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Standfirst: Energy return on investment (EROI) is a critical measure of the comparative utility of 

different energy carriers including fossil fuels and renewables. However it must not be used to 

compare carriers that cannot be put to similar end-use. Additionally, combining carriers to arrive at 

estimates of ‘average’ or ‘minimum’ EROIs can be problematic. 

 

 

The global demand for primary energy in 2017 was 585 EJ, of which over 80% was provided 

by fossil fuels (oil, coal and natural gas), and this cumulative energy demand is projected to 

increase by almost 30% by the year 20401. At the same time, fossil fuel combustion is 

responsible for significant greenhouse gas emissions leading to rapid climate change and 

resultant negative effects. The world is thus faced with the formidable double challenge of 

curbing its overall greenhouse gas emissions while ensuring the continued delivery of 

sufficient energy to allow our societies to function.  

Net energy analysis (NEA), as the name implies, is specifically concerned with determining 

how much ‘net’ energy can be delivered to society in the form of a given energy carrier, after 

subtracting all the energy inputs which are required to support the supply chain of that same 

energy carrier2 . Its conceptual origins may be traced back to the ‘energy theory of value’ 

advocated by the Technocracy movement in the 1920s in the United States, and which 

gained further traction in the cultural milieu of the first oil crisis in the early 1970s3,4. Over the 

years, NEA has established itself as a valuable tool in assessing the net energy profitability 

of a range of energy supply chains, as well as in cautioning against any associated risks, 

such as those posed by the increasing energy required to extract fossil fuels from dwindling 

deposits5,6, and the prospect of an impending ‘net energy cliff’ followed by rapidly diminishing 

availability of net energy7. There is also a growing effort to include NEA-derived metrics in 
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analyses of the energy-economy nexus8. More specifically, bringing about a major future 

energy transition will inevitably require a significant energy investment up front, and 

depending on the specific technologies employed and the rate at which the transition is 

implemented, there may even be a risk of potentially running into temporary net energy 

‘debt’, whereby more energy investment is required to support a newly deployed energy 

technology (or, in extreme cases, even the entire energy sector) in a given year than the 

total energy that the technology (or sector) is capable of delivering in that same year9.  

 

System boundaries 

The principal metric of NEA is the Energy Return On (Energy) Investment (EROI or EROEI) 

– sometimes also referred to as Net Energy Ratio (NER)6,10 – which is defined as the ratio of 

the energy delivered (‘returned’) by a process (or chain of processes) to the total energy 

invested in order to operate those same process(es). Historically, ‘standard’ EROI values11 

(EROIst) were typically calculated for energy resources ‘at point of extraction’. However, 

despite seeming methodologically consistent at face value, such practice limits the 

meaningfulness of EROIst to just those comparisons between energy resources for which all 

the subsequent process steps that are required to arrive at a usable energy carrier are 

essentially the same (as, for instance, when comparing crude oil produced in different fields 

or in different years5,6). In all other cases, energy resources can and do differ greatly in their 

actual usability at each stage of their respective supply chains. Broadly speaking, at one end 

of the spectrum are those primary energy resources which cannot be used directly as such 

in any significant societal application (e.g., crude oil and coal). In order to become usable 

energy carriers, these resources need to be refined, transported and so on, which ultimately 

leads to a reduced EROI ‘at point of use’ (EROIpou). At the other end of the spectrum are 

those primary energy resources which are instantly made available as readily usable energy 

carriers at their point of extraction (e.g., wind, photovoltaic and hydroelectricity); for these 

latter resources, the distinction between ‘point of extraction’ and ‘point of use’ therefore 

becomes more blurred. 

It is noteworthy that the intrinsically different ‘quality’ of energy carriers such as electricity 

and thermal fuels has in fact been acknowledged in at least some of the literature to date. 

However, the ensuing issue about consistency in EROI comparisons has often been 

summarily addressed by simply adjusting the EROI of electricity upwards (or, 

correspondingly, that of thermal fuels downwards) using power plant conversion 

efficiencies8,11,12. But recent detailed analyses13,14 have shown that this approach is too 

simplistic, since it fails to take into account the often significant additional energy 
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investments that are required to refine and/or transport the fuels from their respective 

extraction points to the power plants.  

 

Oil and coal supply chains 

In the case of oil, life cycle inventory data15  indicates that the energy invested at the refinery 

(Invref) for the production of heavy fuel oil (HFO) is, on average, 4.5 MJ (primary 

energy)/kg(HFO), which, when compared with the energy content of the fuel itself (HHVHFO = 

43 MJ/kg), corresponds to over 10% thereof. In fact, such energy investment for refining is 

so large that, regardless of the exact amount of energy required to extract the crude oil from 

the ground (Invextr) – which varies depending on the specific field and time frame considered, 

leading to a wide range of EROIst
7,11 – and even when considering the subsequent energy 

investments for transportation (Invtr), it typically ends up being the input that most severely 

limits the maximum attainable EROIpou = HHVHFO/(Invextr+Invref+Invtr). This conclusion 

appears to hold for most oil-derived fuels (all of which tend to require very similar additional 

energy inputs for refining per unit of output), and is corroborated by several analyses using 

statistical data for the oil industry in various countries. Specific energy consumption data for 

the oil supply chain in Colombia in the year 201516 have been reported as: Invextr = 39.4 

MJ/GJ(refined fuel), Invref = 84.4 MJ/GJ(refined fuel), and Invtr = 4.9 MJ/GJ(refined fuel), 

which result in a significant drop from EROIst = 25 to EROIpou = 8. The situation is similar for 

the oil supply to Chile14, where EROIst = 24 and EROIpou = 6.2. A review of the production of 

oil-derived fuels in North America17 reports an average refinery yield ≈ 0.9  MJ(refined 

fuel)/MJ(crude) and Invref = 600 – 1000 MJ/bbl-crude, which corresponds to 0.1–0.18 

MJ/MJ(refined fuel), thereby confirming this stage of the oil supply chain as the one requiring 

the most significant energy investment. Finally, historical data for California6 show that the 

EROIpou of refinery products there has always been lower than 6.5, even back in the 1950s 

when the EROIst of crude oil at mine mouth was over 100. Hence, given that the EROIpou of 

the oil-derived fuels that are actually used in all societal processes is fundamentally 

constrained by the refining step, rather than by the extraction of the crude from the ground, it 

also follows that it is much more informative and relevant to focus attention on the trend over 

time of such EROIpou, than on the much steeper trend of the corresponding EROIst of crude 

oil at point of extraction (see Figure 1).  
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Figure 1. EROI of domestic oil supply in California. Historical trends of the EROIst of 

crude oil and of the corresponding EROIpou of refined oil fuels. Note the much ‘flatter’ curve 

of the latter. (data from Brandt6). 

 

Moving on to oil-fired electricity, in principle, the additional energy investments to build and 

operate the thermal power plant should also be considered, but these tend to be negligible 

when amortized over the long service life of the plant and expressed per unit of electricity 

delivered15. As a result, the EROIel of oil-fired electricity may be calculated as: EROIel = 

R*EROIpou, where R = power plant efficiency. Given a typical R = 0.3518 and the range for 

EROIpou ≈ 6 (in Chile14) − 8 (in Colombia16), the resulting EROIel is ≈ 2 − 3, i.e., much lower 

than often incorrectly assumed by simply multiplying the EROIst of crude oil by R.  

Similarly significant reductions in EROI along the supply chain, from point of extraction to 

point of use, apply to many other thermal energy resources too, although the relative 

importance of the energy required for refining / processing (Invref) and for transportation 

(Invtr) may be reversed. For instance, in three recent studies, the EROI of coal was found to 

be reduced from 27 (EROIst) to 11 (EROIpou) for the UK supply chain13, from 42 (EROIst) to 

26 (EROIpou) for the Indonesian supply chain19, and from 65 (EROIst) to 20 (EROIpou) for the 

Chilean supply chain14. In all these cases, the main factor responsible for the reductions was 

Invtr. Assuming an average R = 0.3718, such results then imply EROIel = R*EROIpou < 4 in the 

UK, ≈ 7 in Chile, and < 10 in Indonesia; once again, these are much lower values than has 

often been assumed using the oversimplistic formula EROIel = R*EROIst . 
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EROI comparisons  

The take-home message in all this is that any comparisons among EROI values ensuing 

from different supply chains should always be taken with a grain of salt.  As discussed 

above, even when the calculations are performed in a seemingly consistent way, i.e., by 

always referring to energy resources ‘at point of extraction’7,20,21, the actual delivered energy 

carriers may still differ greatly in their direct usability (or otherwise), as they may have to 

undergo a wide range of subsequent processes (entailing additional energy losses and 

investments) before eventually being put to practical use. Instead, it would be 

recommendable for all comparative analyses to always ensure that the calculation 

boundaries are consistently extended to arrive at a common energy carrier delivered to the 

end user (e.g., a directly usable thermal fuel, or electricity), and that this is done not by 

means of simplistic assumptions or ‘quality factors’, but by duly accounting for all the 

necessary supply chain processes and the associated energy losses and investments. More 

specifically, when comparing conventional thermal vs. renewable electricity, this is in fact a 

‘bare minimum’ requirement. Even more considerations may then come into play in 

determining the most appropriate basis for comparison, such as the need to address 

concerns about carbon emissions (which would, for instance, require carbon capture and 

sequestration to be implemented in the case of oil-, coal- and gas-fired electricity generation, 

with concomitant additional energy investments), or intermittency (which would require some 

degree of curtailment and/or energy storage in the case of renewable technologies such as 

wind or photovoltaics). 

Finally, related issues arise whenever an overall ‘average’ EROI value is calculated for the 

whole set of energy resources used by a specific country (or even the whole world), and 

when the latter (or, for that matter, any individual EROI value) is benchmarked against a 

single postulated ‘minimum’ EROI that is supposedly required to support modern 

societies7,11,21,22. Such estimations are problematic in two ways: firstly, as ought to be 

apparent based on what has been discussed here, ‘average’ EROI values are only 

methodologically sound and therefore ultimately meaningful if restricted to specific types of 

energy carriers (e.g., refined thermal fuels or electricity, but not a mix or the two, and most 

certainly not a mix of energy resources at point of extraction). In other words, both extraction 

and consumption boundaries must be reasonably assumed to be consistent across the 

board, and a common ‘point of use’ must be assumed, like for instance: a thermal engine, or 

an electrical motor. Secondly, comparing even consistently derived EROIs to any assumed 

‘minimum’ value still implicitly rests on the assumption that the combination of ‘downstream’ 

process chains in which the energy carriers will be used in the future will remain essentially 
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the same as they are today. In particular, the requirement for a relatively high ‘minimum’ 

overall EROIst has historically been due to the necessity to transport and refine (by means of 

additional energy investments) a mix of conventional fuels, before they are put to use in a 

range of unavoidably inefficient thermal processes, which are all ultimately limited by 

Carnot's principle. But when looking at the future, part of the appeal of a major energy 

transition (besides the environmental benefits in terms of reduced carbon emissions and 

pollution) is precisely to side-step such inherent supply chain and conversion efficiency 

limitations, essentially by pushing for more electrification in all sectors, while producing a 

large share of this electricity using low-carbon, renewable resources23. A significantly lower 

‘minimum’ EROI may therefore well suffice to support such a fundamentally different future 

society relying on renewable electricity for a larger share of its energy metabolism.  

Ultimately, therefore, we may conclude that the devil is always in the details, and that in 

order to be truly useful, all NEAs must be carried out at the appropriate system level, and 

within clearly defined and internally consistent spatial and temporal boundaries. Accordingly, 

there is a pressing need for the NEA community to work towards producing consistent EROI 

estimates ‘at point of use’ for a range of energy carriers ensuing from conventional and 

renewable supply chains, as well as for suitable mixtures of functionally equivalent energy 

carriers (e.g., blends of thermal fuels for transport, electricity grid mixes, etc.) in future 

scenarios. The inclusion of such estimates into overarching energy-economy models may 

then truly help to assess the foreseeable impacts and implications of the impending energy 

transition, including a potential major switch to renewables, and to identify any meaningful 

EROI ‘minima’ that may arise in each scenario and for each energy carrier. 
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