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Abstract

Chaos offers several advantages to the Engineer over other non-chaotic dynamics.

One is that chaotic systems are often significantly easier to control than other linear or

non-linear systems, requiring only small, appropriately timed perturbations to constrain

them within specific unstable periodic orbits (UPOs). Another is that chaotic attractors

contain an infinite number of these UPOs. If individual UPOs can be made to represent

specific internal states of a system, then a chaotic attractor can be turned into an infinite

state machine. In this paper we investigate this possibility with respect to chaotic neural

networks. We present a method by which a network can self-select UPOs in response to

specific input values. These UPOs correspond to network recognition states for these

input values.

� 2002 Elsevier Science Inc. All rights reserved.

Keywords: Control of chaos; Chaotic neural networks; Adaptive delays

1. Introduction

This research is inspired by the discovery that the firing behaviour in bio-

logical neural networks is fundamentally chaotic [3–6,10]. Although there is

little doubt about the presence of chaos in such networks, there is far less
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certainty about its role. Some have suggested that biological networks use this

chaotic behaviour as a means of storing and retrieving memories [4,9,15–17].

These memories correspond to dynamic ‘‘states’’ which are embedded within

the chaotic attractor followed by the network. The use of chaos to store and
retrieve memories in an artificial neural network offers a number of significant

advantages over alternative models. Among them are a dramatically increased

capacity for memory storage, and an ability to ‘‘control’’ the network using

only small perturbations [1].

A chaotic system can be described by a set of dynamic variables. An n-di-
mensional plot of an n variable system is called a ‘‘state space’’. Each point in

the state space corresponds to a unique set of values for the dynamic variables.

As the system changes states a continuous trajectory is described through the
state space. Chaotic systems that can be modelled by a set of continuous dy-

namic variables are constrained to a specific sub-area of state space called an

‘‘attractor’’. An example of an attractor is given in Fig. 1. This attractor is

followed by R€oossler system of equations [12] which is modelled by three dy-

namic variables.

By definition, a chaotic system can never be in the same state twice on a

continuous run. In other words, a single trajectory in state space can never

intersect itself. However, as the system follows its attractor it will come very
close to points in state space which it had previously visited. Such trajectories

are called unstable periodic orbits (UPOs). A chaotic system following a UPO

Fig. 1. The attractor for the R€oossler system.
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would describe an orbit in state space which almost repeats itself. However,

under the influence of chaos, the trajectory would drift away from this almost

periodic orbit and continue to track the surface of the attractor. An example of
a UPO is illustrated in Fig. 2.

Techniques have been developed in non-linear dynamical systems theory for

controlling a chaotic system so that it will remain on a periodic orbit until the

control is removed [2,5,11,13,14]. These techniques can be divided into two

categories: those that rely on some knowledge of the local dynamics of the

attractor around the UPO to be stabilised, and those which use delayed

feedback as a method of control. With the first category, the control waits for

the system state to fall in the neighbourhood of the desired UPO. Once this has
happened, the control makes small temporary adjustments to local dynamics of

the attractor so that the system trajectory will come back to the same point

when it returns to that neighbourhood, thereby stabilising the orbit. The sec-

ond category of control method uses a feedback mechanism with a delay

proportional to the period of the orbit to be stabilised. The control makes

small temporary modifications to the dynamics of the system so that the tra-

jectory will return close to a point in state space which it previously visited.

This point is determined by the delay.
Within the context of chaotic neural networks, delayed feedback is the most

appropriate method of control. There are three main reasons for this that are

based on the biological plausibility of the method in question. The first is that

the delay feedback method does not rely on a priori knowledge of the local

dynamics of the attractor around the UPO to be stabilised. It seems extremely

unlikely that biological neural networks are aware of the local dynamics in

Fig. 2. An unstable periodic orbit embedded in the R€oossler attractor.
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every UPO. The second is that the delayed feedback method does not specify

which UPO is to be stabilised, it simply specifies the period of the required

orbit. This suggests an element of self-organisation which is more biologically

appealing than the first method. The third reason is that delays are inherent in
biological neural networks: the nerve impulse takes time to travel the length of

the axon to its target neurons, these neurons, in turn, take time to summate

their inputs and produce their response. Consequently, we consider the delayed

feedback method to be best suited to the control of chaos in neural networks.

Our approach has been to study small networks consisting of two or three

interconnected neurons. We use systems of chaotic equations to model the

activation functions of the neurons. Our method for the control of chaos is

based on that presented by Kittel et al. [8] and Pyragas [11].

2. Controlling chaos using delays

Pyragas� delayed feedback method of controlling chaos assumes that we

have a continuous time system which has an output variable, say yðtÞ, that can
be measured, and an input signal, F ðtÞ:

dy
dt

¼ P ðy; xÞ þ F ðtÞ

dx

dt
¼ Qðy; xÞ

ð1Þ

Here, P ðy; xÞ and Qðy; xÞ, which govern the chaotic dynamics of the system,

and x, which denotes all of the remaining system variables, are assumed to be

unknown. When the control signal F ðtÞ is zero, the system (1) is governed by a

chaotic attractor.

The input signal F ðtÞ is proportional to the difference between the value of y
at time t and the value of y at time t � s, where s is a fixed delay:

F ðtÞ ¼ k½yðtÞ � yðt � sÞ� ð2Þ

Input signal F ðtÞ attempts to nudge the system back to a state in which output
variable y repeats the same value it had at the earlier time specified by the delay

s. In this way, F ðtÞ encourages the system to follow a periodic trajectory with

periodicity s (Fig. 3).

As the system approaches the periodic trajectory, F ðtÞ will become very

small. Fig. 4 shows a time series for the R€oossler system. The controlling input

signal is initially zero and the system follows its chaotic attractor for a period

of time. When the input signal is activated the system quickly converges to a

period one UPO. Fig. 4 shows a burst of activity in F ðtÞ which the system is
brought under control. Subsequently, as the system moves into the UPO, F ðtÞ
becomes very small.
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UPOs of varying periods and periodicities can be controlled by this method.

Some UPOs are very unstable and require a greater amount of control than

others, resulting in an input signal which does not tend towards zero. Fur-

thermore, this control method is sensitive to the choice of s and k: UPOs
cannot be stabilised for several sub-ranges of values of these control variables.

We have adapted this method of delayed feedback control so that the time

delay s is not constant, but is a variable of the system whose value is deter-

mined in a self-organised manner. Before describing in detail this method of

dynamically adapting the delay time, we will consider the Biological justifica-

tion for adopting such an approach.

Fig. 3. A sample time series in y with the time delay s superimposed.

Fig. 4. Time series plot for one of the R€oossler equation variables, superimposed on a plot of F ðtÞ.
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3. Biological rationale for adaptive delays

In biological neuronal systems, the action potentials generated by the soma

of a neuron travel the length of the axon and are transmitted to other neurons
via synaptic connections. In most cases these synapses are located on the

dendritic trees of the receiving neurons. Impulses from synapses will cause a

sharp rise in the intercellular voltage of the receiving neuron which spreads

along the dendritic tree towards the soma. If the voltage rise is sufficiently high

at the soma as a result of integrating all inputs on the dendrite, an action

potential is generated to travel down the axon of this neuron. Therefore,

whenever an action potential is generated, it takes time for the impulse to travel

to the soma of the receiving neurons. Fig. 5 illustrates this schematically.
Typically, a neuron will have many synaptic connections with the dendritic

tree of a receiving neuron. Since each of these connections will be located at a

different point on the dendrite, and so each will result in a different time delay

for the signals between the sending and receiving neuron (Fig. 6). According to

Hebb [7], those synapses which result in an action potential in the receiving

Fig. 5. A schematic diagram of the delay between the initiation of an action potential, and its

arrival at the target neuron.

t1

t2

t3

Fig. 6. A schematic diagram of multiple delayed connections between neurons.
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neuron are strengthened, those which do not are weakened. A single impulse

from a synapse is rarely sufficient to cause a cell to fire. It is more often the case

that several coincident impulses from synapses are needed to provoke a re-

sponse. This means that those synapses which result in impulses that are ap-
propriately timed will be strengthened. In other words, the adaptive process

involves not only the selection of synapses, but also the selection of impulse

delays. The method of chaos control we present below is based on this principle

of adaptation of delays.

4. Adaptive delays

We have modified Pyragas�method of chaos control so that the length of the

feedback delay s is a variable of the system. We have made s proportional to

the amount of effort needed to control the system in its current orbit. If the

amount of control needed is small, then no change is required in s, since an

orbit with a suitable delay has been successfully stabilised. However, if the

system is struggling to control an orbit, then s needs to be modified so that the

length feedback delay is commensurate with an existing UPO of the system.

The equation for adapting s is as follows:

ds
dt

¼ aF
dy
dt

ð3Þ

where a is a constant. Eq. (3) will be minimised when F becomes small and
dy=dt is periodic. We have applied this method to the R€oossler system of

equations [12]. We have modelled these equations using a small network of

neurons (Fig. 7) whose activations are defined as follows:

dx1
dt

¼ w12x2 þ w13x3 ð4Þ

dx2
dt

¼ w21x1 þ w22x2 þ F ðt; sÞ ð5Þ

x1

x2 x3F(t, (t))τ

Fig. 7. A three unit model with delayed feedback and external input.
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dx3
dt

¼ vþ x3x1 þ w33x3 ð6Þ

where wij is the weight to unit i from unit j. The weights prior to adaptation in

this system are given in Table 1 and correspond to the constants used in the

R€oossler system.

The control of this systems is achieved through the rightmost term in Eq.

(5), as defined by Eqs. (2) and (3).

In this paper we present the results of a set of experiments which investigate

the dynamics of this system for a range of initial values of s. The purpose of
these experiments was to see if Eq. (3) would be able to adapt s towards a

nearby controllable orbit. In each experiment, the model was allowed to follow

its chaotic attractor until t ¼ 100, at which point the control was activated

using one of the initial values of s. The results of these experiments are given in

Table 2. The initial values for s range from 4 to 20, increasing in steps of 2. In 6

out of 9 of these initial values the system managed to adapt s to a delay value

which corresponded to a UPO. Apart from experiment 4 in which s went

negative, the final values of s for these stabilised UPOs were �5.83 for a period

Table 1

Weights for the R€oossler system

Weight Value

w12 )1
w13 )1
w21 1

w22 0.2

w33 )5.7
v 0.2

Table 2

Results for Experiment 1

Experiment

no.

Initial s Final s Max F Min F UPO period

1 4 5.83 0.01 )0.01 1

2 6 17.46 1.0 )1.1 –

3 8 5.84 0.01 )0.01 1

4 10 )25.60 0.9 )0.9 1

5 12 11.66 0.01 )0.01 2

6 14 11.76 0.03 )0.03 2

7 16 17.54 0.8 )0.8 –

8 18 23.53 0.8 )0.8 –

9 20 11.72 0.06 )0.04 2
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1 UPO and �11.72 for a period 2 UPO. These values are in close agreement

with the results obtained by Pyragas [11] which were 5.9 for a period 1 UPO

and 11.75 for a period 2 UPO.

Table 2 shows the maximum and minimum values of F ðt; sÞ when a UPO
was stabilised. Small absolute values of Max F and Min F indicate that very

little effort was required to keep the system in that UPO. Note that for those

experiments which did not result in a stabilised orbit (experiments 2, 7 and 8)

F ðt; sÞ fluctuates over a relatively wide range of values, indicating that the

system is struggling to gain control of the orbit. Figs. 8, 10 and 12 show time

series plots of F ðt; sÞ and s for experiments 1, 5 and 7 respectively. Figs. 9, 11

and 13 show the state space in the x1 versus x2 plane.
Fig. 8 shows that s immediately jumps from 4 to a value close to 5.9 as soon

as the control is activated at t ¼ 100. This is in response to large fluctuations in

F ðt; sÞ. Once s is close to the periodicity of the UPO at 5.9, only small ad-

justments are made to its value until it reaches a steady state at 5.83 where the

period 1 orbit has been stabilised (Fig. 9). Fig. 10 shows s starting at a value of

12 and dropping steadily to the nearby UPO at 11.66. F ðt; sÞ does not need to

exert much control over the system to maintain this period 2 orbit (Fig. 11).

Fig. 12 shows the time series for F ðt; sÞ and s for experiment 7, where the

delayed feedback was not able to bring the system under control for any orbit
(Fig. 13), even on an extended run up to t ¼ 800. As this graph shows, s does

not show any signs of approaching a steady state.

Fig. 8. F ðt; sÞ and s for experiment 1.
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5. Stabilizing orbits by frequency modulated input

A basic premise of our research is that a chaotic neural network will be able

to self-select a UPO in response to specific input patterns. Furthermore, each

Fig. 9. State space for experiment 1.

Fig. 10. F ðt; sÞ and s for experiment 5.
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orbit selected must be unique to that class of input. In this section we dem-

onstrate that this is possible using a periodic square wave input signal to a

chaotic network which is under feedback control. In these experiments, s was

held constant and the periodic input signal was added to x1:

Fig. 11. State space for experiment 5.

Fig. 12. F ðt; sÞ and s for experiment 7.
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dx1
dt

¼ w12x2 þ w13x3 þ IðtÞ ð7Þ

dx2
dt

¼ w21x1 þ w22x2 þ F ðtÞ ð8Þ

dx3
dt

¼ vþ x3x1 þ w33x3 ð9Þ

All other weights and constants are as described in Table 1. Delayed feedback

control is activated simultaneously with the presentation of an external stim-

ulus.

Input values are represented by frequency modulations of the pulse signal

IðtÞ, with distinct frequencies (and their sub-harmonics) representing distinct
input values. Chaotic systems are sensitive to variations in both frequency and

amplitude. However, with large amplitudes it is possible to override the natural

dynamics of the network�s chaotic attractor. Furthermore, the electrochemical

axonal output signals from biological neurons have constant amplitude, with

information largely being conveyed in the frequency modulations of the pulse

trains. For these reasons we have chosen to use a constant amplitude, fre-

quency modulated input signal.

In the experiments presented here an input pulse amplitude of 1.0 and a
pulse width of 3.0 was used. In each experiment the network model was

evaluated for a number of time steps prior to the presentation of external input

Fig. 13. State space for experiment 7.
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to allow initial transients in the network dynamics to decay as the attractor was

approached. The delayed feedback control F ðtÞ was then activated simulta-

neously with the external input IðtÞ. The delay period s was held constant for

each experiment. The peak values of x1 were recorded for pulse periods of IðtÞ
in the range 4–20 (the pulse period is the time between pulses plus the pulse

width). The experiments were repeated for delays s1 ¼ 5:8, s2 ¼ 11:4 and

s3 ¼ 17:0 which correspond to the period one, two and three UPOs (respec-

tively) that can be stabilised when delayed feedback is activated. Fig. 14 shows

plots of peak x1 values versus the period of the pulse for each of the three

values of s.
The plots in Fig. 14 demonstrate that UPOs can only be stabilised for fre-

quencies of the input signal which are simple harmonics of the delay period. In
other words, particular delay periods will select corresponding input frequen-

cies and their sub-harmonics. This is confirmed by Fig. 15 which shows plots of

x1 versus x2 for four different periods of the pulse once the transients have died
away. Here we make the feedback delay s ¼ 5:84. Plots 1, 2 and 3 are stable

period 1, 2 and 3 orbits for pulse periods equal to 5.84, 11.64 and 17.52 re-

spectively. These pulse periods are integer multiples of the feedback delay and

so illicit a periodic response from the network. Plot 4 shows that a UPO could

not be stabilised by a pulse input with period 14.0, which is not an integer
multiple of the feedback delay.

In a separate experiment we investigated the affects of activating feedback

control before presenting the external input. Fig. 16 below shows the time

series of the x1 variable for this experiment. The chaotic dynamics were allowed

to evolve without any feedback control or external input for t ¼ 0 to 250.

Fig. 14. Dependence of pulse period for different delayed feedback conditions.
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Feedback control is activated at t ¼ 250, and the plot of x1 shows that the

network is stabilised to a period 1 orbit. Note that the once the orbit has been

stabilised, the perturbation F ðtÞ quickly becomes small and periodic. The ex-

ternal input is activated at t ¼ 500 with a pulse period of 14. At this point the

perturbation becomes large and non-periodic again as it unsuccessfully at-

tempts to stabilise an orbit. At t ¼ 750, the pulse period of the external input is

Fig. 15. State space plots for different pulse periods.

Fig. 16. Time series with perturbation and pulse input.
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changed to 5.84, which is equal to the feedback delay. The period one orbit

then returns and the perturbation F ðtÞ is quickly minimised.

In a final set of experiments we explored the relationship between the de-

layed feedback control (perturbation) and the external input. In this case the

feedback delay s and the pulse period of the external input IðtÞ were given the

same value for each experiment. As with previous experiments, the transients

were allowed to decay before the feedback control and the external input were
synchronously activated. We plotted peak x1 and perturbation values for each

experiment. The experiments were repeated for s ¼ 0 through to s ¼ 20 with

increments of 0.1. The top plot of Fig. 17 shows the bifurcation diagram when

there is no external input and delayed feedback control is activated with

k ¼ 0:2. This plot demonstrates that it is possible to stabilise orbits for a wide

range of delays. The middle plot shows the average magnitude of the pertur-

bation for these experiments. The bottom plot shows the bifurcation diagram

when the delayed feedback and external input are both on. It is clear that when
periodic external input is added to a chaotic system under delayed feedback

control it is only possible to stabilise orbits when the average perturbation is at

a minimum.

6. Conclusion

We have presented a first step towards developing a chaotic neural network
which is able to select internal dynamic states in response to external input in a

Fig. 17. Relationship between external input and perturbation.
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self-organised manner. Our results indicate that for the R€oossler system it is

possible to devise a method of chaos control which self-selects values for s
corresponding to the nearest UPO which can be stabilised with relatively small

fluctuations in the feedback signal F ðt; sÞ. We have also demonstrated that a
network can self-select a UPO in response to specific input values represented

by frequency modulations in an external input signal.

The models we have presented here are small and limited. Yet we believe

that the underlying principle that UPOs represent memory states and that

adaptive feedback delay periods can be used to stabilise them is a very

promising area of research in the context of chaotic neural networks. We are

currently experimenting with other models which use adaptive feedback delay

periods to select UPOs. These models focus on the adaptation of both sn and kn
parameters in networks with n delays.
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