
An Algebra of Design Patterns

Hong Zhu and Ian Bayley
Oxford Brookes University

In a pattern-oriented software design process, design decisions are made by selecting and instanti-
ating appropriate patterns, and composing them together. In our previous work, we enabled these

decisions to be formalised by defining a set of operators on patterns with which instantiations and

compositions can be represented. In this paper, we investigate the algebraic properties of these
operators. We provide and prove a complete set of algebraic laws so that equivalence between

pattern expressions can be proven. Furthermore, we define an always-terminating normalisation

of pattern expressions to a canonical form, which is unique modulo equivalence in first-order logic.
By a case study, the pattern-oriented design of an extensible request-handling framework,

we demonstrate two practical applications of the algebraic framework. Firstly, we can prove

the correctness of a finished design with respect to the design decisions made and the formal
specification of the patterns. Secondly, we can even derive the design from these components.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques—Object-
oriented design methods; D.2.10 [Software]: Design—Methodologies

General Terms: Design

Additional Key Words and Phrases: Design Patterns, Formal method, Software design method-
ology, Pattern composition, Algebra, Equational reasoning

1. INTRODUCTION

Design patterns are codified reusable solutions to recurring design problems [Gamma et al.
1995; Alur et al. 2003]. In the past two decades, much research on software design patterns
have been reported in the literature. Many such patterns have been identified, documented,
catalogued [Gamma et al. 1995; Alur et al. 2003; Grand 2002b; 1999; 2002a; Fowler 2003;
Hohpe and Woolf 2004; Buschmann et al. 2007b; Voelter et al. 2004; Schumacher et al.
2005; Steel 2005; DiPippo and Gill 2005; Douglass 2002; Hanmer 2007], and formally
specified [Alencar et al. 1996; Mikkonen 1998; Taibi et al. 2003; Gasparis et al. 2008;
Bayley and Zhu 2010b]. Numerous software tools have been developed for detecting pat-
terns in reverse engineering and instantiating patterns for software design [Niere et al.
2002; Hou and Hoover 2006; Nija Shi and Olsson 2006; Blewitt et al. 2005; Mapelsden
et al. 2002; Dong et al. 2007; Kim and Lu 2006; Kim and Shen 2007; 2008; Zhu et al.

Note: This paper is an extended and revised version of the conference paper [Zhu and Bayley 2010] presented at
ICFEM’2010.
Authors’ address: Prof. Hong Zhu and Dr. Ian Bayley, Department of Computing and Communication Tech-
nologies, Faculty of Technology, Design and Environment, Oxford Brookes University, Wheatley Campus, Ox-
ford OX33 1HX, UK, Tel: +44 (1865) 484580, Fax: +44 (1865) 484545, email: hzhu@brookes.ac.uk, ibay-
ley@brookes.ac.uk.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20XX ACM 0000-0000/20XX/0000-0001 $5.00

ACM Journal Name, Vol. XX, No. XX, XX 20XX, Pages 1–38.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/220155838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 · H. Zhu and I. Bayley

2009; Zhu et al. 2009]. Although each pattern is documented and specified separately,
they are usually to be found composed with each other with overlaps except in trivial cases
[Riehle 1997]. Thus, pattern composition plays a crucial role in the effective use of design
knowledge.

The composition of design patterns have been studied by many authors, for example, in
[Buschmann et al. 2007a; Riehle 1997]. Visual notations such as the Pattern:Role annota-
tion, and a forebear based on Venn diagrams, have been proposed by Vlissides [Vlissides
1998] and widely used in practice. They indicate where, in a design, patterns have been
applied so that their compositions are comprehensible. These notations are implemented
by Dong et al. [Dong et al. 2007] for computer-aided visualisation by defining appropri-
ate UML profiles. Their tool, deployed as a web service, identifies pattern applications,
and does so by displaying stereotypes, tagged values, and constraints. Such information is
delivered dynamically with the movement of the user’s mouse cursor on the screen. Their
experiments show that this delivery on demand helps to reduce the information overload
faced by designers. More recently, Smith [Smith 2011] proposed the Pattern Instance No-
tation (PIN), to visually represent the composition of patterns in a hierarchical manner.
Most importantly, he also recognised that multiple instances of roles needed to be better
expressed and he devised a suitable graphic notation for this.

However, the existing research on pattern compositions is mostly informal, though much
has been done by others to formalise the patterns themselves [Alencar et al. 1996; Mikko-
nen 1998; Lauder and Kent 1998; Taibi et al. 2003; Eden 2001; Gasparis et al. 2008;
Bayley and Zhu 2010b]. These approaches use many different formalisms but the basic
ideas underlying them are similar. In particular, a specification of a pattern usually con-
sists of statements about the common structural features and, sometimes, the behavioural
features of its instances. The structural features are typically specified by assertions of
the existence of certain types of components in the pattern, with the configuration of the
elements described in terms of the static relationship between them. The behavioural fea-
tures are normally defined by assertions on the temporal order of the messages exchanged
between these components.

Although such formalisations make possible a systematic investigation of design pattern
compositions in a formal setting, few authors have done so. Two that have are Dong et al.,
who appear to have been the first, and Taibi and Ngo.

Dong et al. define a composition of two patterns as a pair of name mappings. Each
mapping “associates the names of the classes and objects declared in a pattern with the
classes and objects declared in the composition of this pattern and other patterns” [Dong
et al. 2000; 1999; Dong et al. 2004]. This approach can be regarded as formalisation of
the “Pattern:Role” graphic notation. They also demonstrate that structural and behavioural
properties of patterns instances can be inferred even after composition. Recently, in [Dong
et al. 2011], they studied the commutability of pattern instantiation with pattern integration,
which is their term for composition. A pattern instantiation was defined as a mapping from
names of various kinds of elements in the pattern to classes, attributes, methods etc. in the
instance. An integration of two patterns was defined as a mapping from the set union of
the names of elements in the two patterns into the names of the elements in the resulting
pattern. This formal definition of integration is mathematically equivalent to the multiple
name mapping approach.

Taibi and Ngo [Taibi and Ngo 2003; Taibi 2006] took an approach very similar to this,
ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 3

but instead of defining mappings for pattern compositions and instantiations, they use sub-
stitution to directly rename the variables that represent pattern elements. For instantiation,
the variables are renamed to constants, whereas for composition, they are renamed to new
variables. The composition of two patterns is then the logical conjunction of the predicates
that specify the structural and behavioural properties of the patterns after substitution.

In [Bayley and Zhu 2008a], we formally defined a pattern composition operator based
on the notion of overlaps between the elements in the composed patterns. We distinguished
three different kinds of overlaps: one-to-one, one-to-many and many-to-many. Both Dong
et al. and Taibi’s approaches can only compose patterns with one-to-one overlaps. How-
ever, the other two kinds of overlaps are often required. For example, if the Composite
pattern is composed with the Adapter pattern in such a way that one or more of the leaves
are adapted then that is a one-to-many overlap. This cannot be represented as a mapping
between names, nor by a substitution or instantiation of variables. However, although this
operator is universally applicable, we found in our case study that it is not very flexible for
practical uses and its properties are complex to analyse.

In [Bayley and Zhu 2010a], therefore, we revised this previous work of ours and took a
radically different approach. Instead of defining a single universal composition operator,
we proposed a set of six more primitive operators, with which each sort of composition
can then be accurately and precisely expressed. We preserve the advantage of being able
to deal with more advanced overlaps. A case study was also reported there to demonstrate
the expressiveness of the operators.

In this paper, we now investigate how to reason about compositions, especially how to
prove that two pattern expressions are equivalent. As pointed out in [Dong et al. 2011],
this is of particular importance in pattern-oriented software design, where design decisions
are made by selecting and applying design patterns to address various design problems. If
is often desirable to determine whether two alternative decisions result in the same design,
especially if one is more abstract and general, and the other one more concrete and easier to
understand. We demonstrate that such design decisions can be formally represented using
our pattern operators. The subsequent focus on proving the equivalence between pattern
expressions leads us to a set of algebraic laws and an always-terminating normalisation
process that leads to a canonical form, which is unique subject to logical equivalence. As
we demonstrate with a case study of a real-world example, our algebra supports two typical
practical scenarios:

—validation and verification scenario: Recall that the current practice of pattern-oriented
software design is to instantiate and compose design patterns informally by hand, and
then present the result in the form of a class diagram annotated with pattern:role in-
formation. In the validation and verification scenario, this design must be checked for
correct use of the design patterns. Our algebra can be used to formally prove it to be
equivalent to a pattern expression denoting the component design patterns and the de-
cisions made. This means that the result is consistent with the structural and dynamic
features of the component.

—formal derivation scenario: On the other hand, given a pattern expression, we can, in
the formal derivation scenario, obtain the design by normalising the expressions to the
canonical form. This is directly readable as a concrete design.

This paper has three main contributions. It
ACM Journal Name, Vol. XX, No. XX, XX 20XX.

4 · H. Zhu and I. Bayley

—proves a set of algebraic laws that pattern operators obey,
—proves the completeness of the laws, and presents a pattern expression normalisation

process that always terminates with unique canonical forms subject to logic equivalence,
—demonstrates with a real-world example the applicability of the algebra to pattern-oriented

software design in both the validation/verification and formal derivation scenarios.

These results advance the pattern-oriented software design methodology by improving
the rigour in three ways: (a) design decisions are formally represented, (b) a new method
is presented for formally proving the correctness of the finished design with respect to
these decisions (c) a new method is presented for deriving this design. It also offers the
possibility of automated tool support for both of these methods.

The formalism we use to achieve these goals is the same as that in our previous work.
In particular, we use the first-order logic induced from the abstract syntax of UML de-
fined in GEBNF [Zhu and Shan 2006; Zhu 2010; 2012] to define both the structural and
behavioural features of design patterns. In the same formalism, we have already formally
specified the 23 patterns in the classic Gang of Four book [Gamma et al. 1995], hereafter
referred to as the GoF book. And, we have specified variants too [Bayley and Zhu 2007;
2008b; 2010b]. We have also constructed a prototype software tool to check whether a
design represented in UML conforms to a pattern [Zhu et al. 2009; Zhu et al. 2009].

It is worth noting that the definitions of the operations and the algebraic laws proved in
this paper are independent of the formalism used to define patterns. Thus, the results can
be applied equally well to other formalisms such as OCL [France et al. 2004], temporal
logic [Taibi 2006], process algebra [Dong et al. 2010], and so on, but the results may be
less readable and the proofs may be more complicated and lengthy. In particular, OCL
would need to be applied at the meta-level to assert the existence of the required classes
and methods.

The remainder of the paper is organised as follows. Section 2 reviews our approach
to formalisation of patterns and lays the theoretical foundation for our proofs. Section 3
outlines the set of operations on design patterns. Section 4 presents the algebraic laws that
they obey. Section 5 uses the laws to reason about the equivalence of pattern compositions.
Section 6 proves the completeness of the algebraic laws. Section 7 reports a case study with
the applications of the theory to a real-world example: the pattern-oriented design of an
extensible request-handling framework through pattern composition. Section 8 concludes
the paper with a discussion of related works and future work.

2. BACKGROUND

This section briefly reviews our approach to the formal specification of design patterns, to
present the background for our formal development of the algebra of design patterns. Our
approach is based on meta-modelling in the sense that each pattern is a subset of the design
models having certain structural and behavioural features. Readers are referred to [Bayley
and Zhu 2007; 2008b; Zhu et al. 2009; Bayley and Zhu 2010b] for details.

2.1 Meta-Modelling in GEBNF

We start by defining the domain of all models with an abstract syntax written in the meta-
notation Graphic Extension of BNF (GEBNF) [Zhu and Shan 2006]. GEBNF extends
the traditional BNF notation with a ‘reference’ facility to define the graphical structure of
diagrams. In addition, each syntactic element in the definition of a language construct is
ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 5

Table I. Some Functions Induced from GEBNF Syntax Definition of UML
ID Domain Function
Functions directly induced from GEBNF syntax definition of UML
classes Class diagram The set of class nodes in the class diagram
assocs Class diagram The set of association relations in the class diagram
inherits Class diagram The set of inheritance relations in the class diagram
compag Class diagram The set of composite and aggregate relations in the class diagram
name Class node The name of the class
attr Class node The attributes contained in the class node
opers Class node The operations contained in the class node
sig Message The signature of the message
Functions defined based on induced functions
X −−.+ Y Class ClassX inherits class Y directly or indirectly
X −→+ Y Class There is an association from classX to class Y directly or indirectly
X �−→+ Y Class There is an composite or aggregate relation fromX to Y directly or indirectly
isInterface(X) Class ClassX is an interface
CDR(X) Class No messages are send to a subclass ofX from outside directly
subs(X) Class The set of class nodes that are subclasses ofX
calls(x, y) Operation Operation x calls operation y
isAbstract(op) Operation Operation op is abstract
fromClass(m) Message The class of the object that messagem is sent from
toClass(m) Message The class of the object that messagem is sent to
X ≈ Y Operation OperationsX and Y share the same name

assigned an identifier (called a field name) so that a first-order language can be induced
from the abstract syntax definition [Zhu 2010; 2012].

For example, the following are some example syntax rules in GEBNF for the UML
modelling language.

ClassDiag ::= classes : Class+, assocs, inherits, compag : Rel∗

Class ::= name : String, [attrs : Property∗], [opers : Operation∗]
Rel ::= [name : String], source : End, end : End
End ::= node : Class, [name : String], [mult : Multiplicity]

The first line defines a class diagram as consisting of a non-empty set of classes and
a collection of three relations on the set. Here classes, assocs, inherits and compag
are field names. Each field name is a function. For example, classes is a function from
a ClassDiag to the set of class nodes in the model. Functions assocs, inherits and
compag are mappings from a class diagram to the sets of association, inheritance and
composite/aggregate relations in the model. The non-terminal Class in the definition of
End is a reference occurrence. This means that the node at the end of a relation must be
an existing class node in the diagram, not a newly-introduced class node. The definitions
of the class diagrams and sequence diagrams of UML in GEBNF can be found in [Bayley
and Zhu 2010b]. Table I gives the functions used in this paper that are induced from these
definitions as well as those that are based on them. A formal more detailed treatment of
this can be found in [Bayley and Zhu 2010b].

2.2 Formal Specification of Patterns

Given a formal definition of the domain of models, we can for each pattern define a pred-
icate in first-order logic to constrain the models such that each model that satisfies the
predicates is an instance of the pattern.

DEFINITION 1. (Formal specification of DPs)
A formal specification of a design pattern is a triple P = 〈V, Prs, P rd〉, where Prs

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

6 · H. Zhu and I. Bayley

is a predicate on the domain of UML class diagrams that expresses the static structural
properties of the pattern and Prd is, similarly, a predicate on the domain of UML sequence
diagrams that expresses the dynamic behavioural properties of the pattern; V = {v1 :
T1, · · · , vn : Tn} is the set of free variables in the predicates Prs and Prd. For each
i ∈ {1, · · · , n}, vi represents a component of type Ti in the pattern. A type can be a basic
type T of elements, 1 such as class, method, attribute, message, lifeline, etc. in the design
model, or P(T) (i.e. a power set of T), to represent a set of elements of the type T , or
P(P(T)), etc.

The semantics of the specification is a closed formula in the following form.

∃v1 : T1 · · · ∃vn : Tn · (Prs ∧ Prd) (1)

Given a pattern specification P , we write Spec(P) to denote the predicate (1) above,
V ars(P) for the set of variables declared in V , and Pred(P) for the predicate Prs ∧
Prd.

For example, Figure 1 shows the specification of the Object Adapter design pattern. The
class diagram from the GoF book has been included for the sake of readability.

Client

Adapter

Request()

Target

Request()

Adaptee

SpecificRequest()

SPECIFICATION 1. (Object Adapter Pattern)
Components

(1) Target, Adapter,Adaptee ∈ classes,
(2) requests ⊆ Target.opers,
(3) specreqs ⊆ Adaptee.opers

Static Conditions

(1) Adapter −−.+ Target, Adapter −→+ Adaptee,
(2) CDR(Target)

Dynamic Conditions

(1) ∀o ∈ requests · ∃o′ ∈ specreqs · (calls(o, o′))

Fig. 1. Specification of Object Adapter Pattern

Figure 2 gives the specification of the Composite pattern, where the class diagram from
GoF book [Gamma et al. 1995] only shows one Leaf class while in general there may be
many leaves. Both patterns will be used throughout the paper.

1Formally speaking, a basic type corresponds to a non-terminal symbol in the GEBNF definition of the modelling
language.

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 7

Client

Leaves1

Operation()

Component

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Adaptee

SpecificRequest()

Leaves2

Operation()

Composite

Operation()
Add(Component)
Remove(Component)
GetChild(int)

SPECIFICATION 2. (Composite)
Components

(1) Component, Composite ∈ classes,
(2) Leaves ⊆ classes,
(3) ops ⊆ Component.opers

Static Conditions

(1) ops 6= ∅
(2) ∀o ∈ ops.isAbstract(o),
(3) ∀l ∈ Leaves · (l −−.+ Component ∧ ¬(l �−→+ Component))

(4) isInterface(Component)

(5) Composite−−.∗ Component

(6) Composite �−→+ Component

(7) CDR(Component)

Dynamic Conditions

(1) any call to Composite causes follow-up calls
∀m ∈ messages · ∃o ∈ ops · (toClass(m) = Composite ∧m.sig ≈ o⇒

∃m′ ∈ messages . calls(m,m′) ∧m′.sig ≈ m.sig)

(2) any call to a leaf does not causes follow-up calls
∀m ∈ messages · ∃o ∈ ops · toClass(m) ∈ Leaves ∧m.sig ≈ o⇒

¬∃m′ ∈ messages . calls(m,m′) ∧m′.sig ≈ m.sig)

Fig. 2. Specification of the Composite Pattern

It is worth noting that the word model in classic formal logics has a meaning subtly
different from that in software engineering. In mathematical logic, a mathematical theory
is represented in the form of set of formulas called axioms, while a model of the theory is
a mathematical structure on which the set of formulas are all true. In software engineering,
on the other hand, a model is widely regarded as a diagram or a set of diagrams that
characterizes the structural and/or dynamic features of a software system, as a means of
presenting the design. By defining a pattern as a predicate on software models, the gap
between these two notions of models can be bridged. In particular, a software model (such
as a UML diagram) is an instance of a pattern when the software model is a structure on
which the formal specification (i.e. a logic formula) defining the pattern is true. So these

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

8 · H. Zhu and I. Bayley

two notions are consistent in our framework and we do not distinguish them in this paper.
Readers are referred to [Zhu 2010; 2012] for a formal treatment of software models as
mathematical structures.

2.3 Reasoning About Patterns

We often want to show that a concrete design really conforms to a design pattern. This is
a far from trivial task for some other formalisation approaches. For us though, the use of
predicate logic makes it easy and we formally define the conformance relation as follows.

Let m be a model and pr be a predicate. We write m |= pr to denote that predicate pr
is true in model m.

DEFINITION 2. (Conformance of a design to a pattern)
Let m be a model and P = 〈V, Prs, P rd〉 be a formal specification of a design pat-

tern. The model m conforms to the design pattern as specified by P if and only if m |=
Spec(P).

To prove such a conformance we just need to give an assignment α of variables in V
to elements in m and evaluate Pred(P) in the context of α. If the result is true, then
the model satisfies the specification. This is formalised in the following lemma, in which
Evaα(m, pr) is the evaluation of a predicate pr on model m in the context of assignment
α.

LEMMA 1. (Validity of conformance proofs)
A model m conforms to a design pattern specified by predicate P if and only if there is
an assignment α from V ars(P) to the elements in m such that Evaα(m,Pred(P)) =
true.

It is worth noting that the evaluation of Evaα(m, pr) is independent of the assignment
α if pr contains no free variables; thus the subscript α can be omitted. In such cases, the
evaluation always terminates with a result being either True or False. In fact, m |= pr
can be formally defined as Eva(m, pr) = True, where, when Pr = Spec(P) is a formal
specification of a design pattern P , it contains no free variables. Readers are referred to
[Zhu 2010; 2012] for more details of the definition of Evaα(m, pr).

A software tool has been developed that employs the first order logic theorem prover
SPASS. With it, proofs of conformance can be performed automatically [Zhu et al. 2009;
Zhu et al. 2009].

Given a formal specification of a pattern P , we can infer the properties of any system
that conforms to it. Using the inference rules of first-order logic, we can deduce that
Spec(P) ⇒ q where q is a formula denoting a property of the model. Intuitively, we
expect that all models that conform to the specification should have this property and the
following lemma formalises this intuition.

LEMMA 2. (Validity of property proofs)
Let P be a formal specification of a design pattern. ` Spec(P) ⇒ q implies that for all

models m such that m |= Spec(P) we have that m |= q.

In other words, every logical consequence of a formal specification is a property of all
the models that conform to the pattern specified.

There are several different kinds of relationships between patterns. Many of them can be
defined as logical relations and proved in first-order logic. Specialisation and equivalence
are examples of them.
ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 9

DEFINITION 3. (Specialisation relation between patterns)
Let P and Q be design patterns. Pattern P is a specialisation of Q, written P 4 Q, if for
all models m, whenever m conforms to P , then, m also conforms to Q.

DEFINITION 4. (Equivalence relation between patterns)
Let P and Q be design patterns. Pattern P is equivalent to Q, written P ≈ Q, if P 4 Q
and Q 4 P .

By Lemma 1, we can use inference in first-order logic to show specialisation.

LEMMA 3. (Validity of proofs of specialisation relation)
Let P and Q be two design patterns. Then, we have that

(1) P 4 Q, if Spec(P)⇒ Spec(Q), and

(2) P ≈ Q, if Spec(P)⇔ Spec(Q).

Furthermore, by Definition 1 and Lemma 3, we can prove specialisation and equivalence
relations between patterns by inference on the predicate parts alone if their variable sets
are equal.

LEMMA 4. (Validity of proofs of predicate relation)
Let P and Q be two design patterns with V ars(P) = V ars(Q). Then P 4 Q if
Pred(P)⇒ Pred(Q), and P ≈ Q if Pred(P)⇔ Pred(Q).

Specialisation is a pre-order with bottom FALSE and top TRUE defined as follows.

DEFINITION 5. (TRUE and FALSE patterns)
Pattern TRUE is the pattern such that for all models m, m |= TRUE. Pattern FALSE
is the pattern such that for no model m, m |= FALSE.

Therefore, letting P , Q and R be any given patterns, we have the following.

P 4 P (2)
(P 4 Q) ∧ (Q 4 R)⇒ (P 4 R) (3)
FALSE 4 P 4 TRUE (4)

3. OPERATORS ON DESIGN PATTERNS

In this section, we review the set of operators on patterns defined in [Bayley and Zhu
2010a]. The restriction operator was first introduced in [Bayley and Zhu 2008a], where it
was called the specialisation operator.

DEFINITION 6. (Restriction operator)
Let P be a given pattern and c be a predicate such that the set vars(c) of free variables
in c is included in V ars(P); i.e. formally vars(c) ⊆ V ars(P). A restriction of P with
constraint c, written P [c], is the pattern obtained from P by imposing the predicate c as
an additional condition of the pattern. Formally,

(1) V ars(P [c]) = V ars(P),

(2) Pred(P [c]) = (Pred(P) ∧ c).

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

10 · H. Zhu and I. Bayley

Informally, the predicate c is defined on the components of P ; thus it gives an additional
constraint on the components and/or on how the components relate to each other. For
example, let ||X|| denote the cardinality of set X . The pattern Composite1 is the variant
of the Composite pattern that has only one leaf:

Composite1 , Composite[||Leaves|| = 1].

Many more examples are given in the case studies reported in [Bayley and Zhu 2010a].
A frequently occurring use is in expressions of the form P [u = v] for pattern P and vari-
ables u and v of the same type. This is the pattern obtained from P by unifying components
u and v and making them the same element.

Note that the instantiation of a variable u in pattern P with a constant a of the same
type of variable u can also be expressed by using restriction operator P [u = a]. Some
researchers also regard restricting the number of elements in a specific component variable
of power set type as instantiation of the pattern. This can also be represented by applying
the restriction operator as shown in the above example.

The restriction operator does not introduce any new components into the structure of a
pattern, but the following operators do.

DEFINITION 7. (Superposition operator)
Let P and Q be two patterns. Assume that the names of the components in P and Q are
all different, i.e. V ars(P)∩ V ars(Q) = ∅. The superposition of P and Q, written P ∗Q,
is defined as follows.

(1) V ars(P ∗Q) = V ars(P) ∪ V ars(Q);
(2) Pred(P ∗Q) = Pred(P) ∧ Pred(Q).

Informally, P ∗Q is the minimal pattern (i.e. that with the fewest components and weak-
est conditions) containing both P and Q. Note that, although the names of components in
P ∗Q are required to be different, their instances may have overlap. The requirement that
components are named differently can always be achieved, for example, by systematically
renaming the component variables to make them different and the notation for renaming is
as follows.

Let x ∈ V ars(P) be a component of pattern P and x′ /∈ V ars(P). The systematic
renaming of x to x′ is written as P [x\x′]. Obviously, for all models m, we have that
m |= P ⇔ m |= P [x\x′] because Spec(P) is a closed formula. In the sequel, we assume
that renaming is made implicitly before two patterns are superposed when there is a naming
conflict between them.

DEFINITION 8. (Extension operator)
Let P be a pattern, V be a set of variable declarations that are disjoint with P ’s component
variables (i.e. V ars(P)∩V = ∅), and c be a predicate with variables in V ars(P)∪V . The
extension of pattern P with components V and linkage condition c, written as P#(V • c),
is defined as follows.

(1) V ars(P#(V • c)) = V ars(P) ∪ V ;
(2) Pred(P#(V • c)) = Pred(P) ∧ c.

For any predicate p, let p[x\e] denote the result of replacing all free occurrences of x in
p with expression e.

Now we define the flatten operator as follows.
ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 11

DEFINITION 9. (Flatten Operator)
Let P be a pattern, xs : P(T) be a variable in V ars(P) and x : T be a variable not in
V ars(P). Then the flattening of P on variable x, written P ⇓ xs\x, is defined as follows.

(1) V ars(P ⇓ xs\x) = (V ars(P)− {xs : P(T)}) ∪ {x : T},
(2) Pred(P ⇓ xs\x) = Pred(P)[xs\{x}].

Note that P(T) is the power set of T , and thus, xs : P(T) means that variable xs is
a set of elements of type T . For example, Leaves ⊆ classes in the specification of the
Composite pattern is the same as Leaves : P(classes). Applying the flatten operator on
Leaves, the Composite1 pattern can be equivalently expressed as follows.

Composite ⇓ Leaves\Leaf

As an immediate consequence of this definition, we have the following property. For
x1 6= x2 and x′1 6= x′2,

(P ⇓ x1\x′1) ⇓ x2\x′2 ≈ (P ⇓ x2\x′2) ⇓ x1\x′1. (5)

Therefore, we can overload the ⇓ operator to a set of component variables. Let X be a
subset of P ’s component variables all of power set type, i.e. X = {x1 : P(T1), · · · , xn :
P(Tn)} ⊆ V ars(P), n ≥ 1 and X ′ = {x′1 : T1, · · · , x′n : Tn} such that X ′ ∩ V ars(P) =
∅. Then we write P ⇓ X\X ′ to denote P ⇓ x1\x′1 ⇓ · · · ⇓ xn\x′n.

Note that our pattern specifications are closed formulae, containing no free variables.
Although the names given to component variables greatly improve readability, they have
no effect on semantics so, in the sequel, we will often omit new variable names and write
simply P ⇓ x to represent P ⇓ x\x′. Also, we will use plural forms for the names of lifted
variables, e.g. xs for the lifted form of x, and similarly for sets of variables, e.g. XS for
the lifted form of X .

DEFINITION 10. (Generalisation operator)
Let P be a pattern, x : T be a variable in V ars(P) and xs : P(T) be a variable not in
V ars(P). Then the generalisation of P on variable x, written P ⇑ x\xs, is defined as
follows.

(1) V ars(P ⇑ x\xs) = (V ars(P)− {x : T}) ∪ {xs : P(T)},
(2) Pred(P ⇑ x\xs) = ∀x ∈ xs · Pred(P).

We will use the same syntactic sugar for ⇑ as we do for ⇓. In other words, we will often
omit the new variable name and write P ⇑ x, and thanks to an analogue of Equation 5, we
can and will promote the operator ⇑ to sets.

For example, by applying the generalisation operator to Composite1 on the component
Leaf , we can obtain the pattern Composite. Formally,

Composite ≈ Composite1 ⇑ Leaf\Leaves.

A formal proof of the above equation can be found in Section 5.1.
The lift operator was first introduced in our previous work [Bayley and Zhu 2008a].

DEFINITION 11. (Lift Operator)
Let P be a pattern and V ars(P) = {x1 : T1, · · · , xn : Tn}, n > 0. Let X =
{x1, · · · , xk}, 1 ≤ k < n, be a subset of V ars(P). The lifting of P with X as the
key, written P ↑ X , is the pattern defined as follows.

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

12 · H. Zhu and I. Bayley

(1) V ars(P ↑ X) = {xs1 : PT1, · · · , xsn : PTn},
(2) Pred(P ↑ X) = ∀x1 ∈ xs1 · · · ∀xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn ·

Pred(P).

When the key set is singleton, we omit the set brackets for simplicity, so we write P ↑ x
instead of P ↑ {x}.

For example, Adapter ↑ Target is the following pattern.
V ars(Adapter ↑ Target) = {Targets, Adapters,Adaptees ⊆ classes}
Pred(Adapter ↑ Target)
= ∀Target ∈ Targets · ∃Adapter ∈ Adapter · ∃Adaptee ∈ Adaptees ·

Pred(Adapter).
Figure 3 spells out the components and predicates of the pattern.

SPECIFICATION 3. (Lifted Object Adapters Pattern)
Components

(1) Targets,Adapters,Adaptees ⊆ classes,

Conditions

(1) ∀Adaptee ∈ Adaptees · ∃specreqs ∈ Adaptee.opers,
(2) ∀Target ∈ Targets · ∃requests ∈ Target.opers,
(3) ∀Target ∈ Targets · CDR(Target),
(4) ∀Target ∈ Targets · ∃Adapter ∈ Adapters,Adaptee ∈ Adaptees·

(a) Adapter −−. Target,
(b) Adapter −→ Adaptee,
(c) ∀o ∈ Target.requests · ∃o′ ∈ Adaptee.specreqs · (calls(o, o′)))

Fig. 3. Specification of Lifted Object Adapter Pattern

Informally, lifting a pattern P results in a pattern P ′ that contains a number of instances
of P . For example, Adapter ↑ Target is the pattern that contains a number of Targets
of adapted classes. Each of these has a dependent Adapter and Adaptee class configured
as in the original Adapter pattern. In other words, the component Target in the lifted
pattern plays a role similar to a primary key in a relational database.

4. ALGEBRAIC LAWS OF THE OPERATIONS

This section studies the algebraic laws that the operators obey.

4.1 Laws of Restriction

The following are the basic algebraic laws that the restriction operator obeys.

THEOREM 1. For all patterns P , predicates c, c1 and c2 such that vars(c), vars(c1),
and vars(c2) ⊆ V ars(P), the following equalities hold.

P [c1] 4 P [c2], if c1 ⇒ c2 (6)
P [c1][c2] ≈ P [c1 ∧ c2] (7)

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 13

P [true] ≈ P (8)
P [false] ≈ FALSE (9)

PROOF.
Let P be any given pattern, and c1, c2 be any predicates such that vars(ci) ⊆ V ars(P),

i = 1, 2.
For Law (6), by Definition 6, we have V ars(P [ci]) = V ars(P), and Pred(P [ci]) =

Pred(P) ∧ ci, for i = 1, 2. Assume that c1 ⇒ c2. Then, we have that
Pred(P [c1]) = Pred(P) ∧ c1

⇒ Pred(P) ∧ c2
= Pred(P [c2]).

So by Lemma 4, we have that P [c1] 4 P [c2].
Similarly, we can prove that

Pred(P [c1][c2])⇔ Pred(P [c1 ∧ c2],

and
Pred(P [true])⇔ Pred(P).

Thus, Law (7) and (8) are true by Lemma 4.
Law (9) holds because Pred(P [false]) = Pred(P)∧ false, which cannot be satisfied

by any models.

From the above laws, we can prove that the following laws also hold.

COROLLARY 1. For all patterns P , predicates c, c1 and c2, we have that

P [c] 4 P (10)
P [c][c] ≈ P [c] (11)

P [c1][c2] ≈ P [c2][c1] (12)

PROOF.
Law (10) is the special case of (6) where c2 is true. That is, we have that

P [c] 4 P [true] 〈by Law (6)〉
≈ P 〈by Law (8)〉

For Law (11), we have that c ∧ c⇔ c. Thus, it follows from (7).
For Law (12), we have that

P [c1][c2] ≈ P [c1 ∧ c2] 〈by Law(7)〉
≈ P [c2 ∧ c1] 〈c1 ∧ c2 ⇔ c2 ∧ c1〉
≈ P [c2][c1] 〈by Law(7)〉

4.2 Laws of Superposition

For the majority of laws like those on restriction operator, the variable sets on the two sides
of the law can be proven to be equal. Therefore, by Lemma 4, the proof of the law reduces
to the proof of the equivalence or implication between the predicates. However, for some
laws like those on superposition operator, these variable sets are not equal. In such cases,
we use Lemma 3. The proof of the following theorem is an example of such proofs.

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

14 · H. Zhu and I. Bayley

THEOREM 2.
For all patterns P and Q, we have that

(P ∗Q) 4 P (13)
Q 4 P ⇒ P ∗Q ≈ Q (14)

PROOF.
Let P and Q be patterns with

V ars(P) ∩ V ars(Q) = ∅. (15)

Assume that
V ars(P) = {x1 : T1, . . . , xm : Tm},
V ars(Q) = {y1 : T ′1, . . . , yn : T ′n}.

Then, we have that

V ars(P ∗Q) = {x1 : T1, . . . , xm : Tm, y1 : T ′1, . . . , yn : T ′n}.

For Law (13), we have that

Spec(P ∗Q)
= ∃x1 : T1 · · ·xm : Tm, y1 : T ′1 · · · yn : T ′n · (Pred(P) ∧ Pred(Q)) 〈by Def. 1〉
⇔ ∃x1 : T1 · · ·xm : Tm · Pred(P) ∧ ∃y1 : T ′1 · · · yn : T ′n · Pred(Q) 〈by (15)〉
⇒ ∃x1, . . . , xm · Pred(P) 〈by logic〉
= Spec(P) 〈by Def. 1〉

Thus, by Lemma 3, we have that (P ∗Q) 4 P .
For Law (14), assume that Q 4 P . By Lemma 3(1), we have that

Spec(Q)⇒ Spec(P). (16)

Therefore, we have that

Spec(P ∗Q)
= ∃x1 : T1 · · ·xm : Tm, y1 : T ′1 · · · yn : T ′n · (Pred(P) ∧ Pred(Q)) 〈by Def. 1〉
⇔ ∃x1 : T1 · · ·xm : Tm · Pred(P) ∧ ∃y1 : T ′1 · · · yn : T ′n · Pred(Q) 〈by (15)〉
= Spec(P) ∧ Spec(Q) 〈by Def. 1〉
= Spec(Q) 〈by (16)〉

That is, P ∗Q ≈ Q.

From Theorem 2, we can prove that TRUE and FALSE patterns are the identity and zero
element of superposition operator, which is also idempotent.

COROLLARY 2. For all patterns P and Q, we have that

P ∗ TRUE ≈ P (17)
P ∗ FALSE ≈ FALSE (18)

P ∗ P ≈ P (19)

PROOF.
Law (17) follows from Law (14), since TRUE is top in 4 according to (4).
Law (18) also follows from Law (14), since FALSE is bottom in 4 according to (4).
Law (19) follows Law (14), since 4 is reflexive according to (3).

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 15

The following theorem proves that the superposition operator is commutative and asso-
ciative.

THEOREM 3. For all patterns P , Q and R, we have that

P ∗Q ≈ Q ∗ P (20)
(P ∗Q) ∗R ≈ P ∗ (Q ∗R) (21)

PROOF. The proofs of Law (20) and (21) are very similar to the proof of Theorem 2.
Details are omitted for the sake of space.

4.3 Laws of Extension

From now on, the proofs of algebraic laws will be omitted unless it is not so obvious.

THEOREM 4.
Let P and Q be any given patterns, X and Y be any sets of component variables that

are disjoint to V ars(P) and to each other, c1 and c2 be any given predicates such that
vars(c1) ⊆ V ars(P) ∪X and vars(c2) ⊆ V ars(P) ∪ Y . The extension operation has
the following properties.

P#(X • c1) 4 P (22)
P#(X • c1) 4 Q#(X • c1), if P 4 Q (23)
P#(X • c1) 4 P#(X • c2), if c1 ⇒ c2 (24)

P ≈ TRUE#(V ars(P) • Pred(P)) (25)
P#(X • c1)#(Y • c2) ≈ P#(X ∪ Y • c1 ∧ c2) (26)
P#(X • c1)#(Y • c2) ≈ P#(Y • c2)#(X • c1) (27)

From Law (25) and (26), we have the following.

COROLLARY 3. For all patterns P , we have the equality

P#(∅ • True) ≈ P, (28)

and for all sets X of variables,

P#(X • False) ≈ FALSE. (29)

4.4 Laws of Flattening and Generalisation

We first generalise the definitions of flattening and generalisation operators such that for
all patterns P ,

P ⇑ ∅ ≈ P, (30)
P ⇓ ∅ ≈ P. (31)

We have the following laws for the flattening and generalisation operators.

THEOREM 5.
ACM Journal Name, Vol. XX, No. XX, XX 20XX.

16 · H. Zhu and I. Bayley

Let P be any given pattern, X,Y ⊆ V ars(P) and X ∩ Y = ∅. We have that

(P ⇓ X) ⇓ Y ≈ (P ⇓ Y) ⇓ X (32)
(P ⇓ X) ⇓ Y ≈ P ⇓ (X ∪ Y) (33)
(P ⇑ X) ⇑ Y ≈ (P ⇑ Y) ⇑ X (34)
(P ⇑ X) ⇑ Y ≈ P ⇑ (X ∪ Y) (35)

We now study the algebraic laws that involve more than one operator.

4.5 Laws Connecting Superposition with Other Operators

The following theorem gives a law about restriction and superposition.

THEOREM 6. For all predicates c such that vars(c) ⊆ V ars(P), we have that

P [c] ∗Q ≈ (P ∗Q)[c]. (36)

Note that an instantiation of a pattern can be represented as an expression that uses only
the restriction operator. Furthermore, when a pattern composition only has one-to-one and
many-to-many overlaps, the composition can be represented as an expression that only
involves restriction and superposition operators. Such a composition is called as pattern
integration [Dong et al. 2011]. From Theorem 6, we can prove the following law, which
is equivalent to the commutability of instantiation and integration of patterns [Dong et al.
2011].

COROLLARY 4. (Commutability of Pattern Instantiation and Integration)
For all patterns P and Q, and all predicates CI such that vars(CI) ⊆ V ars(P) and

predicate CC such that vars(CC) ⊆ V ars(P) ∪ V ars(Q), we have that

(P [CI] ∗Q)[CC] ≈ (P ∗Q)[CC][CI]

PROOF.
(P [CI] ∗Q)[CC] ≈ ((P ∗Q)[CI])[CC] 〈by Law (36)〉

≈ (P ∗Q)[CC][CI] 〈by Law (12)〉

Since one interpretation of P [CI] is as the instantiation of pattern P with restriction
CI , and integration is superposition followed by restriction, the corollary states that if we
first instantiate a pattern, and then integrate it with another pattern, then that is equal to
integrating the patterns first and then instantiating them. In other words, the instantiation
and integration are commutable if the restriction and superposition operators are applied
properly.

In the same way, the following theorems state the commutability of generalisation/ flat-
tening with superposition. They can be used to prove the commutabilities of various pattern
compositions that involve one-to-many overlaps.

THEOREM 7. For all X ⊆ V ars(P), we have that

(P ⇑ X) ∗Q ≈ (P ∗Q) ⇑ X, (37)
(P ⇓ X) ∗Q ≈ (P ∗Q) ⇓ X. (38)

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 17

PROOF. For the sake of simplicity, we give the proof for the case whenX is a singleton;
i.e. X = {x}. The general case can be proved by induction on the size of X .

For equation (37), assume that V ars(P) ∩ V ars(Q) = ∅ and xs 6∈ V ars(P) ∪
V ars(Q). By the definitions of the ∗ and ⇑ operators, we have that

V ars((P ⇑ x\xs) ∗Q)
= V ars(P ⇑ x\xs) ∪ V ars(Q) 〈by Def. 7〉
= ((V ars(P)− {x : T}) ∪ {xs : P(T)}) ∪ V ars(Q) 〈by Def. 10〉
= (V ars(P) ∪ V ars(Q))− {x : T} ∪ {xs : P(T)} 〈by set theory〉
= V ars((P ∗Q) ⇑ x\xs) 〈by Def. 7 and 10〉

And,

Pred((P ⇑ X) ∗Q)
= Pred(P ⇑ X) ∧ Pred(Q) 〈by Def. 7〉
= (∀x ∈ xs · Pred(P)) ∧ Pred(Q) 〈by Def. 10〉
⇔ ∀x ∈ xs · (Pred(P) ∧ Pred(Q)) 〈by first order logic〉
= Pred((P ∗Q) ⇑ x\xs) 〈by Def. 7 and 10〉

Therefore, by Lemma 4, equation (37) holds.
The proof of equation (38) is very similar to the above. It is omitted for the sake of

space.

Combining the above laws with the laws about generalisation and flattening, we have
the following corollary.

COROLLARY 5. Let P and Q be any patterns, and X ⊆ V ars(P) ∪ V ars(Q). The
following equations hold.

(P ∗Q) ⇑ X ≈ (P ⇑ XP) ∗ (Q ⇑ XQ), (39)
(P ∗Q) ⇓ X ≈ (P ⇓ XP) ∗ (Q ⇓ XQ), (40)

where XP = X ∩ V ars(P), XQ = X ∩ V ars(Q).

PROOF.
By the definition of operator ∗, we have that V ars(P) ∩ V ars(Q) = ∅. Thus, XP ∩

XQ = ∅. Note that X = XP ∪XQ. Therefore, for Law (39) we have that

(P ∗Q) ⇑ X ≈ (P ∗Q) ⇑ (XP ∪XQ)
≈ (P ∗Q) ⇑ XP ⇑ XQ 〈by Law (35)〉
≈ ((P ⇑ XP) ∗Q) ⇑ XQ 〈by Law (37)〉
≈ (P ⇑ XP) ∗ (Q ⇑ XQ) 〈by Law (37)〉

For Law (40), the proof is similar to the proof of Law (39), but using Law (38) rather
than (37).

To prove the commutability between lifting and superposition, we first introduce a new
notation.

LetX = {x1 : T1, · · · , xn : Tn}. We writeX↑ to denote the set {xs1 : P(T1), · · · , xsn :
P(Tn)}.

THEOREM 8.
Let X ⊆ V ars(P), we have that

(P ↑ X) ∗Q ≈ ((P ∗Q) ↑ X) ⇓ V ars(Q)↑. (41)

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

18 · H. Zhu and I. Bayley

PROOF.
Let VP = V ars(P) = {x1 : T1, · · · , xn : Tn}, X = {x1 : T1, · · · , xk : Tk}, 1 ≤ k <

n, VQ = V ars(Q) = {y1 : R1, · · · , ym : Rm}.
By the definitions of ∗ and ↑, we have that

V ars((P ↑ X) ∗Q) = V ars(P ↑ X) ∪ V ars(Q) = V ↑P ∪ VQ. (42)

V ars((P ∗Q) ↑ X) = (VP ∪ VQ)↑) = V ↑P ∪ V
↑
Q (43)

Therefore, we have that

V ars((P ∗Q) ↑ X) ⇓ V ars(Q)↑)
= (V ars((P ∗Q) ↑ X)− V ars(Q)↑) ∪ V ars(Q), 〈by Def. 9〉
= (V ↑P ∪ V

↑
Q − V

↑
Q) ∪ V ars(Q), 〈by (43)〉

= V ↑P ∪ V ars(Q), 〈by VP ∩ VQ = ∅〉
= V ars((P ↑ X) ∗Q). 〈by(42)〉

By the definitions of ∗ and ↑, we also have that

Pred((P ↑ X) ∗Q) = Pred(P ↑ X) ∧ Pred(Q)

= (∀x1 ∈ xs1 · · · ∀xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · Pred(P)) ∧ Pred(Q)

⇔ ∀x1 ∈ xs1 · · ·xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · (Pred(P) ∧ Pred(Q))

Similarly, we have

Pred((P ∗Q) ↑ X) = ∀x1 ∈ xs1 · · · ∀xk ∈ xsk·
∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · ∃y1 ∈ ys1 · · · ∃ym ∈ ysm · (Pred(P) ∧ Pred(Q))

By the definition of ⇓, we have that

Pred((P ∗Q) ↑ X) ⇓ V ars(Q)↑) = Pred(P ∗Q) ↑ X)[ys1\{y′1}, · · · ysm\{y′m}]
⇔ ∀x1 ∈ xs1 · · ·xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn ·
∃y1 ∈ {y′1} · · · ∃ym ∈ {y′m} · (Pred(P) ∧ Pred(Q))

⇔ ∀x1 ∈ xs1 · · ·xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn ·
(Pred(P) ∧ ∃y1 ∈ {y′1} · · · ∃ym ∈ {y′m} · Pred(Q))

⇔ ∀x1 ∈ xs1 · · ·xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · (Pred(P) ∧ Pred(Q))

= Pred((P ↑ X) ∗Q).

Therefore, by Lemma 4, the theorem is true.

4.6 Laws Connecting Generalisation, Flattening and Lifting

Generalisation, flattening and lifting are the three operators that change the structure of the
pattern. They are connected to each other by the following algebraic laws.

THEOREM 9.
For all patterns P , all sets of variables X,Y ⊆ V ars(P) and X ′ ∩ V ars(P) = ∅, we

have that

P ⇑ X ≈ (P ↑ X) ⇓ (V −X↑) (44)
(P ⇑ X\X ′) ⇓ (X ′\X) ≈ P (45)
(P ⇓ X\X ′) ⇑ X ′\X) ≈ P (46)

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 19

(P ↑ x) ⇓ V ≈ P, (47)

where V = V ars(P ↑ X).

4.7 Laws Connecting Restriction to Generalisation, Flattening and Lifting

THEOREM 10.
Let P be any given pattern, c(x1, · · · , xk) be any given predicate such that vars(c) =

{x1 : T1, · · · , xk : Tk} ⊆ V ars(P). Let X ⊆ V ars(P) be a set of variables such that

(1) vars(c) ∩X = {x1, · · · , xm}, m ≤ k;

(2) X − vars(c) = {y1, · · · , yu}; and

(3) V ars(P)− (X ∪ vars(c)) = {z1, · · · , zv}.

We have that

P [c] ⇑ X ≈ (P ⇑ X)[c⇑] (48)
P [c] ↑ X ≈ (P ↑ X)[c↑] (49)
P [c] ⇓ X ≈ (P ⇓ X)[c⇓] (50)

where
c⇑ = ∀x1 ∈ xs1, · · · ,∀xm ∈ xsm · c, and {xs1 : P(T1), · · · , xs : P(Tm)};
c⇓ = c({x′1}, · · · , {x′m}, xm+1, · · · , xk), x′i : T ′i and Ti = P(T ′i) for i = 1, · · · ,m;

c↑ = ∀x1 ∈ xs1 · · · ∀xn ∈ xsm · ∀y1 ∈ ys1 · · · ∀yu ∈ ysu ·
∃xm+1 ∈ xsn+1 · · · ∃xn ∈ xsn · ∃z1 ∈ zs · · · zv ∈ zsv · (Pred(P) ∧ c).

The proof of the theorem is very similar to the proof of Theorem 8, but lengthy and
tedious. Thus, it is omitted for the sake of space.

COROLLARY 6.
Let P be any given pattern, X,Y ⊆ V ars(P), X ∩Y = ∅, and c be any predicate such

that vars(c) ⊆ X ∪ Y . We have that

((P [c] ↑ X) ⇓ Y ↑) ≈ ((P ↑ X) ⇓ Y ↑)[c′], (51)

where
c′ = ∀x1 ∈ xs1, · · · ,∀xm ∈ xsm · c,
vars(c) ∩X = {x1 : T1, · · · , xm : Tm}, and xsi : P(Ti) for i = 1 · · ·m.

PROOF.
By Law (49), we have that

(P [c] ↑ X) ≈ (P ↑ X)[c↑]

where
c↑ = ∀x1 ∈ xs1 · · · ∀xn ∈ xsn∀y1 ∈ ys1 · · · ∀yu ∈ ysu·

∃xm+1 ∈ xsn+1 · · · ∃xn ∈ xsn∃z1 ∈ zs · · · zv ∈ zsv · (Pred(P) ∧ c).
Because vars(c) ⊆ X ∪ Y and X ∩ Y = ∅, and by Law (50), we have that

(P ↑ X)[c↑] ⇓ Y ≈ ((P ↑ X) ⇓ Y)[(c↑)⇓)]

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

20 · H. Zhu and I. Bayley

where, assuming that Y = {yu′+1, · · · , yu}∪{xm+1, · · · , xn}∪{zv′+1, · · · , zv}, we have

(c↑)⇓ = ∀x1 ∈ xs1 · · · ∀xn ∈ xsm ·
∀y1 ∈ ys1 · · · ∀yu′ ∈ ysu′ ·
∀yu′+1 ∈ {yu′+1} · · · ∀yu ∈ {yu} ·
∃xm+1 ∈ {xm+1} · · · ∃xn ∈ {xn} ·
∃z1 ∈ zs1 · · · zv′ ∈ zsv′ ·
∃zv′+1 ∈ {zv′+1} · · · ∃zv ∈ {zv} · (Pred(P) ∧ c)

= ∀x1 ∈ xs1 · · · ∀xn ∈ xsm ·
∀y1 ∈ ys1 · · · ∀yu′ ∈ ysu′ ·
∃z1 ∈ zs1 · · · zv′ ∈ zsv′ · (Pred(P) ∧ c)

Because vars(c) ∩ {y1, · · · , yu′ , z1, · · · zv′} = ∅, the above predicate is equivalent to

∀x1 ∈ xs1 · · · ∀xn ∈ xsm · c ∧
∀x1 ∈ xs1 · · · ∀xn ∈ xsm ·
∀y1 ∈ ys1 · · · ∀yu′ ∈ ysu′ ·
∃z1 ∈ zs1 · · · zv′ ∈ zsv′ · Pred(P)

By definition of lifting and flattening, we have that

Pred(P ↑ X ⇓ Y) = ∀x1 ∈ xs1 · · · ∀xn ∈ xsm ·
∀y1 ∈ ys1 · · · ∀yu′ ∈ ysu′ ·
∃z1 ∈ zs1 · · · ∃zv′ ∈ zsv′ · (Pred(P))

Therefore, (P ↑ X ⇓ Y)[(c↑)⇓] ≈ (P ↑ X ⇓ Y)[c′]. The theorem is true.

4.8 Laws Connecting Extension to the Other Operators

The following theorem gives the algebraic laws that relate the extension operators to the
others.

THEOREM 11. (Laws of Extension Operator)
Let P and Q be any given patterns, X = {x1 : T1, · · · , xk : Tk} be any given set of

variables such that X ∩ V ars(P) = ∅, and c be any given predicate with free variables in
(V ars(P) ∪X). The following equations hold. 2

P#(X • c) ≈ P [∃X · c] (52)
P ⇓ (xs\x) ≈ P#({x : T} • (xs = {x}), where xs : P(T) ∈ V ars(P) (53)
P ⇑ x\xs ≈ P#({xs : P(T)} • (∀x ∈ xs · Pred(P)) ∧ x ∈ xs),

where x : T ∈ V ars(P) (54)
P [c] ≈ P#(∅ • c) (55)
P ≈ TRUE#(V ars(P) • Pred(P)) (56)

P ∗Q ≈ P#(V ars(Q) • Pred(Q)) (57)
P ↑ X ≈ P#(V ars(P ↑ X) • Pred(P ↑ X)) (58)

2Notation: For the sake of space, here we write ∃X · c to denote ∃x1 : T1 · · · ∃xk : Tk · c.

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 21

PROOF.
For the sake of space, we prove only the first three equations. The proofs for the other

equations are very similar, thus omitted.
For Law (52), by the definitions of the extension operator and the restriction operator,

we have that

Spec(P#(X • c)) = ∃(V ars(P) ∪X) · (Pred(P) ∧ c)
⇔ ∃V ars(P) · (Pred(P) ∧ (∃X · c))
⇔ Spec(P [∃X · c])

For Law (53), let V ars(P) = {x : P(T), x1 : T1, · · · , xn : Tn} and Pred(P) =
p(x, x1, · · · , xn). By the definitions of the extension operator and the flatten operator, we
have that

Spec(P ⇓ (xs\x))

= ∃x : T · ∃x1 : T1 · · · ∃xn : Tn · p({x}, x1, · · · , xn)

⇔ ∃xs : P(T) · ∃x1 : T1 · · · ∃xn : Tn · (p(xs, x1, · · · , xn) ∧ ∃x : T · (xs = {x}))
⇔ Spec(P#({x : T} • (xs = {x})))

For Law (54), let V ars(P) = {x : T, x1 : T1, · · · , xn : Tn}. By the definitions of
extension operator and the generalisation operator, we have that

Spec(P ⇑ x\xs)
= ∃xs : P(T) · ∃x1 : T1 · · · ∃xn : Tn · (∀x ∈ xs · Pred(P))

⇔ ∃x1 : T1 · · · ∃xn : Tn · ∃xs : P(T) · (∀x ∈ xs · Pred(P))

⇔ ∃x : T · ∃x1 : T1 · · · ∃xn : Tn · (Pred(P) ∧ ∃xs : P(T) · (∀x ∈ xs · Pred(P)))

⇔ Spec(P#{xs : P(T)} • ∀x ∈ xs · Pred(P))

For example, from the equations given above, we can prove that the following equations
hold.

COROLLARY 7.

P#(X • c1 ∧ c2) ≈ P#(X • c1)[c2] (59)
P#(X • c) ≈ P#(X • true)[c] (60)

PROOF.
For Law (59), we have that

P#(X • c1)[c2] ≈ P#(X • c1)#(∅ • c2), 〈by(55)〉
≈ P#(X ∪ ∅ • c1 ∧ c2), 〈by(27)〉
≈ P#(X • (c1 ∧ c2)

For Law (60), it is a special case of Law (59) with c1 = true.

5. PROVING THE EQUALITY OF PATTERN COMPOSITIONS: EXAMPLES

In the previous section, we have already used algebraic laws to prove many equations of
pattern composition expressions. In this section, we further demonstrate the use of the laws
to prove the equivalence of pattern compositions with real examples of patterns.

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

22 · H. Zhu and I. Bayley

5.1 Different Definitions of the Composite Pattern

In Section 3, we have seen a number of definitions of the Composite and Composite1
patterns. They are as follows.

Composite1 , Composite[||Leaves|| = 1] (61)
Composite1 , Composite ⇓ Leaves\Leaf (62)
Composite ≈ Composite1 ⇑ Leaf\Leaves (63)

We now first prove that these two definitions of the Composite1 pattern are equivalent.
That is, the following equation is true.

Composite[||Leaves|| = 1] ≈ Composite ⇓ Leaves\Leaf.
PROOF.

Composite ⇓ Leaves\Leaf
≈ Composite#({Leaf : class)} • Leaves = {Leaf}), 〈by Law(53)〉
≈ Composite[∃Leaf : class · (Leaves = {Leaf})], 〈by Law(52)〉

≈ Composite[||Leaves|| = 1], 〈by set theory〉

We can also prove that the equation (63) holds when the definition of Composite1 in
equation (62) is substituted into the right-hand-side of (63). That is,

Composite ≈ (Composite ⇓ Leaves\Leaf) ⇑ Leaf\Leaves.

This is quite trivial because it follows from Law (46) immediately.
Similarly, by substituting the definition of Composite into equation (62), we can see

that the following is also true.

Composite1 ≈ (Composite1 ⇑ Leaf\Leaves) ⇓ Leaves\Leaf.

This follows Law (45) immediately.

5.2 Composition of Composite and Adapter

In this subsection, we consider two different ways in which the Composite and Adapter
patterns can be composed and then prove that the two compositions are equivalent.

A. First composition
We first consider the composition of Composite and Adapter in such a way that one

of the Leaves in the Composite pattern is the Target in the Adapter pattern. This leaf
is renamed as the AdaptedLeaf . The definition for the composition using the operators is
as follows:

OneAdaptedLeaf ,

(Adapter ∗ Composite)[Target ∈ Leaves][Target\AdaptedLeaf]

Then, we lift the adapted leaf to enable several of these Leaves to be adapted. That is,
we lift the OneAdaptedLeaf pattern with AdaptedLeaf as the key and then flatten those
ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 23

components in the composite part of the pattern (i.e. the components in the Composite
pattern remain unchanged). Formally, this is defined as follows.

(OneAdaptedLeaf ↑ (AdaptedLeaf\AdaptedLeaves))
⇓ {Composites, Components, Leaveses} (64)

By the definitions of the operators, we derive the predicates of the pattern in the specifica-
tion given in Figure 4, after some simplification of the first-order logic.

SPECIFICATION 4. (ManyAdaptedLeaves)
Components

(1) Component, Composite ∈ classes,
(2) Leaves,AdaptedLeaves,Adapters,Adaptees ⊆ classes,
(3) ops ⊆ Component.opers

Static Conditions

(1) ops 6= ∅
(2) ∀o ∈ ops.isAbstract(o),
(3) ∀l ∈ Leaves.(l −−.+ Component ∧ ¬(l �−→+ Component))

(4) ∀l ∈ AdaptedLeaves.(l −−.+ Component ∧ ¬(l �−→+ Component))

(5) isInterface(Component),
(6) Composite−−.+ Component

(7) Composite �−→∗ Component

(8) CDR(Component)

(9) ∀Adaptee ∈ Adaptees · (∃specreqs ∈ Adaptee.opers,
(10) ∀AdLeaf ∈ AdaptedLeaves · ∃requests ∈ AdLeaf.opers,

Dynamic Conditions

(1) any call to Composite causes follow-up calls
∀m ∈ messages · ∃o ∈ ops · (toClass(m) = Composite ∧m.sig ≈ o⇒

∃m′ ∈ messages . calls(m,m′) ∧m′.sig ≈ m.sig)

(2) any call to a leaf or an adapted leaf does not cause follow-up calls
∀m ∈ messages · (∃o ∈ ops · (toClass(m) ∈ Leaves ∪AdaptedLeaves ∧

m.sig ≈ o)⇒ ¬∃m′ ∈ messages . calls(m,m′) ∧m′.sig ≈ m.sig))

(3) ∀AdLeaf ∈ AdaptedLeaves · ∃Adapter ∈ Adapters,Adaptee ∈ Adaptees·
(a) Adapter −−. AdLeaf ,
(b) Adapter −→ Adaptee,
(c) ∀o ∈ AdLeaf.requests · ∃o′ ∈ Adaptee.specreqs · (calls(o, o′)))

Fig. 4. Specification of Composition of Composite and Adapter Patterns

B. Second composition
An alternative way of expressing the composition is first to lift theAdapter with Target

as the key and then to superposition it to the Composite patterns so that many leaves can
be adapted. This approach is illustrated in Figure 5. Formally,

ManyAdaptedLeaves ,

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

24 · H. Zhu and I. Bayley

(((Adapter ↑ (Target\Targets)) ∗ Composite)[Targets ⊆ Leaves]
[Targets\AdaptedLeaves]

*

Client Component

CompositeLeaf 1 Leaf N...

Leaves

Adapted
Leaf 1

...

AdaptedLeaves

Adapted
Leaf K

Adapter 1

Adaptee 1

Adapter K

Adaptee K
Adapter 1

Target 1 Adaptee 1

Adapter K

Target K Adaptee K...

Lifted Adapter Pattern

Client Component

CompositeLeaf 1 Leaf N...

Composite Pattern

Leaves

Result of Composition

Fig. 5. Composition of Adapter and Composite

C. Proof of equivalence
We now apply the algebraic laws to prove that expression (64) is equivalent to the defi-

nition of ManyAdaptedLeaves.
First, by (41), we can rewriteManyAdaptedLeaves to the following expression, where

VC = {Composites, Components, Leaveses}.

((Adapter ∗ Composite) ↑ (Target\Targets) ⇓ VC
[Targets ⊆ Leaves] [Targets\AdaptedLeaves] (65)

Because Leaveses is in VC and Targets ⊆ Leaves is equivalent to

∀Target ∈ Targets · (Target ∈ Leaves),

by (51), we have that

((Adapter ∗ Composite) ↑ (Target\Targets) ⇓ VC) [Targets ⊆ Leaves] (66)
≈ ((Adapter ∗ Composite)[Target ∈ Leaves]) ↑ (Target\Targets) ⇓ VC

Now, renaming Target to AdaptedLeaf and Targets to AdaptedLeaves in expres-
sion on the right-hand-side of (66), we have the following.

((Adapter ∗ Composite)[Target ∈ Leaves][Target\AdaptedLeaf])

↑ (AdaptedLeaf\AdaptedLeaves) ⇓ VC (67)

By substituting the definition of OneAdaptedLeaf into (67), we obtain (64).

6. THE COMPLETENESS OF THE ALGEBRAIC LAWS

This section addresses the completeness question about the set of laws given in Section 4.
In particular, given two equivalent pattern expressions, is it always possible to transform
one pattern expression to another by applying the algebraic laws?

In general, a set of algebraic laws is complete if they satisfy the following four condi-
tions:
ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 25

(1) every expression can be transformed into a canonical form by applying the algebraic
laws as rewriting rules;

(2) the process of transformation always terminates within a finite number of steps;
(3) the canonical form of an expression is unique subject to certain equivalence relation;
(4) any two expressions that are equivalent if and only if their canonical forms are equiv-

alent and the equivalence between the canonical forms can be determined by certain
mechanism.

If a set of algebraic laws satisfies these conditions, one can always transform two ex-
pressions into their canonical forms by applying the algebraic laws as rewriting rules and
then determine the equivalence between them by checking if their canonical forms are
equivalent.

Here, a pattern expression is constructed by applying the operators to specific design pat-
terns. Formally, let E(Γ1, · · · ,Γk), k ≥ 0, be a pattern expression that contains variables
Γ1, · · · ,Γk that range over patterns, and P1, · · · , Pk be specific design patterns. We write
E(P1, · · · , Pk) to represent the pattern obtained by replacing Γn with Pn inE(Γ1, · · · ,Γk)
for n ∈ {1, · · · , k}, if it is syntactically valid.

DEFINITION 12. (Equivalence of Pattern Expressions)
LetE1(Γ1, · · · ,Γk) andE2(Γ1, · · · ,Γk), k ≥ 0, be two pattern expressions that contain

variables Γ1, · · · ,Γk that range over patterns. E1 is equivalent to E2, written E1 ≈ E2, if
for all specific patterns P1, · · · , Pk, we have that for all valid models m,

m |= E1(P1, · · · , Pk)⇔ m |= E2(P1, · · · , Pk).

6.1 Canonical Form

To prove the completeness of the algebraic laws, we first prove the following lemma, stat-
ing that pattern expressions have canonical forms.

LEMMA 5. (Canonical Form Lemma)
For all pattern expressions E, we can always transform it, by applying the algebraic

laws for a finite number of times, into the form

TRUE#(V • c),

where V is a set of variables and c is a predicate on those variables.

Informally, the canonical form of a pattern expression can be obtained by repeated ap-
plications of the laws of extension given in Section 4 and the laws that connect extension
with the other operators, i.e. Laws (53)-(60). Each left-to-right application of laws (53)-
(58) will reduce the number of non-extension operators in the expression by one, eventually
reaching zero. An expression that contains multiple uses of the extension operator can then
always be reduced to one by applying the laws of extensions and equations (59) and (60).
Eventually, it will reduce to the canonical form. A formal inductive proof of the lemma
follows.

PROOF. Let E be any given pattern expression. We now prove by induction on the
number n of applications of operators that E contains.

(a) Base: When the number n of operators in E equals 0, i.e. E contains no pattern
operator,E is either a variable that ranges over patterns, or a constant (i.e., a given pattern),

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

26 · H. Zhu and I. Bayley

such as Composite, Adapter, etc. In both cases, by Law (56), we have that

E = TRUE#(V ars(E) • Pred(E)).

Thus, the Lemma is true for the base case n = 0.
(b) Induction Hypothesis: Assume that for all n ≤ N the lemma is true, where N ≥ 0.
(c) Induction: We now prove that for all pattern expressions E that contains N + 1

applications of the operators, the lemma is also true. We have six cases, according to
which operator is applied at the top level:

Case ∗: Suppose E = E1 ∗ E2 for some pattern expressions E1 and E2, where the
numbers of applications of the operators in E1 and E2 must be less than the number of
applications of the operators in E. By the induction hypothesis, we have that both E1 and
E2 can be transformed into the form TRUE#(V • c) by applying the algebraic laws. Let
Ei be transformed into TRUE#(Vi • ci), i = 1, 2. Then, we have that

E ≈ TRUE#(V1 • c1) ∗ TRUE#(V2 • c2) 〈by induction hypothesis〉
≈ TRUE[∃V1 · c1] ∗ TRUE[∃V2 · c2] 〈by Law (52)〉
≈ (TRUE ∗ TRUE)[∃V1 · c1][∃V2 · c2] 〈by Theorem 6〉
≈ TRUE[∃V1 · c1][∃V2 · c2] 〈by Law(17)〉
≈ TRUE[(∃V1 · c1) ∧ (∃V2 · c2)] 〈by Law (7)〉
≈ TRUE[∃V1 · ∃V2 · (c1 ∧ c2)] 〈V1 ∩ V2 = ∅, by Def. 7〉
≈ TRUE[∃(V1 ∪ V2) · (c1 ∧ c2)] 〈by logic〉
≈ TRUE#((V1 ∪ V2) • (c1 ∧ c2)) 〈by Law (52)〉

Therefore, the lemma is true in this case.
Case [−]: Suppose thatE = E′[c] for some pattern expressionE′ and predicate c, where

the number of operator applications contained in E′ must be N . Thus, by the induction
hypothesis, we have that E′ can be transformed into the canonical form by applying the
algebraic laws, i.e. E′ ≈ TRUE#(V ′ • c′). Then, we have that

E = E′[c]
≈ TRUE#(V ′ • c′)[c] 〈by induction hypothesis〉
≈ TRUE#(V ′ • c′ ∧ c) 〈by Law (59)〉

Therefore, the lemma is true in this case.
Case ⇑: Suppose that E = E′ ⇑ X\XS for some pattern expression E′ and X ⊆

V ars(E′), where the number of operator applications contained in E′ must be N . Thus,
by the induction hypothesis, we have thatE′ can be transformed into the canonical form by
applying the algebraic laws, i.e. E′ ≈ TRUE#(V ′ • c′). Let X = {x1 : T1, · · ·xk : Tk}
and XS = {xs1 : P(T1), · · · , xsk : P(Tk)}. Then, we have that

E = E′ ⇑ X\XS
≈ TRUE#(V ′ • c′) ⇑ X\XS 〈hypothesis〉
≈ TRUE#(V ′ • c′)#(XS • ∀x1 ∈ xs1 · · ·xk ∈ xsk · c′) 〈by Law (54)〉
≈ TRUE#(V ′ ∪XS • c′ ∧ ∀x1 ∈ xs1 · · ·xk ∈ xsk · c′) 〈by Law (26)〉

Therefore, the lemma is true in this case.
Case ⇓: Suppose that E = E′ ⇓ XS\X for some pattern expression E′ and XS ⊆

V ars(E′), where the number of applications of the operators contained in E′ must be N .
Thus, by the induction hypothesis, we have that E′ can be transformed into the canonical
form by applying the algebraic laws, i.e. E′ ≈ TRUE#(V ′ • c′). Let XS = {XS1 :

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 27

P(T1), · · · , xsk : P(Tk)} and X = {x1 : T1, · · ·xk : Tk}. Then, we have that

E = E′ ⇓ XS\X
≈ TRUE#(V ′ • c′) ⇓ XS\X 〈hypothesis〉
≈ TRUE#(V ′ • c′)#(X • xs1 = {x1} ∧ · · · ∧ xsk = {xk}) 〈by Law (53)〉
≈ TRUE#(V ′ ∪X • c′ ∧ (xs1 = {x1} ∧ · · ·xsk = {xk})) 〈by Law (26)〉

Therefore, the lemma is true in this case.
Case ↑: Suppose that E = E′ ↑ X\XS for some pattern expression E′ and X ⊆

V ars(E′), where the number of applications of the operators contained in E′ must be N .
Thus, by the induction hypothesis, we have that E′ can be transformed into the canonical
form by applying the algebraic laws, i.e. E′ ≈ TRUE#(V ′ • c′). Let V ′ = {x1 :
T1, · · · , xn : Tn} and X = {x1 : T1, · · ·xk : Tk}, where 0 < k ≤ n. Then, we have that

E = E′ ↑ X\XS
≈ TRUE#(V ′ • c′) ↑ X\XS 〈hypothesis〉
≈ TRUE#(V ′ • c′)#(V ′↑ • c′′) 〈by Law (58)〉
≈ TRUE#(V ′ ∪ V ′↑ • c′ ∧ c′′) 〈by Law (26)〉

where c′′ = ∀x1 ∈ xs1 · · · ∀xk ∈ xsk · ∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · c′. Therefore, the
lemma is true in this case.

Case #: Suppose that E = E′#(V • c) for some pattern expression E′ and V 6⊆
V ars(E′) and predicate c, where the number of applications of the operators contained in
E′ must be N . Thus, by the induction hypothesis, we have that E′ can be transformed into
the canonical form by applying the algebraic laws, i.e. E′ ≈ TRUE#(V ′ • c′). Then, we
have that

E = E′#(V • c)
≈ TRUE#(V ′ • c′)#(V • c) 〈hypothesis〉
≈ TRUE#(V ∪ V ′ • (c ∧ c′)) 〈by Law (26)〉

Therefore, the lemma is also true in this case.
Since the six cases cover all possible forms of pattern expressions, the Lemma is true

for all expressions that contain N + 1 applications of the operators. Consequently, by the
induction proof principle, the Lemma is true for every expression that contains a finite
number of operator applications.

6.2 The Completeness Theorem

We can now prove the following uniqueness property of the canonical forms of pattern
expressions.

THEOREM 12. (Completeness of The Algebraic Laws)
LetE1 andE2 be any two given pattern expressions, with canonical forms TRUE#(V1•

c1) and TRUE#(V2 • c2), respectively. Pattern expressions E1 ≈ E2 if and only if
∃V1 · c1 ⇔ ∃V2 · c2.

PROOF.
Let E1 ≈ E2. By Lemma 5, both E1 and E2 can always be transformed into canonical

form, say,
E1 ≈ TRUE#(V1 • Pr1),

E2 ≈ TRUE#(V2 • Pr2).

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

28 · H. Zhu and I. Bayley

Then, by Law (52), we have that
E1 ≈ TRUE[∃V1 · Pr1],

E2 ≈ TRUE[∃V2 · Pr2].

By Definition 2, we have that for all models m, m |= Ei if and only if m |= ∃Vi · Pri,
for i = 1, 2. Therefore, E1 ≈ E2 if and only if ∃V1 · Pr1 ⇔ ∃V2 · Pr2.

The above theorem and the lemma prove that the algebraic laws are complete in sense
outlined at the start of this section.

(1) in Lemma 5, we have proved that for every pattern expression E, we can transform it
into a canonical form TRUE#(V • c).

(2) the proof of Lemma 5 shows that the canonical transformation process always termi-
nates within a finite number of steps.

(3) given a canonical form TRUE#(V • c), we call the logic formula ∃V · c the logic
representation of the canonical form. Theorem 12 proves that the canonical form of
a pattern expression is always unique subject to logic equivalence between the logic
representation of the canonical form.

(4) Theorem 12 also shows that the mechanism to determine the equivalence of the canon-
ical forms is logic inference in first order logic and set theory.

E1 E2

TRUE # (V1 •Pr1) TRUE # (V2 •Pr2)

Proof by logic inference

≈
By transforming

into canonical form
via applying

algebraic laws

≈

≈

∃V1 ⋅Pr1 ∃V2 ⋅Pr2 ⇔

≈ ≈

Fig. 6. Illustration of the Proof of Completeness Theorem

Theorem 12 and Lemma 5 also suggest a general process for proving the equivalence
between two pattern expressions. As illustrated in Figure 6, pattern expressions E1 and E2

are transformed to their canonical forms by applying the algebraic laws separately. Then,
the equivalence between them is proved by logic inference in first-order predicate logic
and set theory to determine whether the logic representations of their canonical forms are
logically equivalent.

The following example demonstrates how to prove the equivalence of two pattern ex-
pressions using this process. It also shows that it is some times impossible to avoid relying
on set theory and first-order logic to determine the equivalence between two pattern ex-
pressions.

EXAMPLE 1. We prove that the following equation holds for all patterns P and all
variables X : P(T) in V ars(P).

P [‖X‖ = 1] ≈ P ⇓ X

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 29

PROOF. For the left-hand-side of the equation, we have that

P [‖X‖ = 1] ≈ TRUE#(V ars(P) • Pred(P))[‖X‖ = 1] 〈by Law (56)〉
≈ TRUE#(V ars(P) • (Pred(P) ∧ (‖X‖ = 1))) 〈by Law (59)〉

For the right-hand-side, we have that

P ⇓ X ≈ P#({x : T} •X = {x}) 〈by Law (53)〉
≈ P [∃x : T · (X = {x})] 〈by Law (52)〉
≈ TRUE#(V ars(P) • Pred(P))[∃x : T · (X = {x})] 〈by Law (56)〉
≈ TRUE#(V ars(P) • (Pred(P) ∧ ∃x : T · (X = {x}))) 〈by Law (59)〉

Because, in formal predicate logic and set theory, we can prove that

‖X‖ = 1⇔ ∃x : T · (X = {x}),

we have that the equation holds for all patterns P .

7. CASE STUDY: DESIGN OF A REQUEST-HANDLING FRAMEWORK

In this section, we present an application of the formal algebra to the development of an
extensible request-handling framework through pattern composition. The original exper-
iment was reported in [Buschmann et al. 2007a]. Here, we demonstrate, first, how to
represent design decisions as pattern expressions, then how to validate and verify the cor-
rect usage of patterns in a manually-prepared design, and finally, how to formally derive a
design from the design decisions taken.

7.1 Formal Representation of Design Decisions

In [Buschmann et al. 2007a], the formulation of a request-handling framework was re-
ported as a sequence of design decisions concerning the selection and composition of pat-
terns. The first design problem in this process was to design the structure of the framework
in such a way that the requests issued by clients can be objectified. The Command pattern
was applied to address this problem. In particular, an abstract class Command declares a
set of abstract methods to execute client requests, and a set of ConcreteCommand classes
derived from the Command class implements the concrete commands that applications
handle. Figure 7 shows the structure of the Command pattern.

Client Invoker

ConcreteCommand

Execute()

State

Command

Execute()

Receiver

Action()

Fig. 7. Structure of Command Pattern

When a client issues a specific request, it instantiates a corresponding ConcreteCom-
mand object and invokes one of its methods inherited from the abstract Command class.
The ConcreteCommand object then performs the requested operation on the application

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

30 · H. Zhu and I. Bayley

and returns the results, if any, to the client. This is a simplified version of the general
Command pattern that makes the Client also be the Invoker. This design decision can be
formally represented as an expression in our operators on design patterns as follows.

RHF1 , Command[Invoker = Client,Receiver\Application]

To coordinate independent requests from multiple clients, the CommandProcessor
pattern shown in Figure 8 is composed with the Command pattern. This composition of
patterns can be formally expressed as follows.

RHF2 , RHF1 ∗ CommandProcessor
[Command = Component ∧ Client = CommandProcessor]

Client

execute

Service Request

Execute_request

Command
Processor

1
Issue request

Function_1

Component execute

Execute request

Function_2

2

Client CommandProcessor

ExecuteRequest()

Component

Function1()
Function2()

State

Fig. 8. Structure of Command Processor Pattern

To support the undoing of actions performed in response to requests, the Memento
pattern was further composed with the design, since that is a common usage of the pattern.
The structure of the Memento pattern is shown in Figure 9. Copies of the state of the
application are created by the Originator as instances of the Memento class. The Caretaker
maintains the copies by holding the copies over time, and if required, passes them back to
the Originator.

CaretakerOriginator

SetMemento(memento m)
CreateMemento()

State

Memento

GetState()
SetState()

State

Fig. 9. Structure of Memento Pattern

In the request-handling framework, the originator is the application, whose states are
stored in a new component that plays the role of Memento in the Memento pattern. Con-
ceptually, the command is the caretaker that creates mementos before executing a request,
maintains these mementos and when necessary passes them back to the application so that
the concrete commands can be rolled back when an undo operation is invoked. However,
an alternative design decision is to include a separate caretaker class and connect it to the
Command class so that every ConcreteCommand object can use an instance of the care-
taker class to create, maintain and restore an instance of the Memento class. That design
decision can be represented formally as follows.

RHF3 , RHF2 ∗Memento
[Originator = Application,Command −→ Caretaker]

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 31

A further item of functionality required for the request-handling framework is a mech-
anism for logging requests. Different users may want to log the requests different; some
may want to log every request, some may want to log just one particular type of requests,
and yet more may not want to log any request at all. The design problem is to satisfy all the
different logging needs of different users in a flexible and efficient manner. The solution is
to apply the Strategy pattern, which is depicted in Figure 10.

Context Strategy

algorithmInterface()

ConcreteStrategy2

algorithmInterface()

ConcreteStrategy1

algorithmInterface()

Fig. 10. Structure of Strategy Pattern

The Strategy pattern was applied as follows: the CommandProcessor passes the Con-
creteCommand objects it receives to a LoggingContext object that plays the Context role in
Strategy. This object implements the invariant parts of the logging service and delegates
the computation of customer-specific logging aspects to the ConcreteLoggingStrategy ob-
ject, which plays the role of ConcreteStrategy in the Strategy pattern. An abstract class
Logging offers a common protocol for all ConcreteLoggingStrategy classes so that they
can be exchanged without modifying LoggingContext. This design can be represented
formally as follows.

RHF4 , RHF3 ∗ Strategy
[Context\LoggingContext, Strategy\Logging,
ConcreteStrategies\ConcreteLoggingStrategies]
[CommandProcessor −→ LoggingContext]

The final step of the design process is to support compound commands. A ConcreteCom-
mand object may be an aggregate of other ConcreteCommand objects that are executed in
a particular order. The design pattern that provides this structure is Composite. Com-
pound commands can be represented as the composite objects and atomic commands as
leaf objects. Thus, we have the following formal expression of the design.

RHF5 , RHF4 ∗ Composite
[Leaves = ConcreteCommands,Component = Command]
[Composite\CompositeCommand]

An optimisation of the above design is to merge the LoggingContext and CommandPro-
cessor components rather than separating them. The separate Caretaker in the Memento
pattern can also be merged into the Command class. Such merging of components is called
pattern interwoven in [Buschmann et al. 2007a]. The final result is as follows.

RHF , RHF5[Caretaker = Command]
[CommandProcessor = LoggingContext]

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

32 · H. Zhu and I. Bayley

7.2 Verification and Validation of Design Result

The current practice in pattern-oriented design is to manually work out the final result of
the design process and depict it in a class diagram for the structure. Figure 11 shows the
result of the above design process given in [Buschmann et al. 2007a].

Client Command
Processor Logging

Concrete
Logging

Strategy A

Concrete
Logging

Strategy B

Command

Composite
Command

Concrete
Command A

Concrete
Command B

Application

Memento

Command Processor: command processor
Strategy: context

Strategy: strategy

Command Processor: command
Command: command
Composite: component
Memento: caretaker

Memento: memento

Memento: originator

Command: concrete command
Composite: leaf
Memento: caretaker

Command: concrete command
Composite: composite
Memento: caretaker

Strategy: concrete
strategy

Fig. 11. Original Design of the Request-Handling Framework

This diagram can be directly translated into the following pattern expression.

RHF o , Command ∗ CommandProcessor ∗Memento ∗ Strategy ∗ Composite

[Originator\Application]

[Strategy\Logging]
[ConcreteStrategies\ConcreteLoggingStrategies]

[Context\CommandProcessor]

[(CommandProcessor.Command = Command.Command

= Composite.Component = Memento.Caretaker)\Command]

[Leaves\ConcreteCommands]

[Composite\CompositeCommands]

Applying the algebra of design patterns, we can now formally validate and verify the
correctness of the above design against the design decisions and the definitions of the
patterns by proving the following equation.

RHF ≈ RHF o (68)

To decide if equation (68) holds, we substitute the definitions of RHF1, ..., RHF5 into
RHF , simplify the expression by applying the algebraic laws, and obtain the following.
ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 33

RHF ≈ Command ∗ CommandProcessor ∗Memento ∗ Strategy ∗ Composite
[Invoker\Client,Receiver\Application, Strategy\Logging,
Context\LoggingContext, Composite\CompositeCommand,
ConcreteStrategies\ConcreteLoggingStrategies]
[Command −→ Caretaker]
[Command = Component ∧Originator = Application∧
Command.Client = CommandProcessor ∧Originator = Application∧
Leaves = ConcreteCommands ∧ Component = Command∧
CommandProcessor = LoggingContext ∧ Caretaker = Command]

Comparing RHF with RHF o, we can see that all the restriction predicates in RHF o

are included in RHF , except

CommandProcessor.Command = Command.Command,

which we believe is a typo since there is no element in the CommandProcessor pattern
called Command [Buschmann et al. 2007b]. It should be replaced by the following.

CommandProcessor.Component = Command.Command.

Moreover, some of the restrictions in RHF are missing from RHF o. These are:

Application = Receiver
CommandProcessor = Invoker
CommandProcessor = Command.Client

where Command.Client denotes the Client component in the Command pattern.
Other more serious errors in the diagram in [Buschmann et al. 2007a] are listed in the

next section.

7.3 Formal Derivation of Designs

The expressions defining RHF can be transformed into the canonical form by following
the normalisation process given in Section 6. This derives the structural and dynamic
features of the designed system. Here, we only give the derivation of the structural features
of the design. The dynamic features can be derived in the exactly same way, but for the
sake of space, they are omitted. The full details of the formal specification of the request-
handling framework can be found in [Bayley and Zhu 2011].

First, for the sake of simplicity and space, we only take a small part of the pattern
specifications and make the following definitions.

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

34 · H. Zhu and I. Bayley

Command , TRUE#({Command,Client, Invoker,Receiver : Class,
ConcreteCommands : P(Class)}

•(Client −→ Command ∧ Invoker −→ Command
∀CC ∈ ConcreteCommands · (CC −→ Receiver∧

CC −−. Command ∧ ¬isAbstract(CC)))

ComProc , TRUE#({Client, CommandProcessor, Component : Class}
•(Client −→ CommandProcessor∧

CommandProcessor −→ Component)

Memento , TRUE#({Caretaker,Memento,Originator : Class}
•(Caretaker �−→Memento ∧Originator −→ memento)

Strategy , TRUE#({Context, Strategy : Class, ConcreteStrategies : P(Class)}
•(Context �−→ Strategy ∧ isInterface(Strategy)
∀CS ∈ ConcreteStrategies · (CS −−. Strategy)))

Composite , TRUE#({Component, Composite : Class, Leaves : P(Class)}
•(isInterface(Component) ∧ Composite−−.∗ Component∧

Composite �−→+ Component
∀Lf ∈ Leaves · (Lf −−. Component))).

Then, the following can be derived, following the normalisation process by applying the
algebraic laws.

RHF ≈ TRUE
#({Client,Application,CommandProcessor, Logging,

Command,CompositeCommand,Memento : Class,
ConcreteLoggingStrategies, ConcreteCommands : P(Class)}

• ((Client −→ CommandProcessor)∧
∀CC ∈ ConcreteCommands · (CC −→ Application∧

CC −−. Command ∧ ¬isAbstract(CC))∧
(CommandProcessor −→ Command)∧
(Command �−→Memento)∧
(Application −→ memento)∧
(CommandProcessor �−→ Logging)∧
∀CL ∈ ConcreteLoggingStrategies · (CL−−. Logging)∧
isInterface(Command)∧
isInterface(Logging)∧
(CompositeCommand−−.∗ Command)∧
(CompositeCommand �−→+ Command)))

The result can be graphically presented as in Figure 12.
Comparing Figure 12 with the original diagram of [Buschmann et al. 2007a] shown in

Figure 11, we found that the original solution given in [Buschmann et al. 2007a] seems
have treated the memento as being created by the caretaker, but in fact it is created by the
originator instead. Also, the client should only send requests to CommandProcessor rather
than to Command directly. Therefore, the association from Client to Command should be
deleted from the original design.

In summary, the case study clearly demonstrates that

(1) design decisions in the application of design patterns can be precisely represented in
pattern expressions,

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 35

Client Command
Processor Logging

Concrete
Logging

Strategy A

Concrete
Logging

Strategy B

Command

Composite
Command

Concrete
Command A

Concrete
Command B

Application

Memento

Fig. 12. Derived Design of the Request-Handling Framework

(2) correct uses of design patterns can be formally verified and validated by proving equiv-
alence between pattern expressions. Errors in the manual application of patterns can
be detected by disproving the equality between pattern expressions.

(3) moreover, designs can be formally derived from the formal representation of the design
decisions through application of the algebra of design patterns. An example of this is
using the normalisation process.

8. CONCLUSION

In this paper, we proved a set of algebraic laws that the operators on design patterns obey.
We demonstrated their use in proving the equivalence of some pattern compositions. These
operators and algebraic laws form a formal calculus of design patterns that enable us to
reason about pattern compositions. We have also proved that the set of algebraic laws
is complete and we have presented a normalisation process for pattern expressions. We
demonstrated the application of the algebra to pattern-oriented software design with a real-
world example: the design of an extensible request-handling framework. We demonstrated
the applicability of pattern operators to formally and precisely representing design deci-
sions in a pattern-oriented design process.

We also demonstrated the applicability of the algebra in two practical scenarios. In
the verification and validation scenario, manual designs are checked against the formal
representation of decision decisions in the form of an expression made of pattern compo-
sitions and instantiations and the formal specifications of design patterns. In the derivation
scenario, designs are formally derived from design decisions and formal specifications of
patterns. The work reported in this paper advances the pattern-oriented software design
methodology by improving its rigorousness and laying a solid theoretical foundation. It is
built on top of the huge amount of research in the literature about software design patterns
and their formal specifications. It sheds a new light on the formal and automated software
verification and validation at design stage and on the derivation of designs from high level
design decisions and design knowledge encoded in design patterns.

Although the calculus is developed in our own formalisation framework, we believe
that it can be easily adapted to others, such as that of Eden’s approach, which also uses
first-order logic but no specification of behavioural features [Gasparis et al. 2008], Taibi’s
approach, which is a mixture of first-order logic and temporal logic [Taibi et al. 2003], and
that of [Lano et al. 1996], etc., and finally, the approaches based on graphic meta-modelling
languages, such as RBML [France et al. 2004] and DPML [Mapelsden et al. 2002]. How-

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

36 · H. Zhu and I. Bayley

ever, the definitions of the operators and proofs of the laws are more concise and readable
in our formalism. Dong et al’s approach [Alencar et al. 1996; Dong et al. 1999; 2000;
Dong et al. 2004; Dong et al. 2007] to the formal specification of patterns is very similar
to ours in the way that they also use formal predicate logic to specify the structural and
behavioural features of patterns. However, their definition of pattern composition is differ-
ent from ours. They define pattern compositions and instantiations separately, but both as
name mappings. More recently, Dong et al. [Dong et al. 2011] studied the commutabil-
ity of pattern instantiation and integration, but their results focus on the commutability
conditions for instantiation and integration rather than general algebraic laws. Moreover,
their definition of pattern instantiation and integration does not cover complicated forms
of composition where one-to-many overlaps are needed.

For future work, we are developing automated software tools based on the algebra of
design patterns to support pattern-oriented software design. The normalisation process
given in the constructive proof of the completeness of the algebraic laws implies that any
two pattern compositions can be proved equivalent by using a theorem prover.

REFERENCES

ALENCAR, P. S. C., COWAN, D. D., AND DE LUCENA, C. J. P. 1996. A formal approach to architectural design
patterns. In Proceedings of the Third International Symposium of Formal Methods Europe on Industrial Benefit
and Advances in Formal Methods (FME’96), M.-C. Gaudel and J. Woodcock, Eds. Lecture Notes In Computer
Science. Springer-Verlag, 576 – 594.

ALUR, D., CRUPI, J., AND MALKS, D. 2003. Core J2EE Patterns: Best Practices and Design Strategies, 2nd
ed. Prentice Hall.

BAYLEY, I. AND ZHU, H. 2007. Formalising design patterns in predicate logic. In 5th IEEE International
Conference on Software Engineering and Formal Methods. IEEE Computer Society, London, UK, 25–36.

BAYLEY, I. AND ZHU, H. 2008a. On the composition of design patterns. In Proceedings of the Eighth Interna-
tional Conference on Quality Software (QSIC 2008). IEEE Computer Society, Oxford, UK, 27–36.

BAYLEY, I. AND ZHU, H. 2008b. Specifying behavioural features of design patterns in first order logic. In 32nd
IEEE International Conference on Computer Software and Applications (COMPSAC 2008). IEEE Computer
Society, Turku, Finland, 203–210.

BAYLEY, I. AND ZHU, H. 2010a. A formal language of pattern composition. In Proceedings of The 2nd
International Conference on Pervasive Patterns (PATTERNS 2010). XPS (Xpert Publishing Services), Lisbon,
Portugal, 1–6.

BAYLEY, I. AND ZHU, H. 2010b. Formal specification of the variants and behavioural features of design patterns.
Journal of Systems and Software 83, 2 (Feb.), 209–221.

BAYLEY, I. AND ZHU, H. 2011. A formal language for the expression of pattern compositions. International
Journal on Advances in Software 4, 3-4. (In Press).

BLEWITT, A., BUNDY, A., AND STARK, I. 2005. Automatic verification of design patterns in Java. In Proceed-
ings of the 20th IEEE/ACM International Conference on Automated Software Engineering (ASE 2005). ACM
Press, Long Beach, California, USA, 224–232.

BUSCHMANN, F., HENNEY, K., AND SCHMIDT, D. C. 2007a. Pattern-Oirented Software Archiecture: On
Patterns and Pattern Languages. Vol. 5. John Wiley & Sons Ltd.

BUSCHMANN, F., HENNEY, K., AND SCHMIDT, D. C. 2007b. Pattern-Oriented Software Architecture: A Pat-
tern Language for Distributed Computing. Vol. 4. John Wiley & Sons Ltd., West Sussex, England.

DIPIPPO, L. AND GILL, C. D. 2005. Design Patterns for Distributed Real-Time Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

DONG, J., ALENCAR, P. S., AND COWAN, D. D. 2000. Ensuring structure and behavior correctness in design
composition. In Proceedings of the IEEE 7th Annual International Conference and Workshop on Engineering
Computer Based Systems (ECBS 2000). IEEE CS Press, Edinburgh, Scotland, 279–287.

DONG, J., ALENCAR, P. S., COWAN, D. D., AND YANG, S. 2007. Composing pattern-based components and
verifying correctness. Journal of Systems and Software 80, 11 (November), 1755–1769.

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

An Algebra of Design Patterns · 37

DONG, J., ALENCAR, P. S. C., AND COWAN, D. D. 1999. Correct composition of design components. In
Proceedings of the 4th International Workshop on Component-Oriented Programming in conjunction with
ECOOP99.

DONG, J., PENG, T., AND ZHAO, Y. 2010. Automated verification of security pattern compositions. Information
and Software Technology 52, 3 (March), 274C295.

DONG, J., PENG, T., AND ZHAO, Y. 2011. On instantiation and integration commutability of design pattern.
The Computer Journal 54, 1 (January), 164–184.

DONG, J., S.C.ALENCAR, P., AND COWAN, D. 2004. A behavioral analysis and verification approach to
pattern-based design composition. Software and Systems Modeling 3, 262–272.

DONG, J., YANG, S., AND ZHANG, K. 2007. Visualizing design patterns in their applications and compositions.
IEEE Transactions on Software Engineering 33, 7 (July), 433–453.

DONG, J., ZHAO, Y., AND PENG, T. 2007. Architecture and design pattern discovery techniques - a review.
In Proceedings of the 2007 International Conference on Software Engineering Research and Practice (SERP
2007), H. R. Arabnia and H. Reza, Eds. Vol. II. CSREA Press, Las Vegas Nevada, USA, 621–627.

DOUGLASS, B. P. 2002. Real Time Design Patterns: Robust Scalable Architecture for Real-time Systems. Ad-
dison Wesley, Boston, USA.

EDEN, A. H. 2001. Formal specification of object-oriented design. In International Conference on Multidisci-
plinary Design in Engineering, Montreal, Canada.

FOWLER, M. 2003. Patterns of Enterprise Application Architecture. Addison Wesley, Boston, USA.
FRANCE, R. B., KIM, D.-K., GHOSH, S., AND SONG, E. 2004. A uml-based pattern specification technique.

IEEE Trans. Softw. Eng. 30, 3, 193–206.
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns - Elements of Reusable

Object-Oriented Software. Addison-Wesley.
GASPARIS, E., EDEN, A. H., NICHOLSON, J., AND KAZMAN, R. 2008. The design navigator: charting Java

programs. In Proc. of ICSE’08. Vol. Companion Volume. 945–946.
GRAND, M. 1999. Patterns in Java, volume 2. John Wiley & Sons, Inc., New York, NY, USA.
GRAND, M. 2002a. Java Enterprise Design Patterns. John Wiley & Sons, Inc., New York, NY, USA.
GRAND, M. 2002b. Patterns in Java: A Catalog of Reusable Design Patterns Illustrated with UML,Volume 1.

John Wiley & Sons, Inc., New York, NY, USA.
HANMER, R. S. 2007. Patterns for Fault Tolerant Software. Wiley, West Sussex, England.
HOHPE, G. AND WOOLF, B. 2004. Enterprise Integration Patterns: Designing, Building, and Deploying Mes-

saging Solutions. Addison Wesley, Boston, USA.
HOU, D. AND HOOVER, H. J. 2006. Using SCL to specify and check design intent in source code. IEEE

Transactions on Software Engineering 32, 6 (June), 404–423.
KIM, D.-K. AND LU, L. 2006. Inference of design pattern instances in UML models via logic programming.

In Proceedings of the 11th International Conference on Engineering of Complex Computer Systems (ICECCS
2006). IEEE Computer Society, Stanford, California, USA, 47–56.

KIM, D.-K. AND SHEN, W. 2007. An approach to evaluating structural pattern conformance of UML models.
In Proceedings of the 2007 ACM Symposium on Applied Computing (SAC’07). ACM Press, Seoul, Korea,
1404–1408.

KIM, D.-K. AND SHEN, W. 2008. Evaluating pattern conformance of UML models: a divide-and-conquer
approach and case studies. Software Quality Journal 16, 3, 329–359.

LANO, K., BICARREGUI, J. C., AND GOLDSACK, S. 1996. Formalising design patterns. In BCS-FACS Northern
Formal Methods Workshop, Ilkley, UK.

LAUDER, A. AND KENT, S. 1998. Precise visual specification of design patterns. In Lecture Notes in Computer
Science Vol. 1445. ECOOP’98, Springer, 114–134.

MAPELSDEN, D., HOSKING, J., AND GRUNDY, J. 2002. Design pattern modelling and instantiation using dpml.
In CRPIT ’02: Proceedings of the Fortieth International Conference on Tools Pacific. Australian Computer
Society, Inc., 3–11.

MIKKONEN, T. 1998. Formalizing design patterns. In Proc. of ICSE’98, Kyoto, Japan. IEEE CS, 115–124.
NIERE, J., SCHÄFER, W., WADSACK, J. P., WENDEHALS, L., AND WELSH, J. 2002. Towards pattern-based

design recovery. In Proceedings of the 22nd International Conference on Software Engineering (ICSE 2002).
IEEE CS, Orlando, Florida, USA, 338–348.

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

38 · H. Zhu and I. Bayley

NIJA SHI, N. AND OLSSON, R. 2006. Reverse engineering of design patterns from java source code. In Proc.
of ASE’06, Tokyo, Japan. IEEE Computer Society, 123–134.

RIEHLE, D. 1997. Composite design patterns. In Proceedings of the 1997 ACM SIGPLAN Conference On
Object-Oriented Programming Systems, Languages and Applications (OOPSLA’97). ACM Press, Atlanta,
Georgia, 218–228.

SCHUMACHER, M., FERNANDEZ, E., HYBERTSON, D., AND BUSCHMANN, F. 2005. Security Patterns: Inte-
grating Security and Systems Engineering. John Wiley & Sons, West Sussex, England.

SMITH, J. M. 2011. The pattern instance notation: A simple hierarchical visual notation for the dynamic visu-
alization and comprehension of software patterns. Journal of Visual Languages and Computing 22, 5 (Oct.),
355–374. doi:10.1016/j.jvlc.2011.03.003.

STEEL, C. 2005. Applied J2EE Security Patterns: Architectural Patterns & Best Practices. Prentice Hall PTR,
Upper Saddle River, NJ, USA.

TAIBI, T. 2006. Formalising design patterns composition. Software, IEE Proceedings 153, 3 (June), 126–153.
TAIBI, T., CHECK, D., AND NGO, L. 2003. Formal specification of design patterns-a balanced approach.

Journal of Object Technology 2, 4 (July-August).
TAIBI, T. AND NGO, D. C. L. 2003. Formal specification of design pattern combination using BPSL. Informa-

tion and Software Technology 45, 3 (March), 157–170.
VLISSIDES, J. 1998. Notation, notation, notation. C++ Report.
VOELTER, M., KIRCHER, M., AND ZDUN, U. 2004. Remoting Patterns. John Wiley & Sons, West Sussex,

England.
ZHU, H. 2010. On the theoretical foundation of meta-modelling in graphically extended BNF and first order

logic. In Proceedings of the 4th IEEE Symposium on Theoretical Aspects of Software Engineering (TASE
2010). IEEE CS, Taipei, Taiwan, 95–104.

ZHU, H. 2012. An institution theory of formal meta-modelling in graphically extended bnf. Frontier of Computer
Science 6, 1 (Jan.), 40–56.

ZHU, H. AND BAYLEY, I. 2010. Laws of pattern composition. In Proceedings of 12th International Conference
on Formal Engineering Methods (ICFEM 2010). LNCS, vol. 6447. Springer, Shanghai, China, 630–645.

ZHU, H., BAYLEY, I., SHAN, L., AND AMPHLETT, R. 2009. Tool support for design pattern recognition at
model level. In Proc. of COMPSAC’09. IEEE Computer Society, Seattle, Washington, USA, 228–233.

ZHU, H. AND SHAN, L. 2006. Well-formedness, consistency and completeness of graphic models. In Proc. of
UKSIM’06. Oxford, UK, 47–53.

ZHU, H., SHAN, L., BAYLEY, I., AND AMPHLETT, R. 2009. A formal descriptive semantics of UML and
its applications. In UML 2 Semantics and Applications, K. Lano, Ed. John Wiley & Sons, Inc. ISBN-13:
978-0470409084.

Submitted on 2 Dec. 2011.
Revised version: 5 April 2012.

ACM Journal Name, Vol. XX, No. XX, XX 20XX.

