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ABSTRACT
A mixed boundary value problem for the diffusion equation in non-homogeneous
media partial differential equation is reduced to a system of direct segre-
gated parametrix-based Boundary-Domain Integral Equations (BDIEs). We use a
parametrix different from the one employed by Mikhailov in [15,19] and Chkadua,
Mikhailov, Natroshvili in [2]. We prove the equivalence between the original BVP
and the corresponding BDIE system. The invertibility and Fredholm properties of
the boundary-domain integral operators are also analysed.

KEYWORDS
Variable coefficient, parametrix, remainder, mixed boundary value problem,
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1. Introduction

Boundary Domain Integral Equation Systems (BDIES) are often derived from a wide
class of boundary value problems with variable coefficient in domains with smooth
boundary: cf. [2] for a scalar mixed elliptic BVP in bounded domains; cf. [4] for the
corresponding problem in unbounded domains; cf. [18] for the mixed problem for the
incompressible Stokes system in bounded domains, and cf. [7] for a 2D mixed elliptic
problem in bounded domains. Further results on the theory of BDIES derived from
BVP with variable coefficient can be found on [1,3,7,8,12,13,15,17,19]. Let us note that
these type of BVPs model, for example, the heat transfer in non homogeneous media
or the motion of a laminar fluid with variable viscosity.

In order to deduce a BDIES from a BVP with variable coefficient a parametrix
(see formula (5)) is required since it keeps a strong relationship with the correspond-
ing fundamental solution of the analogous BVP with constant coefficient. Using this
relationship, it is possible to stablish further relations between the surface and vol-
ume potential type operators of the variable coefficient case with their counterparts
from the constant coefficient case, see, e.g. [2, Formulae (3.10)-(3.13)], [18, Formulae
(34.10)-(34.16)].

For this scalar equation, a family of weakly singular parametrices of the form
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P y(x, y) for the particular operator

Au(x) :=

3∑
i=1

∂

∂xi

(
a(x)

∂u(x)

∂xi

)
,

has been studied in [2–4]. Note that the superscript in P y(x, y) means that P y(x, y)
is a function of the variable coefficient depending on y, this is

P y(x, y) = P (x, y; a(y)) =
−1

4πa(y)|x− y|
.

In this paper, we study the parametrices for the operator A of the form

P x(x, y) = P (x, y; a(x)) =
−1

4πa(x)|x− y|
.

which can be useful at the time of studying BDIES derived from a BVP with a system
of PDEs as illustrated in the following example. Let B be the compressible Stokes
operator with variable viscosity:

Bj(p,v)(x) : =
∂

∂xi

(
µ(x)

(
∂vj
∂xi

+
∂vi
∂xj
− 2

3
δji divv)

))
− ∂p

∂xj
,

j, i ∈ {1, 2, 3}.

Following the same notation as for P y(x, y), here P x,y
B (x, y) means that the parametrix

for the operator B includes the variable coefficient µ depending on x and also includes
µ depending on y. This is P x,y

B (x, y) := (qk(x, y), ukj (x, y))

qk(x, y) =
µ(x)

µ(y)

(xk − yk)

4π|x− y|3
,

ukj (x, y) = − 1

8πµ(y)

{
δkj
|x− y|

+
(xj − yj)(xk − yk)

|x− y|3

}
, j, k ∈ {1, 2, 3}.

Then, it seems reasonable to study parametrices for a rather more simple problem
of the type P x(x, y; a(x)), which have not been analysed yet, before embarking in the
analysis of boundary domain integral equations for the operator B.

There are fast computational techniques developed to solve BDIES. One is the dis-
cretisation of the BDIES using localised parametrices which leads to systems of linear
equations with large sparsed matrices whose solution can be solve by fast iterative
methods, see [15, Section 1 and Section 5], see also [16,21]. Another fast method is
using a collocation method along with hierarchical matrix compression technique in
conjunction with the adaptive cross approximation procedure, this is shown in [8].

In order to study the possible numerical advantages of the new family of paramet-
rices of the form P x(x, y; a(x)) with respect to the parametrices already studied, it
is necessary to prove the unique-solvability of an analogous BDIES derived with this
new family of parametrices. This is the main purpose of this paper along with showing
useful arguments that can be helpful at the time of studying BDIES derived from
BVPs with variable coefficient which use parametrices of the same family studied in
here.
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The main differences between the different families of parametrices are the relations
between the parametrix-based potentials with their counterparts for the constant coef-
ficient case. Notwithstanding, the same mapping properties in Sobolev-Bessel potential
spaces still hold allowing us to prove the equivalence between the BDIES and the BVP.

An analysis of the uniqueness of the BDIES is performed by studying the Fredholm
properties of the matrix operator which defines the system.

2. Preliminaries and the BVP

Let Ω = Ω+ be a bounded simply connected domain, Ω− := R3 r Ω̄+ the comple-
mentary (unbounded) subset of Ω. The boundary S := ∂Ω is simply connected, closed
and infinitely differentiable, S ∈ C∞. Furthermore, S := SN ∪ SD where both SN
and SD are non-empty, connected disjoint manifolds of S. The border of these two
submanifolds is also infinitely differentiable, ∂SN = ∂SD ∈ C∞.

Let us introduce the following partial differential equation with variable smooth
positive coefficient a(x) ∈ C∞(Ω):

Au(x) :=

3∑
i=1

∂

∂xi

(
a(x)

∂u(x)

∂xi

)
= f(x), x ∈ Ω, (1)

where u(x) is an unknown function and f is a given function on Ω. It is easy to see
that if a ≡ 1 then, the operator A becomes ∆, the Laplace operator.

We will use the following function spaces in this paper (see e.g. [9–11] for more
details). Let D′(Ω) be the Schwartz distribution space; Hs(Ω) and Hs(S) with s ∈ R,
the Bessel potential spaces; the space Hs

K(R3) consisting of all the distributions of
Hs(R3) whose support is inside of a compact set K ⊂ R3; the spaces consisting of
distributions in Hs(K) for every compact K ⊂ Ω−, s ∈ R. Let us introduce the
following Sobolev-Bessel potentials on the boundary:

H̃s(S) := C∞0 (S)
‖·‖Hs(R3) , Hs(S) := C∞0 (S)

‖·‖Hs(S)
,

whose characterizations are given as follows: H̃s(S1) = {g ∈ Hs(S) : supp(g) ⊂ S1};
Hs(S1) = {g|S1

: g ∈ Hs(S)}, where the notation g|S1
= rS1

g is used to indicate the
restriction of the function g from S to S1.

We will make use of the space, see e.g. [2,5],

H1,0(Ω;A) := {u ∈ H1(Ω) : Au ∈ L2(Ω)}

which is a Hilbert space with the norm defined by

‖ u ‖2H1,0(Ω;A):=‖ u ‖
2
H1(Ω) + ‖ Au ‖2L2(Ω).

For a scalar function w ∈ Hs(Ω±), s > 1/2, the trace operator γ±( · ) := γ±S ( · ),
acting on w is well defined and γ±w ∈ Hs− 1

2 (S) (see, e.g., [11,12]). For u ∈ Hs(Ω),
s > 3/2, we can define on S the conormal derivative operator, T±, in the classical
(trace) sense

T±x u :=

3∑
i=1

a(x)γ±
(
∂u

∂xi

)
n±i (x),
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where n+(x) is the exterior unit normal vector directed outwards the interior domain
Ω at a point x ∈ S. Similarly, n−(x) is the unit normal vector directed inwards the
interior domain Ω at a point x ∈ S.

Furthermore, we will use the notation T±x u or T±y u to emphasise with respect to
which variable we are differentiating. When the variable of differentiation is obvious
or is a dummy variable, we will simply use the notation T±u.

Moreover, for any function u ∈ H1,0(Ω;A), the canonical conormal derivative T±u ∈
H−

1

2 (Ω), is well defined, cf. [5,11,12],

〈T±u,w〉S := ±
∫

Ω±
[(γ−1ω)Au+ E(u, γ−1w)]dx, w ∈ H

1

2 (S), (2)

where γ−1 : H
1

2 (S) −→ H1
K(R3) is a continuous right inverse to the trace operator

whereas the function E is defined as

E(u, v)(x) :=

3∑
i=1

a(x)
∂u(x)

∂xi

∂v(x)

∂xi
,

and 〈 · , · 〉S represents the L2−based dual form on S.
We aim to derive boundary-domain integral equation systems for the following mixed

boundary value problem. Given f ∈ L2(Ω), φ0 ∈ H
1

2 (SD) and ψ0 ∈ H−
1

2 (SN ), we seek
a function u ∈ H1(Ω) such that

Au = f, in Ω; (3a)

rSD
γ+u = φ0, on SD; (3b)

rSN
T+u = ψ0, on SN ; (3c)

where equation (3a) is understood in the weak sense, the Dirichlet condition (3b) is
understood in the trace sense and the Neumann condition (3c) is understood in the
functional sense (2).

By Lemma 3.4 of [5] (cf. also Theorem 3.9 in [12]), the first Green identity holds
for any u ∈ H1,0(Ω;A) and v ∈ H1(Ω),

〈T±u, γ+v〉S := ±
∫

Ω
[vAu+ E(u, v)]dx. (4)

The following assertion is well known and can be proved, e.g., using the Lax-Milgram
lemma as in [22, Chapter 4].

Theorem 2.1. The boundary value problem (3) has one and only one solution.

3. Parametrices and remainders

We define a parametrix (Levi function) P (x, y) for a differential operator Ax differen-
tiating with respect to x as a function on two variables that satisfies

AxP (x, y) = δ(x− y) +R(x, y). (5)
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For a given operator A, the parametrix is not unique. For example, the parametrix

P y(x, y) =
1

a(y)
P∆(x− y), x, y ∈ R3,

was employed in [2,15], for the operator A defined in (1), where

P∆(x− y) =
−1

4π|x− y|

is the fundamental solution of the Laplace operator. The remainder corresponding to
the parametrix P y is

Ry(x, y) =

3∑
i=1

1

a(y)

∂a(x)

∂xi

∂

∂xi
P∆(x− y) , x, y ∈ R3.

In this paper, for the same operator A defined in (1), we will use another parametrix,

P (x, y) := P x(x, y) =
1

a(x)
P∆(x− y), x, y ∈ R3, (6)

which leads to the corresponding remainder

R(x, y) = Rx(x, y) = −
3∑

i=1

∂

∂xi

(
1

a(x)

∂a(x)

∂xi
P∆(x, y)

)

= −
3∑

i=1

∂

∂xi

(
∂ ln a(x)

∂xi
P∆(x, y)

)
, x, y ∈ R3.

Note that the both remainders Rx and Ry are weakly singular, i.e.,

Rx(x, y), Ry(x, y) ∈ O(|x− y|−2).

This is due to the smoothness of the variable coefficient a.

4. Volume and surface potentials

The volume parametrix-based Newton-type potential and the remainder potential are
respectively defined, for y ∈ R3, as

Pρ(y) :=

∫
Ω
P (x, y)ρ(x) dx

Rρ(y) :=

∫
Ω
R(x, y)ρ(x) dx.

The parametrix-based single layer and double layer surface potentials are defined
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for y ∈ R3 : y /∈ S, as

V ρ(y) := −
∫
S
P (x, y)ρ(x) dS(x),

Wρ(y) := −
∫
S
T+
x P (x, y)ρ(x) dS(x).

We also define the following pseudo-differential operators associated with direct
values of the single and double layer potentials and with their conormal derivatives,
for y ∈ S,

Vρ(y) := −
∫
S
P (x, y)ρ(x) dS(x),

Wρ(y) := −
∫
S
TxP (x, y)ρ(x) dS(x),

W ′ρ(y) := −
∫
S
TyP (x, y)ρ(x) dS(x),

L±ρ(y) := T±y Wρ(y).

The operators P,R, V,W,V,W,W ′ and L can be expressed in terms the volume
and surface potentials and operators associated with the Laplace operator, as follows

Pρ = P∆

(ρ
a

)
, (7)

Rρ = ∇ · [P∆(ρ∇ ln a)]− P∆(ρ∆ ln a), (8)

V ρ = V∆

(ρ
a

)
, (9)

Vρ = V∆

(ρ
a

)
, (10)

Wρ = W∆ρ− V∆

(
ρ
∂ ln a

∂n

)
, (11)

Wρ =W∆ρ− V∆

(
ρ
∂ ln a

∂n

)
, (12)

W ′ρ = aW ′∆
(ρ
a

)
, (13)

L±ρ = L̂ρ− aT±∆V∆

(
ρ
∂ ln a

∂n

)
, (14)

L̂ρ := aL∆ρ. (15)

The symbols with the subscript ∆ denote the analogous operators for the constant
coefficient case, a ≡ 1. Furthermore, by the Liapunov-Tauber theorem, L+

∆ρ = L−∆ρ =
L∆ρ.

Using relations (7)-(15) it is now rather simple to obtain, similar to [2], the mapping
properties, jump relations and invertibility results for the parametrix-based surface and
volume potentials, provided in theorems/corollary 4.1-4.7, from the well-known prop-
erties of their constant-coefficient counterparts (associated with the Laplace equation).
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Theorem 4.1. Let s ∈ R. Then, the following operators are continuous,

P : H̃s(Ω) −→ Hs+2(Ω), s ∈ R,

P : Hs(Ω) −→ Hs+2(Ω), s > −1

2
,

R : H̃s(Ω) −→ Hs+1(Ω), s ∈ R,

R : Hs(Ω) −→ Hs+1(Ω), s > −1

2
.

Corollary 4.2. Let s > 1
2 , let S1 be a non-empty submanifold of S with smooth

boundary. Then, the following operators are compact:

R : Hs(Ω) −→ Hs(Ω),

rS1
γ+R : Hs(Ω) −→ Hs− 1

2 (S1),

rS1
T+R : Hs(Ω) −→ Hs− 3

2 (S1).

Theorem 4.3. Let s ∈ R. Then, the following operators are continuous:

V : Hs(S) −→ Hs+ 3

2 (Ω),

W : Hs(S) −→ Hs+ 1

2 (Ω).

Theorem 4.4. Let s ∈ R. Then, the following operators are continuous:

V : Hs(S) −→ Hs+1(S),

W : Hs(S) −→ Hs+1(S),

W ′ : Hs(S) −→ Hs+1(S),

L± : Hs(S) −→ Hs−1(S).

Theorem 4.5. Let ρ ∈ H−
1

2 (S), τ ∈ H
1

2 (S). Then the following jump relations hold:

γ±V ρ = Vρ,

γ±Wτ = ∓1

2
τ +Wτ,

T±V ρ = ±1

2
ρ+W ′ρ.

Theorem 4.6. Let s ∈ R, let S1 and S2 be two non-empty manifolds with smooth
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boundaries, ∂S1 and ∂S2, respectively. Then, the following operators

rS2
V : H̃s(S1) −→ Hs(S2),

rS2
W : H̃s(S1) −→ Hs(S2),

rS2
W ′ : H̃s(S1) −→ Hs(S2).

are compact.

Theorem 4.7. Let S1 be a non-empty simply connected submanifold of S with in-
finitely smooth boundary curve, and 0 < s < 1. Then, the operators

rS1
V : H̃s−1(S1) −→ Hs(S1),

V : Hs−1(S) −→ Hs(S),

are invertible.

Proof. Relation (9) gives Vg = V∆g
∗, where g = g∗/a. The invertibility of V then

follows from the invertibility of V∆, see references [6, Theorem 2.4] and [3, Theorem
3.5].

Theorem 4.8. Let S1 be a non-empty simply connected submanifold of S with in-
finitely smooth boundary curve, and 0 < s < 1. Then, the operator

rS1
L̂ : H̃s(S1) −→ Hs−1(S1),

is invertible whilst the operators

rS1
(L± − L̂) : H̃s(S1) −→ Hs−1(S1),

are compact.

Proof. Relation (14) gives

L̂ρ = L±ρ+ aT+
∆V∆

(
ρ
∂ ln a

∂n

)
= L±ρ+ aT−∆V∆

(
ρ
∂ ln a

∂n

)
.

Take into account L̂ρ := aL∆ρ and the invertibility of the operator L∆, see refer-
ences [6, Theorem 2.4] and [3, Theorem 3.6]; we deduce the invertibility of the operator

L̂. To prove the compactness properties, we consider the identity:

L±ρ− L̂ρ = a

(
∓1

2
I −W ′∆

)(
ρ
∂ ln a

∂n

)
.

Since ρ ∈ H̃s(S1), due to the mapping properties of the operator W ′, L± − L̂ρ ∈ Hs.
Then, it immediately follows from the compact embedding Hs(S) ⊂ Hs−1(S), that
the operators

rS1
(L± − L̂) : H̃s(S1) −→ Hs−1(S1),

are compact.
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5. Green’s third identities and integral relations

In this section we provide the results similar to the ones in [2] but for our, different,
parametrix (6).

Let u, v ∈ H1,0(Ω;A). Subtracting from the first Green identity (4) its counterpart
with the swapped u and v, we arrive at the second Green identity, see e.g. [11],∫

Ω
[uAv − vAu] dx =

∫
S

[
uT+v − v T+u

]
dS(x). (16)

Taking now v(x) := P (x, y), we obtain from (16) by the standard limiting procedures
(cf. [20]) the third Green identity for any function u ∈ H1,0(Ω;A):

u+Ru− V T+u+Wγ+u = PAu, in Ω. (17)

If u ∈ H1,0(Ω;A) is a solution of the partial differential equation (3a), then, from
(17) we obtain:

u+Ru− V T+u+Wγ+u = Pf, inΩ; (18)

1

2
γ+u+ γ+Ru− VT+u+Wγ+u = γ+Pf, on S. (19)

For some distributions f , Ψ and Φ, we consider a more general, indirect integral
relation associated with the third Green identity (18):

u+Ru− VΨ +WΦ = Pf, in Ω. (20)

Lemma 5.1. Let u ∈ H1(Ω), f ∈ L2(Ω), Ψ ∈ H−
1

2 (S) and Φ ∈ H
1

2 (S) satisfy the
relation (20). Then u belongs to H1,0(Ω,A); solves the equation Au = f in Ω, and the
following identity is satisfied,

V (Ψ− T+u)−W (Φ− γ+u) = 0 in Ω. (21)

Proof. First, let us prove that u ∈ H1,0(Ω;A). Since u ∈ H1(Ω) by hypothesis, it
suffices to prove that Au ∈ L2(Ω). Let us take equation (20) and apply the relations
(7), (9) and (11) to obtain

u =Pf −Ru+ VΨ−WΦ

=P∆

(
f

a

)
−Ru+ V∆

(
Ψ

a

)
−W∆Φ + V∆

(
∂ ln a

∂n
Φ

)
. (22)

We note that Ru ∈ H2(Ω) due to the mapping properties given by Theorem 4.1.
Moreover, V∆ and W∆ in (22) are harmonic potentials, while P∆ is the Newtonian

potential for the Laplacian, i.e., ∆P∆

(
f

a

)
=
f

a
. Consequently, ∆u =

f

a
− ∆Ru ∈

L2(Ω). Hence, Au ∈ L2(Ω) and thus u ∈ H1,0(Ω;A).
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Since u ∈ H1,0(Ω;A), the third Green identity (18) is valid for the function u, and
we proceed subtracting (17) from (20) to obtain

W (γ+u− Φ)− V (T+u−Ψ) = P(Au− f). (23)

Let us apply relations (7), (9) and (11) to (23), and then, apply the Laplace operator
to both sides. Hence, we obtain

Au− f = 0, (24)

i.e., u solves (3a). Finally, substituting (24) into (23), we prove (21).

Lemma 5.2. Let Ψ∗ ∈ H−
1

2 (S). If

VΨ∗(y) = 0, y ∈ Ω (25)

then Ψ∗(y) = 0.

Proof. Taking the trace of (25)gives:

VΨ∗(y) = V4
(

Ψ∗

a

)
(y) = 0, y ∈ Ω,

from where the result follows due to the invertibility of the operator V4 (cf. Lemma
4.7).

6. BDIE system for the mixed problem

We aim to obtain a segregated boundary-domain integral equation system for mixed
BVP (3). To this end, let the functions Φ0 ∈ H

1

2 (S) and Ψ0 ∈ H−
1

2 (S) be respective

continuations of the boundary functions φ0 ∈ H
1

2 (SD) and ψ0 ∈ H−
1

2 (SN ) to the
whole S. Let us now represent

γ+u = Φ0 + φ, T+u = Ψ0 + ψ, on S,

where φ ∈ H̃
1

2 (SN ) and ψ ∈ H̃−
1

2 (SD) are unknown boundary functions.
To obtain one of the possible boundary-domain integral equation systems we employ

identity (18) in the domain Ω, and identity (19) on S, substituting there γ+u = Φ0 +φ
and T+u = Ψ0 +ψ and further considering the unknown functions φ and ψ as formally
independent (segregated) of u. Consequently, we obtain the following system (M12) of
two equations for three unknown functions,

u+Ru− V ψ +Wφ = F0 in Ω, (26a)

1

2
φ+ γ+Ru− Vψ +Wφ = γ+F0 − Φ0 on S, (26b)

where

F0 = Pf + VΨ0 −WΦ0. (27)
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We remark that F0 belongs to the space H1(Ω) in virtue of the mapping properties
of the surface and volume potentials, see Theorems 4.1 and 4.3.

The system (M12), given by (26a)-(26b) can be written in matrix notation as

M12X = F12,

where X represents the vector containing the unknowns of the system,

X = (u, ψ, φ)> ∈ H1(Ω)× H̃−
1

2 (SD)× H̃
1

2 (SN ),

the right hand side vector is

F12 := [F0, γ
+F0 −Ψ0]> ∈ H1(Ω)×H

1

2 (S),

and the matrix operator M12 is defined by:

M12 =

[
I +R −V W

γ+R −V 1

2
I +W

]
.

We note that the mapping properties of the operators involved in the matrix imply
the continuity of the operator

M12 : H1(Ω)× H̃−
1

2 (SD)× H̃
1

2 (SN ) −→ H1(Ω)×H
1

2 (S).

Theorem 6.1. Let f ∈ L2(Ω). Let Φ0 ∈ H
1

2 (S) and Ψ0 ∈ H−
1

2 (S) be some fixed

extensions of φ0 ∈ H
1

2 (SD) and ψ0 ∈ H−
1

2 (SN ) respectively.

i) If some u ∈ H1(Ω) solves the BVP (3), then the triple (u, ψ, φ)> ∈ H1(Ω) ×
H̃−

1

2 (SD)× H̃
1

2 (SN ) where

φ = γ+u− Φ0, ψ = T+u−Ψ0, on S, (28)

solves the BDIE system (M12).

ii) If a triple (u, ψ, φ)> ∈ H1(Ω) × H̃−
1

2 (SD) × H̃
1

2 (SN ) solves the BDIE system
then u solves the BVP and the functions ψ, φ satisfy (28).

iii) The system (M12) is uniquely solvable.

Proof. First, let us prove item i). Let u ∈ H1(Ω) be a solution of the boundary value
problem (3) and let φ, ψ be defined by (28). Then, due to (3b) and (3c), we have

(ψ, φ) ∈ H̃−
1

2 (SD)× H̃
1

2 (SN ).

Then, it immediately follows from the third Green identities (18) and (19) that the
triple (u, φ, ψ) solves BDIE system M12.

Let us prove now item ii). Let the triple (u, ψ, φ)> ∈ H1(Ω)× H̃−
1

2 (SD)× H̃
1

2 (SN )
solve the BDIE system. Taking the trace of the equation (26a) and substract it from
the equation (26b), we obtain

φ = γ+u− Φ0, on S. (29)
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This means that the first condition in (28) is satisfied. Now, restricting equation (29)
to SD, we observe that φ vanishes as supp(φ) ⊂ SN . Hence, φ0 = Φ0 = γ+u on SD
and consequently, the Dirichlet condition of the BVP (3b) is satisfied.

We proceed using Lemma 5.1 in the first equation of the system (M12), (26a), with
Ψ = ψ + Ψ0 and Φ = φ + Φ0 which implies that u is a solution of the equation (3a)
and also the following equality:

V (Ψ0 + ψ − T+u)−W (Φ0 + φ− γ+u) = 0 in Ω.

By virtue of (29), the second term of the previous equation* vanishes. Hence,

V (Ψ0 + ψ − T+u) = 0, in Ω.

Now, by virtue of Lemma 5.2 we obtain

Ψ0 + ψ − T+u = 0, on S. (30)

Since ψ vanishes on SN , we can conclude that Ψ0 = ψ0 on SN . Consequently, equation
(30) implies that u satisfies the Neumann condition (3c).

Item iii) immediately follows from the uniqueness of the solution of the mixed
boundary value problem due Lemma 6.2 below.

Lemma 6.2. (F0, γ
+F0 − Φ0) = 0 if and only if (f,Φ0,Ψ0) = 0

Proof. It is trivial that if (f,Φ0,Ψ0) = 0 then (F0, γ
+F0 − Φ0) = 0. Conversely,

supposing that (F0, γ
+F0 − Φ0) = 0, then taking into account equation (27) and

applying Lemma 5.1 with F0 = 0 as u, we deduce that f = 0 and VΨ0 −WΦ0 = 0 in
Ω. Now, the second equality, γ+F0 − Φ0 = 0, implies that Φ0 = 0 on S and applying
Lemma 5.2 gives Ψ0 = 0 on S.

Theorem 6.3. The operator

M12 : H1(Ω)× H̃−
1

2 (SD)× H̃
1

2 (SN ) −→ H1(Ω)×H
1

2 (S),

is invertible.

Proof. Let M12
0 be the matrix operator defined by

M12
0 :=

[
I −V W

0 −V 1

2
I

]
.

The operator M12
0 is also bounded due to the mapping properties of the operators

involved. Furthermore, the operator

M12 −M12
0 : H1(Ω)× H̃−

1

2 (SD)× H̃
1

2 (SN ) −→ H1(Ω)×H
1

2 (S)

is compact due to the compact mapping properties of the operators R and W, (cf.
Theorem 4.2 and Theorem 4.6).

Let us prove that the operator M12
0 is invertible. For this purpose, we consider the

following system with arbitrary right hand side F̃ = [F̃1, F̃2]> ∈ H1(Ω)×H
1

2 (S) and
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let X = (u, ψ, φ)> ∈ H1(Ω)× H̃−
1

2 (SD)× H̃
1

2 (SN ) be the vector of unknowns

M12
0 X = F̃ . (31)

Writing (31) component-wise,

u− V ψ +Wφ = F̃1, in Ω, (32a)

1

2
φ− Vψ = F̃2, on S. (32b)

Equation (32b) restricted to SD gives:

−rSD
Vψ = rSD

F̃2. (33)

Due to the invertibility of the operator −rSD
V (cf. Lemma 4.7), equation (33) is

uniquely solvable on SD. Equation (33) means that (Vψ + F̃2) ∈ H̃
1

2 (SN ). Thus, the
unique solvability of (33) implies that φ is also uniquely determined by the equation

φ = (2Vψ + 2F̃2) ∈ H̃
1

2 (SN ).

Consequently, u also is uniquely determined by the first equation (32a) of the system.
Furthermore, since V ψ, Wφ ∈ H1(Ω), we have u ∈ H1(Ω).

Thus, the operatorM12
0 is invertible and the operatorM12 is a zero index Fredholm

operator due to the compactness of the operator M12 −M12
0 . Hence the Fredholm

property and the injectivity of the operator M12, provided by item iii) of Theorem
6.2, imply the invertibility of operator M12.

7. Conclusions

A new parametrix for the diffusion equation in non homogeneous media (with variable
coefficient) has been analysed in this paper. Mapping properties of the corresponding
parametrix based surface and volume potentials have been shown in corresponding
Sobolev spaces.

A BDIES for the original BVP has been obtained. Results of equivalence between
the BDIES and the BVP has been shown along with the invertibility of the matrix
operator generated by the BDIES.

Now, we have obtained an analogous system to the BDIES (M12) of [2] with a new
family of parametrices which is uniquely solvable. Hence, further investigation about
the numerical advantages of using one family of parametrices over another will follow.

Analogous results could be obtain for exterior domains following a similar approach
as in [4].

Further generalised results for Lipschitz domains can also be obtain by using the
generalised canonical conormal derivative operator defined in [12,14]. Moreover, these
results can be generalised to Bessov spaces as in [3].
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