞𝑖𝑖−1 − 𝜔𝜔) + 𝜃𝜃(𝜀𝜀𝑖𝑖−12 − ℎ𝑖𝑖−12 ),    (9) 

 

The transitory volatility component, ℎ𝑖𝑖2 −  𝑞𝑞𝑖𝑖, converges to 0 with powers of 𝛼𝛼 + 𝛽𝛽 (Lee, 2017), 

while 𝜚𝜚 measures the speed of convergence to the long-run level of volatility (Karoglou et al., 

2013). Christoffersen et al. (2008) showed that including both volatility components allows the 

CGARCH model to outperform the GARCH model. It is worth noticing that the CGARCH 

model has found several applications in the literature on housing market volatility dynamics. 

Finally, the ACGARCH model combines the CGARCH and GJR-GARCH models and can be 

written as 

 

ℎ𝑖𝑖2 = 𝑞𝑞𝑖𝑖 + 𝛼𝛼(𝜀𝜀𝑖𝑖−12 − 𝑞𝑞𝑖𝑖−1) + 𝛾𝛾(𝜀𝜀𝑖𝑖−12 − 𝑞𝑞𝑖𝑖−1)𝐷𝐷𝑖𝑖−1 + 𝛽𝛽(ℎ𝑖𝑖−12 − 𝑞𝑞𝑖𝑖−1)   (10) 

𝑞𝑞𝑖𝑖 = 𝜔𝜔 + 𝜌𝜌(𝑞𝑞𝑖𝑖−1 − 𝜔𝜔) + 𝜃𝜃(𝜀𝜀𝑖𝑖−12 − ℎ𝑖𝑖−12 ),    (11) 

 

where 𝐷𝐷 is a dummy variable which indicates negative shocks, while positive values of 

𝛾𝛾 suggest the presence of transitory leverage effects in the conditional variance.5 

The optimal GARCH-type model is chosen according to AIC, BIC, and Hannan-Quinn (HQ) 

information criteria, all of which consider how satisfactory the fitting of the model is as well as 

the number of model parameters. The selected model is the one with the minimum information 

criteria values. For the selected model, we also estimate its GARCH-in-mean counterpart, 

which includes the conditional standard deviation as a regressor in the mean equation as follows 

                                            
5 It is worth mentioning that some of these models can be viewed as a special case of other GARCH-type models 
under specific conditions or restrictions. More specifically, if the asymmetry ACGARCH (𝛾𝛾) parameter equals 
zero, we obtain the CGARCH model, while if 𝜌𝜌 = 𝜃𝜃 = 0 in the CGARCH model, we obtain the GARCH model. 
Similarly, the GARCH model is nested in the GJR-GARCH model for a zero asymmetry GJR-GARCH (𝛾𝛾) 
parameter. Finally, if the GARCH (𝛽𝛽) parameter equals zero, we obtain the simple ARCH model. 



 

𝑅𝑅𝑖𝑖,𝑖𝑖 = 𝜇𝜇 + 𝜑𝜑1𝑅𝑅𝑖𝑖−1,𝑖𝑖 + ⋯+ 𝜑𝜑𝑝𝑝𝑅𝑅𝑖𝑖−𝑝𝑝,𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑖𝑖 + 𝜃𝜃1𝜀𝜀𝑖𝑖−1,𝑖𝑖 + ⋯𝜃𝜃𝑞𝑞𝜀𝜀𝑖𝑖−𝑞𝑞,𝑖𝑖 + 𝜆𝜆ℎ𝑖𝑖.               (12) 

 

The incorporation of the conditional standard deviation, which measures the risk, in the mean 

equation of the model is required for the identification and measurement of any risk-return 

relationship (Karoglou et al., 2013; Morley and Thomas, 2011). Positive values of 𝜆𝜆 suggest 

that investors, especially risk-averse ones, would demand a higher risk premium in return of 

increased risk, while negative values of 𝜆𝜆 indicate that investors would require lower risk 

premium during periods of high risk (Karoglou et al., 2013; Lee, 2017). 

 

Determinants of Scottish housing market 

Finally, we study the determinants of the Scottish housing market. Similar to Abelson et al. 

(2005), Lee (2009) and Lee and Reed (2013), we examine whether the unemployment rate and 

CPI affect house prices. Moreover, following Lee (2009, 2017), we also include interest rate as 

an exogenous variable in the mean equation. Consequently, the regression model in the mean 

equation takes the following form 

 

𝑅𝑅𝑖𝑖,𝑖𝑖 = 𝜇𝜇 + 𝜑𝜑1𝑅𝑅𝑖𝑖−1,𝑖𝑖 + ⋯+ 𝜑𝜑𝑝𝑝𝑅𝑅𝑖𝑖−𝑝𝑝,𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑖𝑖 + 𝜃𝜃1𝜀𝜀𝑖𝑖−1,𝑖𝑖 + ⋯𝜃𝜃𝑞𝑞𝜀𝜀𝑖𝑖−𝑞𝑞,𝑖𝑖 

+𝛽𝛽1𝑈𝑈𝑙𝑙𝑈𝑈𝑈𝑈𝑈𝑈𝑙𝑙𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑙𝑙𝑈𝑈 𝑟𝑟𝑟𝑟𝑈𝑈𝑈𝑈𝑖𝑖−1 + 𝛽𝛽2𝐼𝐼𝑙𝑙𝑈𝑈𝑈𝑈𝑟𝑟𝑈𝑈𝐼𝐼𝑈𝑈 𝑟𝑟𝑟𝑟𝑈𝑈𝑈𝑈𝑖𝑖−1 + 𝛽𝛽3𝐶𝐶𝑃𝑃𝐼𝐼𝑖𝑖−1.       (13) 

 

For the property types exhibiting ARCH effects, we also study whether their current volatility 

is affected by past Scottish unemployment rate, UK interest rate, and UK inflation, by 

incorporating the aforementioned variables as exogenous variables in the conditional variance 

equation of the preferred model, accordingly. 

 



5 RESULTS 

Overview 

Figure 1 illustrates the price movements of the various property types in Scotland over time. 

As might be expected, detached houses are the most expensive, followed by semi-detached and 

terraced houses, with flats being the most affordable property type. It is worth mentioning, 

though, that since the recent financial crisis the price of semi-detached houses has exceeded the 

average Scottish house price. Another interesting fact is that detached house prices rose by 10% 

in March 2015. However, this was a one-off spike and could be connected to the new Land and 

Buildings Transaction Tax (LBTT) that was introduced in Scotland on 1st April 2015, replacing 

the Stamp Duty Land Tax, indicating that high-end real estate buyers purchased expensive 

properties before the introduction of higher rates of stamp duty, as this tax would negatively 

affect only highly priced properties, a fact which led to a significant rise in the number of such 

transactions compared to the usual average. Moreover, the price return movements of each 

property type can be found in Figure A1 (Appendix). We notice that the spike in the detached 

house prices around March 2015, which affected the average house prices as well, is also 

evident in Figure A1. We also notice that the housing returns fluctuate in both the positive and 

negative regions. They also seem to follow a similar pattern and could, therefore, be correlated.  

Table 1 presents the Pearson correlation coefficient values for the different pairs of property 

type price returns. The Pearson correlation coefficient is a measure of the linear correlation 

between two variables.  It can be noticed that all the correlations are positive, as could have 

been expected. Interestingly, the highest correlation is observed between semi-detached and 

terraced houses (0.948), while flats have the highest correlation with terraced houses (0.807). 

On the other hand, detached houses display the lowest correlation with any other property type.  

 

=== 



Table 1 here: see appendix 

=== 

 

Unit-root testing 

As mentioned in the previous section, the first step of our empirical analysis consists of testing 

for the presence of unit roots. As our sample includes the recent financial crisis of 2007 which 

affected the house prices overall and could have caused breakpoints, we also need to use 

amended unit root tests allowing for structural breaks, as discussed earlier. Table 2 presents the 

results of the conventional unit root tests, along with the results of the breakpoint unit root tests. 

When testing for stationarity allowing for breakpoints, we always fail to accept the null 

hypothesis of a unit root for the returns of any property type, and, hence, stationarity is ensured 

across all the property types in Scotland. However, when testing for stationarity without taking 

any breakpoint into consideration, the results of the conventional ADF and PP unit root tests 

are overall contradictory. More specifically, although the results of the PP test agree with the 

results of the breakpoint unit root tests, i.e., resulting in failing to accept the null hypothesis of 

a unit root for any property type price returns, based on the results of the ADF test without 

allowing for a breakpoint, we fail to accept the null hypothesis of a unit root only for the returns 

of the detached houses. This could be an indication of structural breaks in the returns of the 

flats, terraced and semi-detached houses as well as in the average house price returns distracting 

the ADF test results. 

 

=== 

Table 2 here: see appendix 

=== 

 



Identification of structural breaks 

The next step of our empirical analysis is to fit an AR model with a constant to the house price 

returns of each property type, selecting the lag order according to the statistical significance of 

the estimated parameters, and then conduct Sequential Bai-Perron breakpoint tests for multiple 

unknown structural breakpoints. The results obtained by fitting AR processes on the housing 

returns before conducting the multiple-breakpoint tests are reported in Table 3, while the results 

of the breakpoint tests are given in Table 4. As shown in Table 3, the best AR model for the 

price returns of the terraced houses is the AR(1) model, while for all the other property types 

the best model was the one including only an intercept.  

 

=== 

Table 3 here: see appendix 

=== 

 

According to the results shown in Table 4 for the mean equations, there is one single structural 

break in the average Scottish house price returns taking place in July 2007, as identified by the 

Bai-Perron test at a 0.10 significance level and further confirmed by both Chow's and Quandt-

Andrews breakpoint tests at a 0.01 significance level. This result is somewhat consistent with 

Begiazi and Katsiampa (2018) who using quarterly data found that there is a structural break 

in the fourth quarter of 2007 for the average Scottish house price index returns. Moreover, when 

examining each property type separately, it is clear that there is also a structural break taking 

place in July 2007 in the price returns of flats, while semi-detached and terraced houses exhibit 

a structural break in September 2007. On the other hand, according to the Bai-Perron test, the 

detached houses do not have any structural break. It should also be noted that for the flats, 

terraced, semi-detached and average house price returns we also tested the alternative 



hypothesis of two breakpoints versus the null hypothesis of one break, but we always accepted 

the null hypothesis of one breakpoint. 

We have also tested for potential breakpoints in the variance. Similar to Göktaş and Dişbudak 

(2014) and Begiazi and Katsiampa (2018), and while taking the identified breakpoints in the 

mean equation into account as appropriate, the squared residuals of the estimated AR models 

were regressed on a constant, and Bai-Perron tests were then reperformed. Once again any date 

identified as a potential breakpoint in the variance according to the Bai-Perron tests was also 

tested using Chow's and Quandt-Andrews tests in order to confirm the results. These results 

can also be found in Table 4. We notice that semi-detached as well as average house price 

returns also have structural breaks in the variance. More specifically, semi-detached house price 

returns exhibit a structural break in the variance in May 2015, which could be related to the 

Land and Buildings Transaction Tax that was introduced in Scotland in April 2015. Moreover, 

both semi-detached as well as average house price returns were found to exhibit a structural 

break in the variance in April 2009. It is worth mentioning that Begiazi and Katsiampa (2018) 

also found a structural break in the second quarter of 2009 for three UK regions as well as for 

the UK as a whole, but in the mean equation, relating it to the house price recovery of the 2007-

2008 financial crisis.  

 

=== 

Table 4 here: see appendix 

=== 

 

Summary statistics 

Table 5 summarises the descriptive statistics of the average house price returns as well as of 

the price returns of each property type in Scotland. For the property types that have a structural 



break (average, flats, terraced and semi-detached houses), the descriptive statistics of the two 

sub-periods - before and after the breakpoint - are also presented. As can be easily seen, all 

property types provide positive average total monthly returns. Mean total returns range from 

0.36 (flats) to 0.43 (terraced). A comparison between the periods prior and post the breakpoint 

indicates the series have much lower mean returns after the structural break, with flats, in 

particular, being the only property type that reports slightly negative mean return after the July 

2007 breakpoint. Interestingly, detached houses exhibit the highest kurtosis and constitute the 

only property type in Scotland with negative skewness. The latter fact indicates that the left tail 

is longer than the right in the case of the monthly detached house price returns, while the 

opposite result holds for the remaining property types.  

 

=== 

Table 5 here: see appendix 

=== 

 

ARMA modelling 

We then proceeded by fitting ARMA models to the return series. For the property types that 

have a structural break (average, flats, terraced and semi-detached houses), an ARMA model 

is fitted only to the data after the breakpoint, as effective ARMA modelling requires an 

adequate number of observations (at least 50, according to Chatfield, 2003, p.70). The lag order 

of the estimated ARMA model for each property type is reported in Table 6. We have found 

that different ARMA model lag orders are present across the different property types, a finding 

which is in accordance with Miller and Peng (2006) and Willcocks (2010), who highlight that 

housing markets are heterogeneous.  



Residual diagnostic tests, including LM tests for autocorrelation and ARCH-LM tests for 

volatility clustering or ARCH effects, have been performed and the results are also presented 

in Table 6. While we have found evidence of homoscedasticity for the returns of the flats, 

terraced and semi-detached houses as well as for the average house price returns, the results of 

the ARCH-LM tests clearly suggest that we fail to accept the null hypothesis of 

homoscedasticity for the returns of the detached houses, as ARCH effects are present. 

Consequently, in the case of the detached houses, the ARMA model for the conditional mean 

needs to be expanded to include an Autoregressive Conditional Heteroscedasticity process to 

model the conditional variance as well. This finding is to some extent in contrast to the results 

of Willcocks (2010) and Miles (2011b), who found evidence of a lack of volatility clustering 

in quarterly aggregate Scottish house price returns. Our results are also somewhat in contrast 

to the results of Begiazi and Katsiampa (2018), who did not find volatility clustering in average 

UK detached house price returns, and to the findings of Morley and Thomas (2016), who found 

that the property types less likely to exhibit volatility clustering effects are the detached houses 

and flats/maisonettes. However, our results support Morley and Thomas's (2016) finding that 

the results differ across property types, similar to obtaining different results across regions. The 

ARCH effect observed in the price returns of the detached houses suggests that the Scottish 

housing market is consistent with other markets where volatility is time-varying. Moreover, 

our finding rejects the conventional views that the volatility of housing series is constant over 

time (Lee, 2009). 

 

=== 

Table 6 here: see appendix 

=== 

 



Volatility modelling 

Next, we proceeded by estimating six GARCH-type models for the detached house price 

returns. Table 7 reports the estimation results for each model. Interestingly, all the three 

information criteria agree and select the CGARCH model. According to the estimation results 

for the CGARCH model, the transitory component, ℎ𝑖𝑖 − 𝑞𝑞𝑖𝑖, converges to zero with powers of 

0.64 �= 𝛼𝛼� + �̂�𝛽�, meeting the stationarity condition of 𝛼𝛼� + �̂�𝛽 < 1, while the long-run 

component, 𝑞𝑞𝑖𝑖, converges to 𝜔𝜔 with powers of 0.99 (= 𝜚𝜚�). Moreover, the very high value of 

the parameter estimate of 𝜚𝜚 suggests that the permanent volatility component is very persistent 

and converges gradually to a steady state (Lee, 2017). Furthermore, all the parameter estimates 

are statistically significant at a 10% significance level, while the results of the ARCH and 

𝑄𝑄2(10) tests, which have been used as diagnostic tests, applied to the squared residuals and 

squared standardised residuals, respectively, of the ARMA(10,4)-CGARCH model, suggest 

that the selected model is appropriate for the detached house price returns, as we cannot reject 

the hypotheses of no remaining ARCH effects and no autocorrelation. In addition, the value of 

the Jarque-Bera test ensures the normality of the residuals. Consequently, these results highlight 

the importance of allowing for both a short-run, ℎ𝑖𝑖, and a long-run, 𝑞𝑞𝑖𝑖, component of 

conditional variance when studying house price volatility and support the findings of Miles 

(2011a), Karoglou et al. (2013) and Lee and Reed (2013), who concluded that the CGARCH 

model is a good modelling technique for US and Australian house price volatility.  

 

=== 

Table 7 here: see appendix 

=== 

 



For the selected volatility model, we also estimated its GARCH-in-mean counterpart, i.e. 

CGARCH-M model, which includes the conditional standard deviation as a regressor in the 

mean equation, in order to measure the risk-return relationship. The estimation results are 

reported in Table 8. We found a negative and significant at the 5% level estimate of 𝜆𝜆, 

indicating that investors would require a lower return to compensate for higher risk (Miles, 

2011b; Karoglou et al., 2013; Lee, 2017). However, the values of all the three information 

criteria were higher and the log-likelihood value was lower for the CGARCH-M model 

compared to the values given for the CGARCH model, suggesting that the CGARCH model is 

preferred to the CGARCH-M model. 

Overall, we have observed several differences between detached houses and any other property 

type. Not only are detached houses the only property type exhibiting volatility clustering and 

no breakpoint, but they also exhibit the highest unconditional variance/standard deviation in 

the full sample and display low correlations with any other property type, as seen earlier. A 

possible explanation of the behaviour that detached houses exhibit, including the volatility 

clustering, could be the high property value. Houses are assets that can be used by either owner-

occupiers or investors. However, detached houses are the most private and expensive property 

type, mainly used by home owner-occupiers. Furthermore, Lee (2017) suggests that, in housing 

markets that are dominated by owner-occupiers who are less sensitive to investment factors, it 

could be anticipated that it is less likely to have a negative risk-return relationship. However, 

this is not true in our case, as we have found a negative risk-return relationship for the detached 

houses of the Scottish housing market. 

 

=== 

Table 8 here: see appendix 

=== 



 

Determinants of Scottish housing market 

Finally, we examined the impact of the Scottish unemployment rate, UK interest rate, and UK 

inflation, as measured by the UK CPI, on the different property types' price returns. For the 

flats, semi-detached and terraced as well as average house prices we ran regression models of 

the return series on the ARMA terms and on the lagged exogenous variables in the second sub-

sample, i.e. in the sub-period from the breakpoint identified in the mean equation until May 

2017. On the other hand, in the case of the detached house price returns, we ran the regression 

model in the full sample, since no structural break was identified. Furthermore, since the 

detached house price returns exhibit ARCH effects, we included these three exogenous 

variables in both the conditional mean and variance equations. Moreover, since the preferred 

GARCH-type model for the conditional volatility of the detached house prices is the CGARCH 

model, which consists of two components as discussed earlier, and following Lee and Reed 

(2013), we included the three exogenous variables in both the transitory and permanent 

components of the conditional variance.  

According to the results (see Table 9), the coefficient of unemployment rate in the conditional 

mean equation is negative and statistically significant at the 1% or 5% level in all cases, 

suggesting that past unemployment rates determine current housing price returns, irrespective 

of the property type. The coefficient of interest rate in the conditional mean equation is also 

negative in all cases, and statistically significant at the 1% level for the average house price 

returns and the price returns of all the property types except for the detached houses. 

Consequently, an increase in the unemployment rate or interest rate should lead to a decrease 

in house prices and vice versa. On the other hand, the coefficient of CPI has been found negative 

for the price returns of flats and semi-detached houses but positive for detached, terraced and 

average house price returns, indicating that an increase in CPI will result in a decrease in the 



prices of flats and semi-detached houses but in an increase in the detached, terraced and average 

house prices. However, the estimated coefficient is significant only for detached, terraced and 

average house prices.  

When examining the impact of the three exogenous variables on both the transitory and 

permanent components of the conditional variance of the detached house price returns, we find 

that no coefficient is statistically significant, implying that the Scottish unemployment rate, UK 

interest rate, and UK inflation do not have a significant effect in the volatility of the detached 

house price returns. 

 

=== 

Table 9 here: see appendix 

=== 

 

6 CONCLUSIONS 

Housing markets have drawn a lot of attention in recent years. On the one hand, they have 

important effects in the economy through their impact on financial markets, while, on the other 

hand, shocks in the economy could affect housing markets. Real estate markets have their own 

characteristics and market dynamics, and both region and property type play an important role 

in that.  

Our study contributed to the existing literature in several ways. Firstly, previous studies of the 

UK housing market have focused mainly on aggregate house prices in England and Wales, 

without always taking Scotland into consideration. In this study, not only did we consider 

average Scottish house prices, but we also examined house prices by property type (i.e., 

detached, semi-detached, terraced houses and flats) separately. Secondly, the inclusion of 

structural break tests supports our analysis and enhances the results of the proposed volatility 



modelling. Thirdly, in order to study the house price volatility effectively, we employed 

different GARCH-type specifications in our analysis. Fourthly, we studied the determinants of 

the Scottish housing market, not only in the first moments but also in volatility. 

Our study revealed several important findings. According to the results, house price dynamics 

differ across property types in Scotland, highlighting the importance of studying each property 

type separately. Moreover, it was shown that the recent financial crisis gave rise to breakpoints 

in the mean equation around July and September 2007 indicating parameter change in three out 

of four property types (flats, terraced and semi-detached houses) as well as in the average 

Scottish house price returns. We also identified breakpoints in the variance equation of the 

semi-detached and average house prices. Furthermore, in contrast to previous studies which 

found evidence of a lack of volatility clustering in Scottish data, this paper found evidence that 

detached house price returns in Scotland display time-varying conditional variances. Yet, it was 

found that the best model for the detached house price volatility in the Scottish housing market 

is the CGARCH. This result highlights the importance of including both a short-run and a long-

run component of conditional variance in housing markets and is consistent with earlier studies 

on other countries' data. Finally, it was shown that the unemployment rate and interest rate have 

a negative impact on house prices irrespective of the property type, while the CPI has a negative 

effect in the prices of flats and semi-detached houses but a positive effect in the detached, 

terraced and average house prices. However, none of the three exogenous variables has a 

significant impact on the volatility of the detached house price returns. 

All in all, studying housing markets by property type is of great importance, as different types 

of housing attract different types of investors. Due to the growing interest in property 

investment, analysing the stability of returns in real estate markets effectively is crucial for 

decision-making based on house price movements, while examination of house price 

volatility is of paramount importance for improving risk management. What is more, portfolio 



and risk management tools need to consider both a short-run and a long-run component of 

conditional variance that specific property types display, a fact which could support more 

informed investment and have important implications for investors and policymakers. Our 

structural break and volatility approach is, thus, useful for understanding house price 

movements over time and informing policymakers and stakeholders in general, who deal with 

supply and demand movements in housing markets, as well as investors in real estate markets, 

who need to be aware of specific characteristics and differences across property types. Hence, 

our results have significant implications for appropriate economic policy selection and 

investment management.  

  



REFERENCES 

AALBERS, M. B. and CHRISTOPHERS, B. (2014). Centring Housing in Political Economy, 

Housing, Theory and Society, 31, 4, pp. 373-394. 

ABELSON, P., JOYEUX, R., MILUNOVICH, G. and CHUNG, D. (2005). Explaining house 

prices in Australia: 1970–2003. Economic Record, 81, pp. S96-S103. 

ANDREWS, D. W. K. (1993). Tests for Parameter Instability and Structural Change With 

Unknown Change Point. Econometrica, 61, 4, pp. 821–856. 

ANDREWS, D. W. K. and PLOBERGER, W. (1994). Optimal Tests When a Nuisance 

Parameter is Present Only Under the Alternative. Econometrica, 62, 6, pp. 1383–1414. 

BAI, J. (1997). Estimating multiple breaks one at a time. Econometric Theory, 13, 3, pp. 315-

352. 

BAI, J. and PERRON, P. (1998). Estimating and testing linear models with multiple structural 

changes. Econometrica, 66, 1, pp. 47-78.  

BANERJEE, A., LUMSDAINE, R. L. and STOCK, J. H. (1992). Recursive and Sequential 

Tests of the Unit Root and Trend-Break Hypothesis: Theory and International Evidence. 

Journal of Business and Economic Statistics, 10, pp. 271-287.  

BEGIAZI, K. and KATSIAMPA, P. (2018). Modelling UK House Prices with Structural 

Breaks and Conditional Variance Analysis. The Journal of Real Estate Finance and 

Economics. https://doi.org/10.1007/s11146-018-9652-5. 

BELL, D. and BLANCHFLOWER, D. G. (2007). The Scots may be brave but they are neither 

healthy nor happy. Scottish Journal of Political Economy, 54, 2, pp. 166-194. 

BOLLERSLEV, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal 

of Econometrics, 31,3, pp. 307-327. 



CAMPBELLl, S. D., DAVIS, M. A., GALLIN, J. and MARTIN, R. F. (2009). What moves 

housing markets: A variance decomposition of the rent–price ratio. Journal of Urban 

Economics, 66, 2, pp. 90-102. 

CANARELLA, G., MILLER, S. and POLLARD, S. (2012). Roots and Structural Change. 

Urban Studies, 49, 4, pp. 757-776. 

CASE, K.E. and SHILLER, R.J. (1990). Forecasting prices and excess returns in the housing 

market. Real Estate Economics, 18(3), pp. 253-273. 

CHATFIELD, C. (2003). The Analysis of Time Series: An Introduction, Sixth Edition. 

Chapman & Hall/CRC. 

CHIEN, M. S. (2010). Structural breaks and the convergence of regional house prices. The 

Journal of Real Estate Finance and Economics, 40, 1, pp. 77-88. 

CHOW, G. C. (1960). Tests of Equality Between Sets of Coefficients in Two Linear 

Regressions. Econometrica, 28, 3, pp. 591–605. 

CHRISTOFFERSEN, P., JACOBS, K., ORNTHANALAI, C. and WANG, Y. (2008). Option 

valuation with long-run and short-run volatility components. Journal of Financial 

Economics, 90, 3, pp. 272-297. 

COSKUN, Y. and ERTUGRUL, H. M. (2016). House price return volatility patterns in Turkey, 

Istanbul, Ankara and Izmir. Journal of European Real Estate Research, 9, 1, pp. 26-51. 

CRAWFORD, G. W. and FRATANTONI, M. C. (2003). Assessing the forecasting 

performance of regime‐switching, ARIMA and GARCH models of house prices. Real 

Estate Economics, 31, 2, pp. 223-243. 

DICKEY, D. A. and FULLER, W. A. (1979). Distribution of the estimators for autoregressive 

time series with a unit root. Journal of the American Statistical Association, 74, pp. 427-

431. 



DIEBOLD, F. X. (1986). Modeling the persistence of conditional variances: comment. 

Econometric Reviews, 5, pp. 51–56. 

DOLDE, W. and TIRTIROGLU, D. (1997). Temporal and spatial information diffusion in real 

estate price changes and variances. Real Estate Economics, 25, 4, pp. 539-565. 

EICHHOLTZ, P. M. A, HOESLI, M., MACGREGOR, B. D. and NANTHAKUMARAN, N. 

(1995). Real estate portfolio diversification by property type and region, Journal of 

Property Finance, 6, 3, pp.39-59. 

ENGLE, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the 

variance of U.K. inflation. Econometrica, 50, pp. 987-1007. 

ENGLE, R. F. and LEE, G. (1999). A long-run and short-run component model of stock return 

volatility. In: Engle RF, White H (eds) Cointegration, Causality, and Forecasting: A 

Festschrift in Honour of Clive WJ Granger. Oxford University Press. 

FRASER OF ALLANDER INSTITUTE (2018). The economic contribution of the commercial 

property sector, Scottish Property Federation. 

GHYSELS, E., GRANGER, C. W. J. and SIKLOS, P. L. (1997). Seasonal Adjustment and 

Volatility Dynamics. CIRANO. 

GLOSTEN, L. R., JAGANNATHAN, R. and RUNKLE, D. E. (1993). On the relation between 

the expected value and the volatility of the nominal excess return on stocks. The Journal 

of Finance, 48, 5, pp. 1779-1801. 

GOKTAS, P. and DISBUDAK, C. (2014). Modelling Inflation Uncertainty with Structural 

Breaks Case of Turkey (1994–2013). Mathematical Problems in Engineering. 

HANSEN, B. (1997). Approximate asymptotic P values for structural- change tests. Journal of 

Business & Economic Statistics, 15, 1, pp. 60-67. 

HOSSAIN, B. and LATIF, E. (2009). Determinants of housing price volatility in Canada: a 

dynamic analysis. Applied Economics, 41, 27, pp. 3521-3531. 



KAROGLOU, M., MORLEY, B. and THOMAS, D. (2013). Risk and structural instability in 

US house prices. The Journal of Real Estate Finance and Economics, 46, 3, pp. 424-436. 

LEE, C. L. (2009). Housing price volatility and its determinants. International Journal of 

Housing Markets and Analysis, 2, 3, pp. 293-308. 

LEE, C. L. (2017). An examination of the risk-return relation in the Australian housing market. 

International Journal of Housing Markets and Analysis, 10, 3, pp. 431-449, 

LEE, C. L. and REED, R. (2013). Volatility decomposition of Australian housing prices. 

Journal of Housing Research, 23, 1, pp. 21-43. 

LEE, C. and REED, R. (2014). The relationship between housing market intervention for first-

time buyers and house price volatility. Housing Studies, 29, 8, pp. 1073-1095. 

LIN, P. T. and FUERST, F. (2014). Volatility clustering, risk-return relationship, and 

asymmetric adjustment in the Canadian housing market. Journal of Real Estate Portfolio 

Management, 20, 1, pp. 37-46. 

MACLENNAN, D. and TU, Y. (1998). Changing Housing Wealth in the UK, 1985–1993: 

Household Patterns and consequences, Scottish Journal of Political Economy, 45, 4, pp. 

447-465. 

MIAO, H., RAMCHANDER, S. and SIMPSON, M. W. (2011). Return and volatility 

transmission in US housing markets. Real Estate Economics, 39, 4, pp. 701-741. 

MILES, W. (2008). Volatility clustering in US home prices. Journal of Real Estate Research, 

30, 1, pp. 73-90. 

MILES, W. (2011a). Long-range dependence in US home price volatility. The Journal of Real 

Estate Finance and Economics, 42, 3, pp. 329-347. 

MILES, W. (2011b). Clustering in UK home price volatility. Journal of Housing Research, 20, 

1, pp. 87-101. 



MILES, W. (2015). Bubbles, Busts and Breaks in UK Housing. International Real Estate 

Review, 18, 4, pp. 455-471. 

MILLER, N. and PENG, L. (2006). Exploring metropolitan housing price volatility. The 

Journal of Real Estate Finance and Economics, 33, 1, pp. 5-18. 

MORLEY, B. and THOMAS, D. (2011). Risk–return relationships and asymmetric adjustment 

in the UK housing market. Applied Financial Economics, 21, 10, pp. 735-742. 

MORLEY, B. and THOMAS, D. (2016). An empirical analysis of UK house price risk 

variation by property type. Review of Economics & Finance, 6, pp. 45-56. 

NELSON, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. 

Econometrica: Journal of the Econometric Society, 59, 2, pp. 347-370. 

PERRON, P. (1989). The great crash, the oil price shock and the unit root hypothesis. 

Econometrica, 57, 6, pp. 77-88. 

PERRON, P. and VOGELSANG, T. J. (1992). Nonstationarity and Level Shifts with an 

Application to Purchasing Power Parity. Journal of Business and Economic Statistics, 10, 

pp. 301-320.  

PHILLIPS, P. C. and PERRON, P. (1988). Testing for a unit root in time series regression. 

Biometrika, 75, 2, pp. 335-346. 

RAPACH, D. E. and STRAUSS, J. K. (2008). Structural breaks and GARCH models of 

exchange rate volatility. Journal of Applied Econometrics, 23, 1, pp. 65-90. 

SCHWARTZ, H. M., and L. SEABROOK, L. (2009). The Politics of Housing Booms and 

Busts. Basingstoke: Palgrave Macmillan. 

STEPHENS, M. and WILLIAMS, P. (2012). Tackling Housing Market Volatility in the UK: 

A Progress Report. York: Joseph Rowntree Foundation. 



STEVENSON, S., WILSON, P. and ZURBRUEGG, R. (2007). Assessing the time-varying 

interest sensitivity of real estate securities. European Journal of Finance, 13, 8, pp. 705-

715. 

THORNTON, J. (2007). The relationship between inflation and inflation uncertainty in 

emerging market economies. Southern Economic Journal, pp. 858-870. 

TSAI, I. C. (2015). Spillover effect between the regional and the national housing markets in 

the UK. Regional Studies, 49, 12, pp. 1957-1976. 

TSAI, I. C., CHEN, M.-C. and MA, T. (2010). Modelling house price volatility states in the 

UK by switching ARCH models. Applied Economics, 42, 9, pp. 1145- 1153. 

VALADKHANI, A., SMYTH, R. and WORTHINGTON, A. (2016). Regional seasonality in 

Australian house and apartment price returns. Regional Studies, 51, 10, pp. 1-15.  

VOGELSANG, T. J. and PERRON, P. (1998). Additional tests for a unit root allowing for a 

break in the trend function at an unknown time. International Economic Review, 39, 4, pp. 

1073-1100. 

WEBB, R. I., YANG, J. and ZHANG, J. (2016). Price jump risk in the US housing market. The 

Journal of Real Estate Finance and Economics, 53, 1, pp. 29-49. 

WILLCOCKS, G. (2010). Conditional variances in UK regional house prices. Spatial 

Economic Analysis, 5, 3, pp. 339-354. 

ZHANG, H., HUDSON, R., METCALF, H. and MANAHOV, V. (2017). Investigation of 

institutional changes in the UK housing market using structural break tests and time-

varying parameter models. Empirical Economics, pp. 1-24. 

ZHU, B., FUSS, R. and ROTTKE, N. B. (2013). Spatial linkages in returns and volatilities 

among US regional housing markets. Real Estate Economics, 41, 1, pp. 29-64. 

  



Table 1 

Correlation matrix 

 Detached  Semi-detached Terraced  Flats 
Detached 1.000    

Semi-detached 0.689 1.000   
Terraced 0.544 0.948 1.000  

Flats 0.363 0.718 0.807 1.000 
 

 

  



Table 2  

Unit-root tests in the log-returns by property type 

 Without break point With 1 break point 

Property 
type 

ADF P-P ADF t-statistic - 
Innovation outlier 

ADF t-statistic - 
Additive outlier 

Intercept Trend and 
intercept Intercept Trend and 

intercept Intercept Trend and 
intercept Intercept Trend and 

intercept 
Average -2.000 -1.712 -10.786*** -10.980*** -8.355*** -8.690*** -10.721*** -11.212*** 
Detached -2.656* -16.371*** -15.880*** -16.336*** -8.679*** -9.020*** -9.020*** -17.306*** 

Semi-
detached -1.980 -1.670 -51.024*** -51.935*** -8.199*** -8.376*** -11.961*** -12.363*** 

Terraced -2.055 -1.885 -10.919*** -11.206*** -7.769*** -8.364*** -10.927*** -11.430*** 
Flats -1.740 -1.322 -11.373*** -11.546*** -5.850*** -8.564*** -11.291*** -11.291*** 

*** and * indicate significance at 1 and 10 % levels, respectively. 



Table 3 

Estimation results of the AR model for house price returns 

Property type Average Detached Semi-
detached Terraced Flats 

c 0.386 
(0.038) 

0.371 
(0.029) 

0.398 
(0.026) 

0.373 
(0.023) 

0.358 
(0.070) 

AR(1) - - - 0.146 
(0.034) - 

 
  



Table 4 

Breakpoint tests 

 Mean equation Variance equation 

Property 
type 

Bai-Perron 
test 

Scaled F-
statistic 

Breakpoint 
Date 

Chow test 
F-statistic 

Quandt-
Andrews 

test 

Bai-Perron 
test  

Scaled F-
statistic 

Breakpoint 
Date 

Chow test 
F-statistic 

Quandt-
Andrews 

test 

Average 8.451* 2007M07 17.540*** 17.540*** 9.825** 2009M04 15.415*** 15.415*** 
Detached 6.114    0.815    

Semi-
detached 8.140* 2007M09 12.842*** 12.842*** 10.974** 2009M04 

2015M05 
23.223*** 

5.825** 23.223*** 

Terraced 10.877* 2007M09 6.953*** 6.953** 7.025    
Flats 10.320** 2007M07 15.758*** 15.758*** 3.423    

*, ** and *** represent the significance at the 10%, 5% and 1% levels, respectively. The 

breakpoint date refers to the estimated breakpoint date of the Sequential Bai-Perron test. For 

the Quandt-Andrews test, the probabilities are calculated using Hansen's (1997) method. 

  



Table 5 

Descriptive statistics of Scottish returns by property type 

 Mean Median Std. Dev. Skewness Kurtosis JB test Obs. 

Average        
Total 0.386 0.141 1.972 0.505 3.504 8.487 160 

Before break 
(until 2007M06) 1.444 1.579 2.350 0.185 2.478 0.699 41 

After break 
(from 2007M07) 0.039 -0.009 1.732 0.232 3.514 2.180 109 

Detached        
Total 0.371 0.649 2.726 -0.521 6.726 99.796*** 160 

Semi-detached        
Total 0.398 0.463 2.098 0.527 3.922 13.085*** 160 

Before break 
(until 2007M08) 1.343 1.448 2.771 0.133 2.886 0.149 43 

After break 
(from 2007M09) 0.050 0.010 1.673 0.087 2.937 0.166 117 

Terraced        
Total 0.426 0.172 2.186 0.667 4.207 21.591*** 160 

Before break 
(until 2007M08) 1.517 1.187 2.805 0.342 3.205 0.915 43 

After break 
(from 2007M09) 0.025 -0.076 1.760 0.149 2.762 0.709 117 

Flats        
Total 0.358 0.140 2.241 0.410 3.031 4.493 160 

Before break 
(until 207M06) 1.505 1.496 2.497 0.116 2.935 0.099 41 

After break 
(from 2007M07) -0.037 -0.153 2.010 0.328 2.778 2.778 119 

*** represents the significance at the 1% level.  

  



Table 6  

Estimation results of ARMA models 

 Average  
After break 

Detached  
Whole period 

Semi-detached 
After break 

Terraced  
After break 

Flats  
After break 

ARMA(p,q) (7,6) (10,4) (9,8) (8,8) (7,10) 

Adj. )( 2R  0.439 0.421 0.461 0.506 0.458 

LM(8) 
5.964 

(0.651) 
12.277 
(0.139) 

5.610 
(0.691) 

6.043 
(0.642) 

8.489 
(0.387) 

LM(16) 
12.534 
(0.707) 

19.542 
(0.242) 

16.294 
(0.433) 

12.937 
(0.677) 

20.489 
(0.199) 

ARCH(1) 
1.884 

(0.170) 
28.537*** 

(0.000) 
0.599 

(0.439) 
1.218 

(0.270) 
0.134 

(0.715) 

ARCH(5) 
5.252 

(0.386) 
32.559*** 

(0.000) 
5.910 

(0.315) 
4.772 

(0.444) 
1.600 

(0.901) 

ARCH(10) 
7.101 

(0.716) 
32.501*** 

(0.000) 
13.829 
(0.181) 

8.927 
(0.539) 

9.214 
(0.512) 

*** represents the significance at the 1% level. The p-values associated with the statistical tests 

are presented in brackets. 

 

  



Table 7 

Estimation results of GARCH-type models for detached house price returns 

 ARCH GARCH EGARCH GJR-
GARCH CGARCH ACGARCH 

Const (𝜔𝜔) 2.868*** 
(0.000) 

1.746 
(0.168) 

1.364*** 
(0.000) 

1.670 
(0.293) 

5.578*** 
(0.001) 

3.780*** 
(0.000) 

ARCH (𝛼𝛼) 0.157* 
(0.075) 

0.154* 
(0.068) 

0.310 
(0.102) 

0.247 
(0.135) 

0.160* 
(0.061) 

0.002 
(0.992) 

GARCH (𝛽𝛽) - 0.333 
(0.461) 

-0.334 
(0.212) 

0.382 
(0.493) 

0.479* 
(0.051) 

-0.124 
(0.843) 

EGARCH 
(𝛿𝛿) - - 0.208 

(0.142) - - - 

GJR-GARCH 
(𝛾𝛾) - - - -0.227 

(0.361) - - 

CGARCH/ 
ACGARCH 
(𝜚𝜚) 

- - - - 0.988*** 
(0.000) 

0.588** 
(0.047) 

CGARCH/ 
ACGARCH 
(𝜃𝜃) 

- - - - -0.083*** 
(0.005) 

0.347** 
(0.019) 

ACGARCH 
(𝛾𝛾) - - - - - -0.499** 

(0.024) 
LL -302.587 -301.704 -302.491 -300.772 -291.067 -297.288 
AIC 4.261 4.263 4.287 4.264 4.148 4.244 
BIC 4.602 4.624 4.668 4.645 4.549 4.665 
HQ 4.400 4.409 4.441 4.419 4.311 4.415 

ARCH(1) 1.622 
(0.203) 

1.693 
(0.193) 

0.393 
(0.531) 

0.726 
(0.394) 

0.057 
(0.812) 

0.193 
(0.660) 

ARCH(5) 2.332 
(0.802) 

2.208 
(0.820) 

2.383 
(0.794) 

1.380 
(0.926) 

1.272 
(0.938) 

0.610 
(0.988) 

ARCH(10) 2.709 
(0.988) 

2.537 
(0.990) 

2.799 
(0.986) 

1.771 
(0.998) 

6.861 
(0.739) 

1.312 
(0.999) 

𝑄𝑄2(10) 
2.923 

(0.983) 
2.673 

(0.988) 
2.874 

(0.984) 
1.937 

(0.997) 
6.549 

(0.767) 
1.453 

(0.999) 

JB 127.609 
(0.000) 

182.264 
(0.000) 

70.230 
(0.000) 

139.662 
(0.000) 

1.680 
(0.432) 

102.506 
(0.000) 

* and *** represent the significance at the 10% and 1% levels, respectively. The p-values 

associated with the statistical tests are presented in brackets. 

  



Table 8 

Estimation results of CGARCH-M model for detached house price returns 

 CGARCH-M 
𝜆𝜆 -0.439 

(0.038) 

Const (𝜔𝜔) 3.3370 
(0.000) 

ARCH  (𝛼𝛼) 0.088 
(0.997) 

GARCH  (𝛽𝛽) 0.375 
(0.986) 

CGARCH/ 
ACGARCH (𝜚𝜚) 

0.463 
(0.151) 

CGARCH/ 
ACGARCH (𝜃𝜃) 

0.075 
(0.997) 

ACGARCH (𝛾𝛾) - 
LL -299.897 
AIC 4.279 
BIC 4.700 
HQ 4.450 

ARCH(1) 0.292 
(0.589) 

ARCH(5) 0.470 
(0.993) 

ARCH(10) 0.666 
(1.000) 

𝑄𝑄2(10) 
0.661 

(1.000) 

JB 168.751 
(0.000) 

*, ** and *** represent the significance at the 10%, 5% and 1% levels, respectively. The p-

values are presented in brackets. 

 

  



Table 9 

Estimation results of models including the exogenous variables. 

 Average  
After break 

Detached 
Whole period 

Semi-detached 
After break 

Terraced  
After break 

Flats  
After break 

Mean equation 
Unemployment 

rate 
-0.170** 
(0.013) 

-0.163*** 
(0.000) 

-0.098** 
(0.035) 

-0.175** 
(0.021) 

-0.169*** 
(0.001) 

Interest rate -0.403*** 
(0.000) 

-0.021 
(0.789) 

-0.383*** 
(0.000) 

-0.284*** 
(0.000) 

-0.272*** 
(0.000) 

CPI 1.003*** 
(0.009) 

0.259 
(0.636) 

-0.103 
(0.726) 

1.134*** 
(0.000) 

-0.221 
(0.589) 

Variance equation - Transitory component 
Unemployment 

rate  -0.205 
(0.910) 

   

Interest rate  0.312 
(0.940) 

   

CPI  1.506 
(0.339) 

   

Variance equation - Permanent component 
Unemployment 

rate  -0.101 
(0.866) 

   

Interest rate  0.340 
(0.768) 

   

CPI  -1.935 
(0.301) 

   

*, ** and *** represent the significance at the 10%, 5% and 1% levels, respectively. The p-

values are presented in brackets. 

 

 

 


