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ABSTRACT 

BACKGROUND AND PURPOSE: 

The fifth subunit in the (α4β2)2α4 nicotinic acetylcholine receptor (nAChR) plays a 

determining role in the pharmacology of this nAChR type. Here, we have examined the role 

of the fifth subunit in the ACh responses of the (α4β2)2β2 nAChR type.  

EXPERIMENTAL APPROACH: 

The role of the fifth subunit in receptor function was explored using two-electrode voltage-

clamp electrophysiology, along with subunit-targeted mutagenesis and the substituted 

cysteine scanning method applied to fully linked (α4β2)2β2 receptors. 

KEY RESULTS: 

Covalent modification of cysteine substituted fifth subunit with a thiol-reactive agent (MTS) 

caused irreversible inhibition of receptor function. ACh reduced the rate of MTS reaction but 

the competitive inhibitor dihydro-β-erythroidine had no effect. Alanine substitution of 

conserved residues that line the core of agonist sites on α4(+)/β2(-) interfaces did not impair 

receptor function. However, impairment of agonist binding to α4(+)/β2(-) agonist sites by 

mutagenesis modified the effect of ACh on the rate of MTS reaction. The extent of this effect 

was dependent on the position of the agonist site relative to the fifth subunit. 

CONCLUSIONS AND IMPLICATIONS: 

We conclude that the fifth subunit in (α4β2)2β2 receptor isoform modulates maximal ACh 

responses. This effect appears to be driven by a modulatory, and asymmetric, association with 

the α4(+)/β2(-) agonist sites.  
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Tables of Links 

 

 

These Tables of Links list the key protein target and ligand in this article that are hyperlinked 

to corresponding entries in http://www.guidetopharmacology.org, the common portal for data 

from the IUPHAR/BPS Guide to Pharmacology (Southan et al., 2016), and are permanently 

archived in The Concise Guide to PHARMACOLOGY 2015/16 (Alexander et al. 2015) 

ABBREVIATIONS 

Agonist binding site, ABS; dihydro-β-erythroidine, DHβE; extracellular domain, ECD; 

methanethiosulfonate or thiol-reactive reagent, MTS; methanethiolsulfonate reagent [2-

(Trimethylammonium) ethyl] methanethiosulfonate, MTSET; nicotinic acetylcholine 

receptor, nAChR; pentameric ligand gated ion channel, pLGIC; substituted cysteine 

accessibility method , SCAM; transmembrane domain, TMD. 

TARGET 

Receptor 

α4β2 nicotinic acetylcholine receptor 

LIGANDS 

Acetylcholine 

Dihydro-β-erythroidine 
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INTRODUCTION 

 The α4β2 nicotinic acetylcholine receptor (nAChR) is the most prevalent type of nAChR in 

the brain (Gotti et al., 2009), and this type is a key mediator of the rewarding and reinforcing 

effects of nicotine (Tapper et al., 2004; Maskos et al., 2005). The α4β2 nicotinic acetylcholine 

receptor (nAChR) is a member of the pentameric ligand-gated ion channel (pLGICs) 

superfamily of neurotransmitter receptors that includes the muscle nAChR, GABAA, glycine 

and serotonin type 3 receptors. Work on the muscle nAChR has shown that agonist binding in 

these proteins triggers rigid body motions, which are transduced into transient movements of 

the pore lining M2 α helices of the transmembrane domain (TMD) by a primary coupling 

pathway that runs along the long axis of the protein involving a series of loops of the subunit 

contributing the principal side of the agonist site (β1-β2 loop, the Cys loop and M2-M3 

linker) at the interface between the TMD and the N-terminal extracellular domain (ECD) 

interface (Lee and Sine 2005; Jha et al., 2007; Lee et al., 2009). The most recent cryo-

electron microscopy studies of Torpedo nAChRs have suggested that the fifth subunit (β1 

subunit), a non-agonist binding subunit, might play a critical role in receptor activation by 

being part of the pathway transmitting to the TMD the conformational changes that drive 

channel gating upon agonist binding (Unwin and Fujiyoshi, 2012).  

The α4β2 nAChR comprises two α4β2 pairs and a fifth subunit that can be β2 or α4, and this 

subunit difference produces two alternate receptor isoforms, the (α4β2)2β2 and (α4β2)2α4 

nAChRs (Nelson et al., 2003; Moroni et al., 2006) (Figure 1A). The alternate receptors 

display strikingly different sensitivities to activation by ACh and other agonists (Nelson et al., 

2003; Moroni et al., 2006; Harpsøe et al., 2011; Mazzaferro et al., 2011; Timmermann et al., 

2012; Absalom et al., 2013; Lucero et al., 2016), high-affinity desensitization (Marks et al., 

2010; Benallegue et al., 2013), sensitivity to allosteric modulators (Moroni et al., 2008; 

Alcaino et al., 2017; Jin et al., 2017) and single channel properties (Mazzaferro et al., 2017). 

These differences are accounted for partly by an additional operational agonist site in the 

(α4β2)2α4 stoichiometry housed by the interface between the fifth subunit (an α4) and an 

adjacent α4 subunit (Harpsøe et al., 2011; Mazzaferro et al., 2011). A triad of non-conserved 

E loop residues on the complementary side of the agonist site on the α4(+)/α4(-) interface has 

been identified as critical in determining the agonist sensitivity differences  between the 

(α4β2)2β2 and (α4β2)2α4 receptors: α4H142, α4Q150 and α4T152 (Harpsøe et al., 2011; 

Lucero et al., 2016). The fifth subunit in the (α4β2)2β2 isoform (a β2) forms the receptor’s 

signature β2(+)/β2(-) interface with an adjacent β2 subunit (Figure 1A). In contrast to the 
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(α4β2)2α4 receptors, transferring the α4 E loop to the fifth subunit in the (α4β2)2β2 does not 

affect ACh sensitivity (Lucero et al., 2016).  

Previously, we found that the agonist sites on the α4(+)/β2(-) interfaces in the (α4β2)2α4 

receptor responded differently to alanine substitutions of conserved aromatic residues, 

suggesting that this type of agonist sites may function asymmetrically, despite their structural 

equivalency (Mazzaferro et al., 2011). A more recent study examined this possibility in detail 

in both receptor isoforms by transferring the triplet of α4 non-conserved E loop residues to 

the β2 subunit, and vice versa (Lucero et al., 2016). Although this study did not find evidence 

of functional asymmetry in the α4(+)/β2(-) agonist sites of the (α4β2)2α4 receptor, it found 

that their counterparts in the (α4β2)2β2 responded differently to the presence of E loop 

mutant β2 subunits (Lucero et al., 2016). The most affected agonist site was the one whose 

complementary subunit forms the β2(+)/β2(-) interface with the fifth subunit. The most 

straightforward explanation for this finding is that the fifth subunit, likely through the 

β2(+)/β2(-) interface, affects receptor function by asymmetrically altering the function of the 

agonist sites. The fifth subunit could alter the affinity for ACh or the ability of the channel to 

open in response to agonist occupancy, or both, through an agonist site or a modulatory site 

on the β2(+)/β2(-) interface.  

In the current study, the contribution of the fifth subunit to the function of (α4β2)2β2

receptors was examined by proving the accessibility of β2L146C in the fifth subunit using the 

substituted cysteine accessibility method (SCAM; Karlin and Akabas, 1998). L146 in the fifth 

subunit was mutated to cysteine to test the ability of a methanethiosulfonate reagent (MTS) to 

react with this cysteine, in the presence or absence of ACh or dihydro-β erythroidine (DHβE), 

a potent competitive inhibitor of nAChRs. These studies suggest that the β2(+)/β2(-) interface 

may play an important role in the maximal ACh response of the receptor. We also tested for 

the presence of an agonist site at the β2(+)/β2(-) interface by using site-directed mutagenesis 

of conserved aromatic residues that line the canonical agonist sites in nAChRs, followed by 

two-electrode voltage-clamp experiments in Xenopus oocytes. When mutated to alanine, none 

of the conserved residues, individually or combined, affected ACh sensitivity, suggesting that 

conserved aromatic residues do not form an agonist binding site at the β2(+)/β2(-) interface. 

To determine if the effect of ACh on L146C accessibility is dependent on occupancy of the 

α4(+)/β2(-) agonist sites, we impaired the α4(+)/β2(-) agonist sites by alanine substitution of 

a key agonist-binding residue (α4W182), one site at a time, and measured the rate of MTS 
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reaction in the absence or presence of ACh. These data indicate that occupancy of α4(+)/β2(-) 

agonist sites decreases the accessibility of L146C in the fifth subunit and that this effect is 

agonist binding-position dependent. Overall, our findings suggest that the fifth subunit 

through the β2(+)/β2(-) interface may communicates with the agonist site adjacent to the 

β2(+)/β2(-) interface to modulate the maximal responses to ACh, and that this link drives the 

functional asymmetry of the α4(+)/β2(-) agonist sites in the (α4β2)2β2 nAChR. 

METHODS 

Materials 

The cationic methanethiolsulfonate reagent (MTS) [2-(Trimethylammonium) ethyl] 

methanethiosulfonate (MTSET) was purchased from Toronto Chemicals (Canada). 100 mM 

stocks were prepared and stored at -80 C°. MTSET stocks were diluted to the appropriate 

concentration in Ringer’s solution and used immediately.  

Animals 

All animal care and experimental procedures followed the guideline from the UK Home 

Office at the Biomedical Services, Oxford University. Adult female Xenopus laevis were 

purchased from the European Xenopus Resource Center (Portsmouth, UK), Xenopus1 (MI, 

USA) or Nasco (WI, USA). Xenopus toads were housed in a climate-controlled, light-

regulated room. 120 toads were used. Toads were anaesthetised by immersion in 0.5% 

tricaine until no-responsive to toe pinch. Toads were then decapitated and ovarian lobes were 

harvested and defolliculated by incubation in 2 mg/ml collagenase (Type 1 C-0130, Sigma-

Aldrich, UK). Defolliculated stage V-VI oocytes were sorted and injected with 100 ng of 

wild type or mutant concatemeric α4β2 nAChR-cRNA, as previously described (Carbone et 

al., 2009). Injected oocytes were incubated until use at 18 
◦
C in Barth’s solution: 88 mM

NaCl, 1 mM KCl, 0.33 mM Ca(NO3)2, 0.41 mM CaCl2, 0.82 mM MgSO4, 2.4 mM NaHCO3, 

10 mM HEPES, supplemented with 0.1 mg/mL streptomycin, 1000 U/mL Penicillin and 50 

µg/mL neomycin or amikacin (100 µg/mL) (pH 7.5, with 5 M NaOH). 

Mutagenesis and Expression in Oocytes 

The fully concatenated form of wild type or mutant α4β2 nAChRs was engineered as 

previously described (Carbone et al., 2009; Mazzaferro et al., 2011). Briefly, the signal 

peptide and start codon were removed from all the subunits but the first (a β2 subunit) and 
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the subunits were bridged by AGS linkers. Only the last subunit in the construct contained a 

stop codon. The subunits were subcloned into a modified pCI plasmid vector (Promega, UK) 

using unique restriction enzyme sites flanking the N- and C-terminals of each subunit. To 

introduce a mutation into a specific subunit of the concatemeric α4β2 nAChR, the mutation 

was first introduced into the subunit subcloned into the modified pCI plasmid using the 

Stratagene QuikChange Site-Directed Mutagenesis Kit (Agilent, UK). The presence of the 

mutation and the absence of unwanted mutations were confirmed by sequencing the entire 

cDNA insert (SourceBioscience, UK, Eurofins, UK). The mutated subunit was then ligated 

into the concatemer using unique restriction enzyme sites. To confirm that the mutated 

subunit was incorporated into the concatemer, the subunit was cut from the concatemer using 

unique restriction enzyme sites and then its nucleotide sequence was verified by DNA 

sequencing (SourceBioscience, UK, Eurofins, UK). All concatemeric constructs were assayed 

for integrity using restriction enzyme digestion and the LT reporter mutation (L9’T in M2) as 

previously described (Mazzaferro et al., 2011). Note that we present the numbering of the 

residues in terms of the full length, including the signal sequence. To obtain the position in 

the mature form, subtract 28 from the number for α4 and 25 for β2. 

Oocyte Electrophysiology  

Two-electrode voltage-clamp recordings on oocytes were carried out 4-10 days after injection 

at room temperature in Ringer’s solution (NaCl 115 mM; KCl 2.5 mM, CaCl2 1.8 mM, 

HEPES 10 mM, pH 7.4). Concentration response curves for ACh were obtained as described 

previously (Moroni et al., 2006). The ACh responses were normalised to the maximal ACh 

response (1 mM) of each individual recorded oocyte. Concentration response curves were 

plotted using Prism 5.0 (GraphPad, San Diego, CA). ACh concentration response curve data 

were first fit to the one-component Hill equation, I = Imax/[1 + (EC50/x)
nH

], where EC50

represents the concentration of agonist inducing 50% of the maximal response (Imax), x is the 

agonist concentration and nH the Hill coefficient. When ACh induced biphasic receptor 

activation, the concentration response curve data were fit to the sum of two Hill equations, as 

decribed previously (Moroni et al., 2006). For chimeric receptors, we measured their 

maximal functional expression and compare it to that of wild type receptors. For these 

experiments, wild type and mutant  maximal ACh currents were measured from oocytes of 

the same batch that were injected 4-5 days before the experiments with the same amount of 

chimeric or wild type cRNA. 
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MTSET Modification of Substituted Cysteines 

MTSET was used to covalently modify the introduced cysteines. Accessibility of introduced 

cysteines to MTSET was determined by exposing the cysteines to a maximal concentration of 

MTSET (1 mM). Briefly, ACh pulses (5 s) were applied every 6 min and prior to MTSET 

application, the responses to ACh were stabilised (<6% variance of peak current responses to 

ACh on four consecutive ACh applications). After stabilisation, freshly diluted 1 mM 

MTSET was applied for 1 min, the cell was washed for 130 s, and then ACh responses were 

measured until the responses stabilised. For all mutant receptors except mutant 

β2_
W182A

α4_β2_α4_β2
 L146C

, the concentration of ACh pulses were 30 µM (EC80). For

β2_
W182A

α4_β2_α4_β2
 L146C

, EC80 was 100 µM (see Table 1). Higher concentrations of ACh

were not used for the MTSET modification of substituted cysteine receptor experiments to 

minimise possible ion channel blockade by ACh and/or chronic receptor desensitisation. The 

effect of MTSET was estimated using the following equation: % Change = [(Iafter MTSET/Iinitial) 

– 1] x 100, where Iinitial is the response to ACh EC80 before MTSET application and Iafter is the

response to ACh EC80 after MTSET application. 

Rate of MTSET modification in the absence of ligand 

The rate of modification of substituted cysteines by MTSET was determined by measuring 

the effect of sequential applications of sub-saturating concentrations of MTSET using a 

protocol previously described (Mazzaferro et al., 2014). The concentration of MTSET 

causing sub-saturating effects was determined separately for each mutant receptor and for all 

mutants tested this was 10 µM. The responses to ACh prior to MTSET reagent application 

were first stabilised as follows: EC80 ACh was applied for 5 s, followed by a recovery time of 

95 s. Immediately after the recovery time, a pulse of a ligand at EC80 concentration to be 

tested later for protection (30 µM ACh or 0.1 µM DHβE) was applied for 10 s followed by a 

3 min 40 s wash with Ringer solution. This cycle was repeated until the ACh responses 

stabilised (<6% variance of peak current responses to ACh on four consecutive applications). 

Ligands to be tested for their ability to protect the introduced cysteine residues from MTSET 

reactions were applied during the stabilisation of the ACh responses to correct for any process 

of desensitisation and/or ion channel blockade that could develop during the protection assays 

described below. MTSET was then applied using the following sequence of reactions: at time 

0, ACh was applied for 5 s, followed by a period of recovery of 95 s; MTSET was then 
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applied for 10 s, followed by a recovery period of 20 s. Immediately after the recovery time, 

the protectant was applied for 10 s, after which time the cell was washed with Ringer’s 

solution for 3 min and 40s. This cycle was repeated until the peak current responses to ACh 

no longer changed, indicating completion of the MTSET reaction. After completion of the 

MTSET reaction, ACh and ligand were applied as described above to demonstrate that the 

observed changes in ACh responses were induced by MTSET.  

Rate of MTSET modification in the presence of ACh 

To determine whether the accessibility of the incorporated cysteines could be altered by the 

presence of ligands (ACh or DHβE) the following protocol was used. Peak current responses 

to 5 s pulses of ACh EC80 were stabilized as described above, after which time MTSET was 

applied using the following sequence: at time 0, ACh was applied (5 s), followed by 95 s 

recovery; MTSET and the protectant (EC80 ACh or DhβE) were then co-applied for 10 s, 

followed by a recovery period of 4 min and 10 s. This cycle was repeated nine times (90 s in 

total). At the end of this cycle, ACh and ligand were applied as described for the MTSET 

reaction rate protocol. At the end of each protection assay, the cells were exposed to maximal 

MTSET to ensure that the previously protected mutant cysteines were still accessible. For all 

rate experiments, the decrease in the peak current response to ACh was plotted versus 

cumulative time of MTSET exposure. The change in current was plotted versus cumulative 

time of MTSET exposure. Peak values at each time point were normalized to the initial peak 

at time 0 s, and the data points were fit with a single-exponential decay function: y = span x 

e
-kt

 + plateau (Graph Pad Software INC., San Diego, CA, USA), where k is the first pseudo-

first order rate constant of the reaction. Plateau is the peak ACh current at the end of the 

reaction and Span is 1 – plateau. A second-order rate constant (k2) was calculated by dividing 

k1 by the concentration of MTSET used. At least two different concentrations of MTSET (10 

and 50 µM) were used to determine rates of reaction to verify that the rates were independent 

of the concentration of MTSET. In all cases, the second-order rate constants were 

independent of MTSET concentration. 

Statistical analysis 

The data and statistical analysis comply with the recommendations on experimental design 

and analysis in pharmacology (Curtis et al., 2015). Data for wild type or each mutant receptor 

studied were obtained from oocytes from at least three different donors. Statistical and non-
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linear regression analyses of the data from concentration response curves and MTSET 

modification were performed using Prism 5 (GraphPad, San Diego, CA). An F-test 

determined whether the one-site or biphasic model
 
best fit the concentration response data; 

the simpler one-component model was preferred unless the extra sum-of-squares F test had a 

value of p less than 0.05. One-way ANOVA with post-hoc Dunnett’s test was used for 

comparison involving more than two groups. Unpaired Student’s t-tests were used for 

comparison between two groups (control and test). Values are presented as arithmetic mean ± 

SEM. Statistical tests with p < 0.05 were considered significant.  

The published structure of the nicotinic receptor containing 2 copies of the α4 subunit and 3 

copies of β2 (5kxi.PDB; Morales-Perez et al., 2016) was viewed and figures were made using 

Pymol (http://www.pymol.org) 

Data and statistical analysis for all alanine and MTSET experiments were blinded. 
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RESULTS 

We examined the contribution of the fifth subunit to the agonist responses of the (α4β2)2β2 

nAChR. The fifth subunit in the (α4β2)2β2 receptor is a β2 subunit, and this subunit forms the 

signature β2(+)/β2(-) interface with a  β2 subunit that contributes to an α4(+)/β2(-) agonist 

site (Figure 1 A). To circumvent ambiguities in data analysis brought about by non-targeted 

subunit mutagenesis, the studies described here were carried out on fully concatenated 

(α4β2)2β2 nAChRs (β2_α4_β2_α4_β2 nAChRs). β2_α4_β2_α4_β2 nAChRs replicate the 

pharmacological (Carbone et al., 2009) and single channel (Mazzaferro et al., 2017) 

properties of (α4β2)2β2 nAChRs assembled from free subunits. In concatenated (α4β2)2β2, 

the first subunit in the linear sequence of the concatemer (a β2 subunit) interfaces with the 

fifth subunit of the linear sequence of the concatemer (a β2 subunit), establishing the 

β2(+)/β2(-) interface (Figure 1A, B). The first subunit contributes the principal face of the 

β2(+)/β2(-) interface, whilst the fifth subunit contributes the complementary side (Figure 

1A). Agonist binding sites in the concatenated receptors form at the interface between the 

first subunit of the linear  sequence of the concatemer and the second subunit (hereafter 

termed agonist binding site 1, ABS 1) and between the third and fourth subunits (hereafter 

termed agonist binding site 2, ABS 2) (Figure 1 A, B). For clarity, mutations in the linked 

receptors are shown as superscript positioned in the (+) or (-) side of the mutated subunit. For 

example, in β2
L146C

_α4_β2_α4_β2 L146C is located in the (-) side of the β2 subunit forming

part of ABS 1 and, in β2_α4_β2_α4
T152C

_β2, T152C is positioned in the (-) side of the α4

subunit contributing the (+) side of ABS 2. 

ACh sensitivity in α4β2 nAChRs maps to the N-terminal ECD 

We first examined the effect of the fifth subunit on the function of (α4β2)2β2 nAChRs by 

testing the effect of ACh on concatenated (α4β2)2β2 receptors containing a chimeric fifth 

subunit. Chimeric subunits consisted of either the amino-terminal ECD of the α4 subunit and 

the remaining part (TMD and C-terminus) of the β2 subunit (α4/β2), or the amino-terminal 

ECD of the β2 subunit and the remaining part of the α4 subunit (β2/α4) (Figure 2A). As 

shown in Figure 2B and C (see Table 1 for estimated values of ACh potency), the ACh 

sensitivity of receptors containing a chimeric α4/β2 subunit at the fifth position was different 

from wild type (β2_α4_β2_α4_β2 nAChRs) but not different from that of β2_α4_β2_α4_α4 

nAChRs. In contrast, when the chimeric fifth subunit contained the amino-terminal ECD of 

the β2 subunit (i.e., β2_α4_β2_α4_β2/α4 nAChRs), the sensitivity to ACh was comparable to 

wild type β2_α4_β2_ α4_β2 nAChRs but statistically different from that of β2_α4_β2_α4_α4 
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receptors (Figures 2B and C; Table 1). The amplitude of the maximal ACh responses for 

β2_α4_β2_α4_α4/β2 nAChRs increased by 7- and 5-times, compared to respectively, 

β2_α4_β2_α4_β2/α4 and β2_α4_β2_α4_β2 nAChRs (Figure 2D). To probe that chimeric 

subunit α4/β2 has the capability to form an α4(+)/α4(-) agonist site with the adjacent α4 

subunit in the β2_α4_β2_α4_α4/β2 receptor, we alanine substituted the conserved agonist-

binding W182 residue on the chimeric α4/β2 subunit to engineer mutant 

β2_α4_β2_α4_α4
W182A

/β2 receptor and then tested the functional consequences of the

mutation. Unnatural amino acid mutagenesis has shown that ACh makes a cation-π 

interaction with α4W182 in the (α4β2)2β2 nAChRs, and this interaction critically contributes 

to ACh binding affinity and receptor activation (Xiu et al., 2009). If an operational agonist 

site forms at the interface α4_
W182A

α4/β2, ACh should yield biphasic concentration response

curves. We have shown in previous studies that alanine substitution of W182 in individual 

agonist sites in concatenated (α4β2)2α4 receptors results in biphasic ACh responses due to the 

co-existence  of wild type and mutated agonist sites in the mutant receptor (Mazzaferro et al., 

2011). As shown in Figure 2C (concentration-response parameters shown in Table 1), the 

ACh concentration response curve of β2_α4_β2_α4_
  W182A

α4/β2 receptors was biphasic

without significant changes in the amplitude of the maximal ACh current responses (Figure 

2D). In addition, we also transferred β2 E loop residues β2V135, β2F144 and β2L146 to the 

E loop of chimeric α4/β2 subunit to engineer β2_α4_β2_α4_α4
β2Eloop

/β2 receptors. β2V135,

β2F144 and β2L146 residues are equivalent to α4 E loop residues H142, Q150 and T152 

(Harpsøe et al., 2011). Previous studies have shown that transferring the β2 E loop residues to 

the fifth subunit in (α4β2)2α4 receptors induces a left-shift in ACh sensitivity to (α4β2)2β2-

like levels (Harpsøe et al., 2011; Lucero et al., 2016). As shown in Figure 2C (Table 1), the 

ACh sensitivity of β2_α4_β2_α4_α4
β2Eloop

/β2 receptors was comparable to that of

β2_α4_β2_α4_β2 receptors. In accord with Lucero et al. (2016), introducing the α4 E loop 

residues into the β2/α4 chimeric subunit had no significant effect on the ACh responses 

(Figure 2C; Table 1), although there was significant decrease in functional expression 

(Figure 2D). These studies confirm that the agonist sensitivity in the alternate α4β2 nAChRs 

maps to the amino-terminal ECD of the fifth subunit (Harpsøe et al., 2011; Mazzaferro et al., 

2011; Wang et al., 2015; Lucero et al., 2016). We also confirm that the E loop of the fifth 

subunit in the (α4β2)2α4 isoform plays a critical role in determining the ACh sensitivity of the 

(α4β2)2α4 isoform (Harpsøe et al., 2011; Lucero et al., 2016) but not that of the (α4β2)2β2 

receptor (Lucero et al., 2011; this study), although it appears to modify functional expression.  
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The fifth subunit modulates ACh maximal currents in the (α4β2)2β2 nAChR 

To further examine the effect of the fifth subunit on the amplitude of the maximal ACh 

current responses of the (α4β2)2β2 receptor, we introduced a cysteine residue in lieu of 

β2L146 in the fifth subunit to engineer β2_α4_β2_α4_β2
 L146C

 receptors and then tested the

accessibility of the introduced cysteine to MTSET (Figure 3A). For experimental control 

purposes, we also introduced L146C in the complementary subunit of ABS 1 or ABS 2 to 

construct respectively β2
L146C

_α4_β2_α4_β2 and β2_α4_β2
L146C

_α4_β2 receptors. We

(Mazzaferro et al., 2011; 2014) and others (Wang et al., 2015) have used the L146C 

substitution to study agonist-induced responses in concatenated α4β2 nAChRs. As for the 

α4(+)/β2(-) interfaces, the side chain of L146 in the fifth subunit orientates towards the space 

between the fifth subunit and the opposing subunit in the β2(+)/β2(-) interface (Figure 3B).  

Introducing L146C into the fifth subunit or the complementary subunit of ABS 1 or ABS 2 

had no effect on ACh potency (Table 1), indicating that the cysteine substitution in these sites 

is well tolerated and that does not affect the sensitivity of the (α4β2)2β2 receptor to activation 

by ACh. Application of 1mM MTSET for 1 min to oocytes expressing wild type receptors 

had no effect on the subsequent ACh EC80 current responses (Figure 3C, D). We concluded 

therefore that any changes in the function of the cysteine substituted receptors following 

exposure to MTSET can be attributed to the covalent modification of the substituted 

cysteines. As shown in Figure 3C, D, application of 1 mM MTSET irreversibly decreased the 

subsequent ACh-induced currents for β2_α4_β2_α4_β2
 L146C

 receptors by 2.3-times. MTSET

also modified the subsequent ACh-induced currents in β2
L146C

_α4_β2_α4_β2 and

β2_α4_β2
L146C

_α4_β2, although in comparison to β2_α4_β2_α4_β2
 L146C

 receptors, the effect

on β2
L146C

_α4_β2_α4_β2 or β2_α4_β2
L146C

_α4_β2 was more pronounced (4.2- and 3.2-

times, respectively) (Figure 3C, D). These data show that covalent modification of β2L146C 

by MTSET reduces subsequent ACh responses and that the extent of the reduction is β2 

position-dependent, being greater when the β2 subunit forms part of an α4(+)/β2(-) agonist 

site. Next, we examined if the receptor could activate after MTSET modification of both 

α4(+)/β2(-) agonist sites. To examine this, we tested the effect of ACh on 

β2
L146C

_α4_β2
L146C

_α4_β2 receptors before and after MTSET treatment. The ACh sensitivity

of β2
L146C

_α4_β2
L146C

_α4_β2 receptors was not different from wild type (Table 1) but

exposure to MTSET completely abolished the responses to ACh. Thus, when both (α4β2)2β2 

agonist sites are irreversibly inactivated by MTSET, the receptors are no longer capable to 

activate in response to ACh (Figure 3C, D). These findings are in accord with previous 
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studies that have suggested that activation of (α4β2)2β2 requires occupancy of both 

α4(+)/β2(-) agonist sites (Wang et al., 2015).  

We next examined the mechanism underlying the effect of MTSET by determining the ACh 

concentration response curve for β2_α4_β2
 
_α4_β2

L146C
 before and after a 1 min exposure to

1 mM MTSET. It has been shown that derivatisation of conserved aromatic residues in the γ 

subunit of the muscle nAChR by MTS reagents reduces the maximum agonist response 

without changes in sensitivity (Sullivan and Cohen, 2000). Figure 4A shows that exposure to 

MTSET decreased the maximal ACh response in β2_α4_β2_α4_β2
L146C

 by 2.5-times (n = 5;

p < 0.05) without significant changes in the ACh EC50 (EC50 before MTSET = 5.41 ± 2 µM; 

EC50 after MTSET = 5.9 ± 1.1 µM; n = 5). For control purposes, we also determined the ACh 

concentration responses curve before and after MTSET treatment of β2
L146C

_α4_β2_α4_β2

receptors. As shown in Figure 4B, MTSET derivatisation of β2
L146C

_α4_β2_α4_β2 decreased

the maximal current response of ACh by 4 times without significant changes in ACh potency 

(EC50 before MTSET = 7.48 ± 3 µM; EC50 after MTSET = 7.27 ± 2 µM; n = 5). These 

findings are consistent with irreversible inhibition of receptor function through removal of 

cysteine substituted ACh sites by MTSET modification.   

ACh decreases accessibility of L146C in agonist sites and the β2(+)/β2(-) interface 

A role in receptor activation could account for the effects of the fifth subunit on the amplitude 

of the maximal ACh currents of the (α4β2)2β2 receptor, and this effect could be driven by an 

operational agonist or a modulatory site on the β2(+)/β2(-) interface. To examine this 

possibility, we measured the accessibility of the introduced cysteine in the presence or 

absence of ACh to establish whether the presence of ACh impeded the derivatisation of the 

substituted cysteine. If L146 is part of or nearby an ACh binding site, the presence of ACh 

should slow down its derivatisation by MTSET. Figures 5A and B show current traces from 

a representative rate of MTSET reaction measurement using the cysteine substituted 

β2_α4_β2_α4_β2
 L146C

 receptor in the absence (A) or presence of ACh (B). As shown in

Figure 5C (data summarised in Table 2), the rate of MTSET reaction decreased in the 

presence of ACh. For comparison, we determined the rate of MTSET reaction in the absence 

and presence of ACh for β2
 L146C

 _α4_β2_α4_β2
 
and

 
β2_α4_β2

 L146C 
_α4_β2 receptors. As for

β2_α4_β2_α4_β2
L146C

, ACh decreased the modification of β2
 L146C

 _α4_β2_α4_β2
 
and

β2_α4_β2
 L146C 

_α4_β2 receptors (Figure 5 D, E), although the rate of reaction in the absence

or presence of ACh on these two receptors was more pronounced than on 
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β2_α4_β2_α4_β2
L146C

 receptors (Table 2). These data suggest that accessibility to L146C, in

the presence or absence of ACh, is β2 position-dependent. The rank order of L146C 

accessibility is: ABS 1 >  ABS 2 > β2(+)/β2(-). For an additional inter-subunit interface 

control, we cysteine substituted α4T152, the α4 residue equivalent to β2L146, in one of the 

β2(+)/α4(-) interface (β2_α4_β2_α4
T152C

_β2) and then measured the rate of MTSET

modification in the presence and absence of ACh. The ACh EC50 in β2_α4_β2_α4
T152C

_β2

was no different from wild type (Table 1). As shown in Figure 5F, the rate of MTSET 

reaction (2829 ± 610 M
-1

s
-1

; n = 5) was not significantly different from the rate measured in

the presence of ACh (2171 ± 715 M
-1

s
-1

; n = 5) (Table 2).

Demonstrating that competitive antagonists decrease the rate of MTSET modification of 

L146C in the fifth subunit would support the presence of an ACh binding site on the 

β2(+)/β2(-) interface. If ACh and antagonists occupy the same site in the fifth subunit, the 

presence of either should alter the rate of MTSET modification of the cysteine substituted 

fifth subunit in a similar manner. We therefore measured the rate of MTSET modification in 

the presence or absence of the nAChR inhibitor DHβE. Available DHβE-bound crystal 

structures of Lymnaean AChBP (Shasavar et al., 2012) and functional data from mutagenesis 

studies of the α4β2 nAChR (Iturriaga-Vásquez et al., 2010) have shown that DHβE and 

agonists interact with the same conserved aromatic residues in canonical agonist sites. 

Furthermore, we have found in a previous study that DHβE slows down the rate of MTSET 

reaction in cysteine substituted α4(+)/β2(-) or α4(+)/α4(-) agonist sites in the (α4β2)2α4 

receptor (Mazzaferro et al., 2011). Thus, if there is an ACh binding site on the β2(+)/β2(-) 

interface formed by conserved aromatic residues, it is reasonable to  expect a decrease in the 

rate of MTSET reaction in the presence of DHβE. Figure 6A shows that EC80 DHβE did not 

perturb the rate of MTSET modification of β2 _α4_β2_α4_β2
L146C

 receptors (k2 - DHβE =

1876 ± 251 M
-1

s
-1

; n = 5); k2 + DHβE = 1671 ± 391 M
-1

s
-1

; n = 5). For comparison, we also

measured the rate of MTSET reaction in the presence of DHβE for β2
 L146C

 _α4_β2_α4_β2

receptors or β2
 
_α4_β2

 L146C
 _α4_β2 receptors. As expected for canonical agonist sites, we

found that DHβE decreased the rate of MTSET reaction with β2
 L146C

 _α4_β2_α4_β2 (k2 -

DHβE = 5645 ± 721 M
-1

s
-1

; k2 + DHβE = 787 ± 141 M
-1

s
-1

; n = 5) receptors (Figure 6B) and

β2
 
_α4_β2

 L146C
 _α4_β2 (k2 - DHβE = 2561 ± 800 M

-1
s

-1
; k2 + DHβE = 955 ± 256 M

-1
s

-1
; n =

5) receptors (Figure 6C).
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Conserved aromatic residues in the β2(+)/β2(-) interface do not affect ACh sensitivity  

Consistent with the presence of an agonist site on the β2(+)/β2(-) interface, key aromatic α4 

subunit agonist-binding residues (W182, Y120,W88, Y230) are conserved in the β2 subunit 

(β2W176, β2Y120; β2W82 and β2Y221). We have previously shown that impairment of 

individual agonist sites in the (α4β2)2α4 receptor isoform by alanine substitution of conserved 

aromatic residues yields biphasic ACh concentration response curves (Mazzaferro et al., 

2011; 2014). Thus, if the β2(+)/β2(-) interface houses an ACh binding site formed by 

conserved aromatic residues, alanine mutations of these residues should yield biphasic ACh 

concentration response curves. Table 1 shows that individual or simultaneous alanine 

substitutions of conserved aromatic residues in the β2(+)/β2(-) interface had no effect on 

potency of ACh. This finding indicates that conserved aromatic residues do not engage ACh 

in the β2(+)/β2(-) interface. 

Agonist sites affect MTSET modification of the fifth subunit asymmetrically 

So far, the findings suggest that agonist-bound α4(+)/β2(-) agonist sites affect accessibility of 

L146C in the fifth subunit. If this is the case, impairing the α4(+)/β2(-) agonist site by 

mutagenesis should alter the rate of MTSET modification of the cysteine substituted fifth 

subunit. We tested this possibility by introducing W182A in ABS 1 or ABS 2 of the 

β2_α4_β2_α4_β2
L146C

 receptor and then measuring the rate of modification of L146C by

MTSET in the presence or absence of ACh.  

Introducing W182A impacted the sensitivity of β2_α4_β2_α4_β2
L146C

 to activation by ACh.

The extent of the effect depended on which agonist site (ABS 1 or ABS 2) carried the W182A 

mutation. When W182A was introduced into ABS 1 (i.e., β2_
W182A

α4_β2_α4_β2), W182A

caused a biphasic ACh sensitivity, comprising a high-affinity component (EC50 1.07 ± 0.1 

µM) and a low affinity component (EC50 53 ± 12 µM) (Table 1). In contrast, incorporation of 

W182A into ABS 2 (i.e., β2_α4_β2_
W182A

α4_β2) did not produce biphasic concentration

response curves for ACh but decreased ACh potency from 8.64 ± 2.2 µM to 17.00± 4µM 

(Table 1). In accord with our findings, Lucero et al. (2016) found that β2 E loop mutations 

impair more drastically the function of ABS 1 than that of ABS 2. 

Compared to β2_α4_β2_α4_β2
L146C

 receptors, the rate of MTSET reaction in

β2_
W182A

α4_β2_α4_β2
L146C

 receptors was 2.2 times slower, whereas in
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β2_α4_β2_
W182A

α4_β2
L146C

 receptors the rate was 1.4 times slower (Figure 7A; data

summarised in Table 2). More strikingly, compared to β2_α4_β2_α4_β2
L146C

, the

accessibility of L146C in β2_
W182A

α4_β2_α4_β2
L146C

 receptors was almost obliterated in the

presence of ACh (Figure 7A, Table 2), whereas in β2_α4_β2_
W182A

α4_β2
L146C

 the

accessibility was reduced by 2.1 times (Figure 7B; Table 2). We noticed a slight potentiation 

of the ACh responses in to β2_
W182A

α4_β2_α4_β2
L146C

 receptors after MTSET reaction but

this effect was not significant. These findings show that agonist-bound canonical sites alter 

the accessibility of the substituted cysteine in the fifth subunit, suggesting that agonist sites, 

particularly ABS 1, link to the fifth subunit.  
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DISCUSSION 

Here, by combining voltage-clamp electrophysiological recordings from concatenated 

(α4β2)2β2 nAChRs, site-directed mutagenesis, along with probing with the thiol-reactive 

MTSET reagent, we have shown that the fifth subunit in the (α4β2)2β2 nAChR, like its 

counterpart in the (α4β2)2α4 isoform, plays an important role in the maximal ACh responses 

of the receptor, albeit more subtly. Our findings have also confirmed that α4(+)/β2(-) agonist 

sites in the (α4β2)2β2 nAChR isoform function asymmetrically (Lucero et al., 2016). We 

found that ACh but not DHβE, a selective competitive inhibitor of the α4β2 nAChR that 

contacts the same conserved aromatic residues as agonists in nAChR canonical agonist sites, 

had no effect on the MTSET modification of the fifth subunit. In addition, alanine 

substitutions of conserved aromatic residues in the β2(+)/β2(-) interface had no effect on ACh 

responses. Together, these findings suggest that the effect of ACh on the chemical 

modification of the fifth subunit is not mediated by binding to a site contributed by conserved 

aromatic residues in the β2(+)/β2(-) interface. By impairing the function of the α4(+)/β2(-) 

agonist sites by mutagenesis, we found that in the presence or absence of ACh, chemical 

modification of the fifth subunit slowed down. The extent of this effect depended on which 

agonist site carried the mutation. Thus, together, our data suggest that the fifth subunit links 

with the α4(+)/β2(-) agonist sites to modulate the maximal ACh responses of the receptor. 

Since the effect of the agonist sites on the rate of modification of the fifth subunit is unequal, 

the relationship between the fifth subunit and the agonist sites might be the mechanism 

underlying functional asymmetry in the α4(+)/β2(-) agonist sites in the (α4β2)2β2. 

Irreversible modification of L146C in the fifth subunit by MTSET reduced the amplitude of 

the subsequent maximal ACh responses without changes in the ACh potency. Although less 

pronounced, these effects were comparable to those observed for MTSET-treated ABS 1. 

Together, these findings highlight the fifth subunit as an important component of the 

mechanisms determining the maximal ACh responses of (α4β2)2β2 receptors. Significantly, 

ACh reduced the rate of MTSET reaction with L146C in the fifth subunit. ACh also slowed 

down the rate of MTSET reaction with cysteine substituted α4(+)/β2(-) agonist sites. The 

fifth subunit through the β2(+)/β2(-) interface could contribute to the ACh responses of the 

receptors by forming part of an additional agonist site or a site capable of modulating the 

mechanisms that affects the ability of the ion channel to open in response to agonist 

occupancy of the α4(+)/β2(-) agonist sites. The β2 subunit conserves key α4 aromatic 

residues that line the core of α4(+)/β2 agonist sites in the (α4β2)2β2 receptor (Morales-
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Hernandez et al., 2016) and these residues could potentially be part of an agonist or 

modulatory site on the β2(+)/β2(+) interface. 

Unexpectedly, DHβE slowed down the rate of modification of the α4(+)/β2(-) agonist sites 

but not the rate of reaction with the cysteine substituted fifth subunit. A key assumption of 

SCAM is that MTS modification of cysteine substituted residues located within or close to 

agonist sites alters in the presence of agonists or antagonists recognising the site (Karlin and 

Akabas, 1998; Sullivan and Cohen, 2000). Available DHβE-bound crystal structures of 

Lymnaean AChBP have shown that DHβE and agonists contact the same conserved residues 

in the agonist site: Y126, W182, Y223 and Y230 from the (+) side of the α4(+)/β2(-) agonist 

site and W82 from the (-) site (Shasavar et al., 2012). Furthermore, functional data from 

mutagenesis studies of the α4β2 nAChR have shown that alanine substitution of these 

residues reduce the inhibitory potency of DHβE (Iturriaga-Vásquez et al., 2010). Thus, the 

most straightforward explanation for our findings is that the conserved aromatic residues in 

the β2(+)/β2(-) interface do not bind agonist or antagonist, like they do in the α4(+)/α4(-) 

interface of the (α4β2)2α4 receptor (Harpsoe et al., 2011; Mazzaferro et al., 2011; Wang et al., 

2015; Jain et al., 2016). Significantly, the recently resolved X-ray structure of the human 

(α4β2)2β2 nAChR reveals a reorganisation of conserved tyrosine residues (Y120 and Y221) 

in the β2(+)/β2(-) and the sandwiching of the positively charge guanidinium group of a non-

conserved arginine residue between the aromatic rings of the tyrosine residues. This 

arrangement would stabilise the electron-rich π environment of the region, thus preventing 

agonist binding (Morales-Perez et. al., 2016). 

An alternative explanation for our findings is that ACh binds a site close or including L146 

within the β2(+)/β2(-) interface that does not include the conserved aromatic residues and that 

excludes DHβE. Recent studies have indicated that the pharmacology of nAChRs is 

influenced by sites located at β(+)/α(-) interfaces that do not involve conserved aromatic 

residues (Moroni et al., 2008; Seo et al., 2009). More pertinently, Jain et al. (2016) reported 

that irreversible modification of α5/α4 and β3/α4 interfaces in respectively, (α4β2)2α5 and 

(α4β2)2β3 nAChRs reduces the maximal ACh responses without changes in EC50. These 

authors concluded that α5/α4 and β3/α4 interfaces contain operational agonist sites of an 

unorthodox nature (Jain et al., 2016). α5 and β3 nAChR subunits were thought to be 

incapable of forming agonist sites. However, earlier studies have shown that mutations of 

conserved aromatic residues in the α5 subunit had no effect on the agonist sensitivity of 
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(α4β2)2α5 receptors, although a reduction in maximal agonist responses was observed 

(Marotta et al., 2014). Further studies are necessary to get a better understanding on how the 

α5/α4 and β3/α4 interfaces affect the agonist responses of (α4β2)2α5 and (α4β2)2β3 nAChRs. 

For example, probing the ability of agonists and antagonists to reduce accessibility of 

cysteines incorporated into putative agonist-binding residues in the α5/α4 and β3/α4 

interfaces should help to a better understanding of the agonist sites that mediate the effects of 

these interfaces. In the case of the (α4β2)2β2 receptor, an ACh binding site on the β2(+)/β2(-) 

interface seems unlikely. The high-resolution structure of the human (α4β2)2β2 nAChR was 

obtained by co-crystallisation with nicotine, and this agonist was found bound only to α4(+)/ 

β2(-) agonist sites (Morales-Perez et al., 2016).  

Impairment of α4(+)/β2(+) agonist sites reduced the accessibility of L146C in the fifth 

subunit, in the presence or absence of ACh. A plausible explanation for this observation is 

that the fifth subunit through the β2(+)/β2(-) interface communicates with the agonist sites. 

This link might be necessary and sufficient for the effect of the fifth subunit on ACh maximal 

responses of the (α4β2)2β2 nAChR. Importantly, the accessibility of L146C was obliterated 

by impairment of ABS 1 but not by impairment of ABS 2. This implies that the fifth subunit 

links asymmetrically with the agonist sites, and that the link is stronger with ABS 1. Lucero 

et al. (2016), based on the unequal effects of E loop substitutions in the (α4β2)2β2 receptor, 

proposed that there may be a strong interaction between adjacent subunits so that the 

structure at one interface (influenced by the structure of the E loop) can alter activation 

mediated by binding of ACh to neighbouring subunits. Allosteric effects between the agonist 

sites on the α4(+)/α4(-) and α4(+)/β2(-) interfaces in the isoform (α4β2)2α4 have also been 

proposed to account for the different patterns of single channel opening durations exhibited 

by the alternate α4β2 nAChR isoforms (Mazzaferro et al., 2017). Here, on the basis of our 

findings, we propose that ABS 1 and the fifth subunit, through the β2(+)/β2(-)interface, 

constitute a functional unit, and that this arrangement modulates the maximal ACh responses 

in the (α4β2)2β2 nAChR and confers functional asymmetry to the α4(+)/β2(-) agonist sites. 

Changes in the accessibility of the cysteine substituted fifth subunit suggest that L146 and/or 

residues in close proximity undergo conformational rearrangement in the presence of ACh. 

This imply that that structural changes initiated at the α4(+)/β2(-) can extend over 

considerable distance. Allosteric signals can propagate over long distances in pLGIC. In the 

GABAA receptor, an inhibitory pLGIC, the GABA binding site positioned anti-clockwise to 
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the γ subunit undergoes structural rearrangement upon binding of the positive benzodiazepine 

modulator flurazepan (Kloda and Czajkowski, 2007; Eaton et al., 2012). In the GABAA 

receptor, the binding sites are located at β/α interfaces (the β subunit is the principal subunit 

in the GABAA receptor) and the γ subunit. This structural and functional arrangement is 

equivalent to the one we propose for the (α4β2)2β2 receptor. Consistently with this 

possibility, Baumann et al. (2003) reported asymmetry in the function of the agonist sites in 

the GABAA receptor, which these authors proposed could arise from differences in the 

subunits flanking the agonist sites. Asymmetry in the function of structural equivalent agonist 

sites and agonist site-fifth subunit modulatory links to regulate agonist binding function 

might be a common feature of heteromeric pLGICs. 

How might the ABS 1-β2(+)/β2(-) unit modulate the maximal responses of (α4β2)2β2 

receptor?  Since MTSET derivatisation of the fifth subunit decreased the maximal ACh 

responses without effects on ACh potency, a possible scenario is that the ABS 1-β2(+)/β2(-) 

functional unit modulates the propagation of the conformational transitions induced by 

agonist occupancy to the TMD without affecting agonist binding affinity. Although the 

interpretation of our findings is inevitably confounded by the problem of separating effects 

on agonist binding (affinity) and gating (Colquhoun, 1998), the observation that DHβE, an 

antagonist that inhibits receptor function, had no effects on the rate of MTSET reaction with 

cysteine substituted fifth subunit supports this possibility. It appears that for the fifth subunit 

to exert its effects on receptor function, the canonical agonist sites of the receptor must be 

agonist-bound. In this respect, it is interesting that cryo-images of Torpedo nAChRs suggest 

that as a consequence of agonist occupation the fifth subunit (β1 subunit) undergoes 

structural changes, which might be critically important for transmitting to the TMD the 

conformational changes driving channel gating (Unwin and Fujiyoshi, 2012). This scenario 

could explain why the fifth subunit modulates the maximal ACh responses without noticeable 

changes in ACh sensitivity, despite being functionally linked to ABS 1. Of relevance to the 

functional asymmetry of the α4(+)/β2(-) agonist sites, Unwin and Fujiyoshi (2012) reported 

that although both agonist sites contribute to the movement of β1, the agonist site at the αγ 

subunit interface appears to be the most prominent driving force behind the displacement of 

β1 (Unwin and Fujiyoshi, 2012). This asymmetry is consistent with our findings and supports 

our view that ABS 1 and the β2(+)/β2(-) interface form a functional unit that modulate the 

agonist responses of the (α4β2)2β2 nAChR receptor isoform.  
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In conclusion, these data suggest that the fifth subunit in the (α4β2)2β2 nAChR isoform plays 

an important role in both modulating the maximal ACh response of the receptor and 

conferring functional asymmetry to the agonist sites on the α4(+)/β2(-) interfaces. 
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For Peer ReviewFigure 1. Alternate forms of the α4β2 nAChR. (A) Cartoon showing the alternate (α4β2)2β2 and 
(α4β2)2α4 forms of the α4β2 nAChR. Stoichiometry-specific interfaces (β2(+)/β2(-) and α4(+)/α4(-) are 

indicated by arrows. Agonist binding sites at α4(+)/β2(-) interfaces are indicated by filled asterisks, whereas 

the agonist binding site at the α4(+)/α4(-) interface of the (α4β2)2α4 receptor is indicated by a clear 
asterisk. (B) Diagram showing the linear sequence and spatial orientation of α4 and β2 subunits in 

concatemeric (α4β2)2β2 nAChR. Arrows show the position of canonical agonist sites (agonist binding site 1, 
ABS 1 and agonist binding site 2,  ABS 2) are indicated by arrows.  
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Figure 2. Effects of the fifth subunit on the ACh responses of α4β2 nAChRs. (A) Diagram of chimeric 
concatenated α4β2 nAChRs. A chimeric subunit consisting of the α4 subunit extracellular domain and the 

remaining part of the β2 subunit (or vice versa) was introduced into the fifth subunit position of both 

stoichiometric forms of the α4β2 nAChRs. (B) Representative traces of the current responses of wild type 
and chimeric concatenated α4β2 nAChRs to ACh. (C) Concentration response curves for ACh current 

responses in concatenated wild type, chimeric and mutated chimeric α4β2 nAChRs expressed in Xenopus 
oocytes. The extracellular domain of the fifth subunit of the alternate α4β2 nAChRs significantly affected the 
responses to ACh. The EC50 values and Hill coefficients (nHill) are summarised in Table 1. (D) Maximal ACh 

current responses elicited by wild type, chimeric and mutated chimeric concatenated α4β2 nAChR. To 
compare maximal currents, the same amount of cRNA coding wild type and chimeric receptors were injected 

on the same oocyte batch and tested for functional expression on the same day. Unpaired, two-tailed 
students t-tests showed significant differences (***) between wild type concatenated (α4β2)2β2 and 

chimeric (α4β2)2β2/α4 receptors but not between wild type (α4β2)2β2 and (α4β2)2β2/α4 receptors (n = 10). 
Mutant chimeric (E loop and W182A mutants) were compared to wild type chimeric receptors (E loop 

mutants, n = 6; W182A mutants, n = 8). Bar showing the maximal current of ACh on wild type 
concatemeric (α4β2)2α4 nAChR is shown for comparison.%"  
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Figure 3. Effects of MTSET on ACh EC80 responses in wild type and cysteine substituted 
concatenated (α4β2)2β2 nAChRs. (A) Cartoon depicting covalent labelling of cysteine substituted 

(α4β2)2β2 nAChRs by MTSET. (B) Structure of the α4(+)/β2(-) (right panel) and β2(+)/β2(-) (left panel) 

showing the position of L146. L146 is shown as stick. For reference, W182, a key agonist binding residue, is 
also shown in the α4(+)/β2(-) interface. The α4 subunit is shown in blue and β2 in green. (C) 

Representative traces showing the effects of 1 mM MTSET on ACh EC80 current responses in wild type or 
cysteine substituted concatenated (α4β2)2β2 nAChRs. (D) 1 mM MTSET decreased significantly the 

responses to ACh EC80 in all mutant receptors. The amplitude of the currents remaining after MTSET were 
calculated using the equation [(Iafter MTSET/Iinitial - 1) x 100], as described in Methods. Significant 
differences between the cysteine substituted receptors and control (β2 _α4_β2 _α4_β2) are shown by 
asterisk and were determined with one-way ANOVA with Dunnett’s post-test. The sign + indicates that 

unpaired Student’s t tests showed that the maximal inhibition of β2L146C_α4_β2_α4_β2 and β2 _α4_β2L146C 
_α4_β2 receptors by MTSET are significantly different. The data shown represent n = 8 for each type of 

� �receptor tested. 
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Figure 4. MTSET modification decreases the maximal ACh responses of concatenated (α4β2)2β2 
receptors. Derivatisation of β2_α4_β2_α4_β2L146C  or β2L146C_α4_β2_α4_β2 receptors by 1 mM of MTSET 

reduced the maximal ACh responses without changes in the potency of ACh. The ACh concentration 

response curve for β2_α4_β2_α4_β2L146C (A) or β2L146C_α4_β2_α4_β2 (B) receptors was obtained before 
and after 1 min exposure to 1 mM MTSET. Data points represent the means ± SEM of 5 experiments. Data 

were fit by nonlinear regression, as described under Methods.  
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Figure 5. Effect of ACh on the rate of MTSET modification of substituted concatenated (α4β2)2β2 
nAChRs. Representative traces of responses to ACh EC80 before and after cumulative MTSET application in 
the absence (A) or presence of ACh EC80 (B). The traces shown were obtained from β2_α4_β2_α4_β2L146C 

receptors. Rates of MTSET modification of β2_α4_β2_α4_β2L146C (C), β2L146C_α4_β2_α4_β2 (D), 
β2_α4_β2L146C _α4_β2 (E) or β2_α4_β2_α4T152C_β2 (F) receptors in the absence (black curves) or presence 
of ACh (green, red or blue and purple curves, respectively). For C, D and E n = 8. For F, n = 5. Data were 

normalised and fit to a single phase exponential decay, as described in Methods. Second order rate 
constants for MTSET modification of L146C are summarised in Table 2.  
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Figure 6. Effect of the competitive antagonist DHβE on the rate of MTSET modification of 
cysteines substituted β2(+)/β2(-) or α4(+)/β2(-) interfaces in concatenated (α4β2)2β2 nAChRs. 

(A) The rate of MTSET derivatisation of cysteine substituted β2_α4_β2_α4_β2L146C receptors was not

affected by the presence of IC20 DHβE  (n =5). In contrast, DHβE slowed down the rate of MTSET
modification of β2L146C_α4_β2_α4_β2  (n =5) (B) or β2_α4_β2L146C _α4_β2 (n = 5) (C) receptors (unpaired 

Student’s t-tests). Data were normalised and fit to a single phase exponential decay, as described in 
Methods.  
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Figure 7. Effect of ACh-bound mutated agonist sites on MTSET modification of the fifth subunit of 
(α4β2)2β2 nAChRs.  The rate of MTSET modification of β2_α4_β2_α4_β2L146C in the absence or presence of 

ACh was altered when the W182A mutation was introduced in the α4(+)/β2(-) agonist sites to form 
β2_α4_β2_α4W182A_β2L146C (A) or  β2_W182Aα4_β2_α4_β2L146C (B). Data were normalised and fit to a single 
phase exponential decay, as described in Methods. For A and B, n = 8. Rate constants are summarised in 
Table 2. The cartoon adjacent to the exponential decay plots shows the position of incorporation of W182A 
in the cysteine substituted β2_α4_β2_α4_β2L146C receptors. For comparison we show the curves for the rate 

of MTSET reaction in the absence (dark pink dashed lines lines) or presence (green dashed lines) for 

β2_α4_β2_α4_β2L146C receptors.  
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, 

Receptor EC50 ACh nHill EC50Mut/EC50WT N 

β2_α4_β2_α4_β2 
 8.64 ± 2.2 

0.75 ± 0.012 11 

β2_α4_β2_α4_β2/α4 8.33 ± 1.8 0.67 ± 0.09 0.96 10 

β2_α4_β2_α4_α4 80.42± 8.3* 0.86 ± 0.02 10 

β2_α4_β2_α4_α4/β2 81.66 ± 3* 1.15 ± 0.25 9.5 10 

β2_α4_β2_α4_α4
W182A

/β2 
13.39 ± 3* 

3.51±1.2 

0.64 ± 0.06 

2.18 ± 0.35 

1.54 

406 
8 

β2_α4_β2_α4_β2Eloopα4/β2 11.51±4 0.87±0.09 1.3 6 

β2_α4_β2_α4
_α4Eloop

β2/α4 9.74±1.2 0.71±0.1 1.12 6 

Y120A
β2_α4_β2_α4_β2 10.55 ±.2.3 0.94 ± 0.24 1.2 10 

Y221Aβ2_α4_β2_α4_β2 9.20 ±0.6 0.97±0.2 1.06 9 

W176A
β2_α4_β2_α4_β2 7.20 ±0.95 0.97±0.03 0.83 9 

β2_α4_β2_α4_β2
W82A

 8.84 ±1.6 0.82±0.19 1.02 9 

Y120A,W176A, Y221Aβ2_α4_β2_α4_β2W82A 7.26±0.5 0.93±0.42 0.84 9 

β2_α4_β2_α4_β2
 L146C

 
6.61± 0.9 

0.98 ± 0.09 0.76 9 

β2L146C_α4_β2_α4_β2 
7.24 ± 1.9 

0.89 ± 0.04 0.43 9 

β2_α4_β2
 L146C

 _α4_β2 
5.96± 1.2 

0.72 ± 0.09 0.69 10 

β2L146C_α4_β2 L146C _α4_β2 4.59±2.1 0.86±0.09 0.53 6 

β2_
W182A

α4_β2_α4_β2 
1.07± 0.1* 

53.00 ± 12 

0.64 ± 0.21 

2 ± 0.90 

0.12 

6.1 
9 

β2_α4_β2_
W182A

α4_β2 17.00± 4* 0.61 ± 0.31 1.97 7 

β2_W182Aα4_ β2_α4_ β2L146C 40.26± 15^ 0.6 ± 0.07 4.7 7 

β2_α4_ β2_
W182A

α4_ β2
L146C

 6.13 ± 2.1 0.71 ± 0.1 0.71 7 

Table 1. Concentration effects of ACh on wild type and mutant concatenated (α4β2)2β2 

nAChRs. The concentration effects of ACh on oocytes expressing heterologously wild type or mutant 

concatenated (α4β2)2β2 nAChRs were determined using two-electrode voltage-clamp. The data points 

were used to generate concentration response curves from which EC50, and Hill coefficient (nHill) 

were estimated, as described in Methods. Data for β2_
W182A

α4_β2_α4_β2 mutant receptors were best 

fit to a biphasic Hill equation (p  = 0.0001). The ratio between mutant EC50 (EC50Mut) and wild type 

EC50 (EC50WT) is shown. Values represent the mean ± SEM of n number of experiments. Statistic 
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differences between β2_α4_β2_α4_β2 and chimeric β2_α4_β2_α4_β2/α4 or β2_α4_β2_α4_α4/β2 

receptors were measured by Student’s t-tests. Statistical differences between control 

(β2_α4_β2_α4_/β2) and mutants of conserved aromatic residues were determined by one-way 

ANOVA with Dunnett’s correction. Asterisks denote statistical difference. Statistical comparison 

between β2_α4_β2_α4_β2 L146C  (control) and β2_α4_β2_W182Aα4_β2L146C and β2_W182Aα4_ β2_α4_ 

β2
L146C

 was carried out by one way ANOVA with Dunnett’s correction; statistically different values 

are noted by ^. *,^ denote p < 0.05. F tests were carried out to determine whether concentration 

response data were best fit by one-site or biphasic model; the simpler one-component model was 

preferred unless the extra sum-of-squares F test had a value of p less than 0.05. 
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Receptor 

Control 

k2 

(M
-1

s
-1

) 

n 

+ ACh EC80

k2 

(M
-1

s
-1

)

n k2c/k2+ACh  

β2_α4_β2_α4_β2
 L146C

 2089 ± 310^
+
 8 551 ± 141*^

+
 8 3.8 

β2
L146C

_α4_β2_α4_β2 5543 ± 541^ 8 1009 ± 125*^
+
 8 5.5 

β2_α4_β2 L146C _α4_β2 2751± 510^+ 8 992 ± 101*^+ 8 4 

β2_
W182A

α4_ β2_α4_ β2
L146C

861 ± 1115+ 8 901 ± 180+ 8 0.96 

β2_α4_ β2_
W182A

α4_ β2
L146C

3010±593
+
 8 1164± 168*

+
 8 2.1 

β2_α4_β2_T152Cα4_β2 2829±610 5 2171±715 5 1.3 

Table 2. Rates of covalent modification of cysteine substituted (α4β2)2β2 nAChRs by 

MTSET. Rates of MTSET reaction with introduced cysteine were measured, and second-

order rate constant (k2; M
-1

s
-1

) were calculated as described in Methods. Second order rate

constants represent the mean ± SEM of n number of experiments. k2c/k2 + ACh represents the 

ratio of second-order rates of MTSET reactions obtained in the control rate (k2c) and in the 

presence of ACh (k2 + ACh EC80). Statistical differences between rate constants in the absence of 

ACh (control rate) and the rate in the presence of ACh were estimated for all receptors by 

unpaired Student’s t-tests (differences are noted by *). Statistical differences between the rate 

of reaction (in the absence or presence of ACh) of β2_α4_β2_α4_β2
L146C

, β2
L146C

_α4_β2_α4_β2 

and β2_α4_β2 L146C _α4_β2 was measured using one way ANOVA tests and differences are noted by 

^.  Comparison between the rates of β2_α4_β2_α4_β2
 L146C

 , β2_
W182A

α4_ β2_α4_ β2
L146C

 and

β2_α4_ β2_
W182A

α4_ β2
L146C

 receptors was measured using one way ANOVA tests and

differences are noted by +. *, ^ and + denote p < 0.05. 
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