
A Second-Order Finite-Difference Method for Compressible
Fluids in Domains with Moving Boundaries

Alina Chertock ∗, Armando Coco †, Alexander Kurganov‡ and Giovanni Russo§

Abstract

In this paper, we describe how to construct a finite-difference shock-capturing method for
the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional
domain Ω, possibly with moving boundary. The boundaries of the domain are assumed to
be changing due to the movement of solid objects/obstacles/walls. Although the motion
of the boundary could be coupled with the fluid, all of the numerical tests are performed
assuming that such a motion is prescribed and independent of the fluid flow. The method
is based on discretizing the equation on a regular Cartesian grid in a rectangular domain
ΩR ⊃ Ω. We identify inner and ghost points. The inner points are the grid points located
inside Ω, while the ghost points are the grid points that are outside Ω but have at least
one neighbor inside Ω. The evolution equations for inner points data are obtained from the
discretization of the governing equation, while the data at the ghost points are obtained by a
suitable extrapolation of the primitive variables (density, velocities and pressure). Particular
care is devoted to a proper description of the boundary conditions for both fixed and time
dependent domains. Several numerical experiments are conducted to illustrate the validity
of the method. We demonstrate that the second order of accuracy is numerically assessed on
genuinely two-dimensional problems.

Key words: Compressible fluids, Euler equations of gas dynamics, ghost-cell extrapolation, mov-
ing boundaries, finite-difference shock-capturing methods.

AMS subject classifications: 76M20, 65M06, 65M20, 76N99.

1 Introduction

Development of accurate and efficient shock-capturing methods for hyperbolic systems of con-
servation laws has been a very active field of research in decades. Among the various methods,

∗Department of Mathematics, North Carolina State University State University, Raleigh, NC 27695, USA;
chertock@math.ncsu.edu
†Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Oxford OX33

1HX, UK; acoco@brookes.ac.uk
‡Department of Mathematics, Southern University of Science and Technology of China, Shenzhen, 518055, China

and Mathematics Department, Tulane University, New Orleans, LA 70118, USA; kurganov@math.tulane.edu
§Dipartimento di Matematica ed Informatica, Università di Catania, 95125, Catania, Italy;

russo@dmi.unict.it

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/220155672?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 A. Chertock, A. Coco, A. Kurganov & G. Russo

the ones that are most widely adopted are Discontinuous Galerkin (DG), finite-volume (FV) and
conservative finite-difference (FD) schemes. DG and FV schemes are very flexible, since they can
be naturally built on unstructured, possibly highly nonuniform meshes and thus can be applied on
arbitrary domains. On the other hand, conservative FD schemes are easy to be made high-order
in a very simple and efficient manner on Cartesian grid in several space dimensions. The main
reason for their efficiency is that each flux derivative (converted into a flux difference along the
coordinate directions) requires just one-dimensional (1-D) interpolations [30].

In view of the above considerations, our goal is to develop a simple and robust second-order
conservative FD scheme for hyperbolic systems in the domains with fixed and moving boundaries.
We concentrate on just one model—the Euler equations of gas dynamics. The methodology,
however, could be also applied to other problems. In the two-dimensional (2-D) case, the governing
equations are the compressible Euler equations:

ρ

ρu

ρv

E


t

+


ρu

ρu2 + p

ρuv

u(E + p)


x

+


ρv

ρuv

ρv2 + p

v(E + p)


y

= 0, (1.1)

where ρ is the density, u and v are the velocities, E is the total energy, and p is the pressure. The
system (1.1) is closed using the equation of states (EOS), which in the case of a polytropic gas
reads as

E =
p

γ − 1
+
ρ

2
(u2 + v2). (1.2)

We also denote by c :=
√
γp/ρ the speed of sound, which will be used throughout the paper.

A simple FV method based on a Cartesian grid for the 1-D and 2-D compressible Euler equa-
tions in domains with solid moving boundaries was introduced in [8]. This FV method is an
extension of the interface tracking method proposed in [7] for compressible multi-fluids. The key
steps of the FV method from [8] are: (i) dividing all of the computational cells into the three
groups: internal (fully occupied by the fluid), external (either located outside of the fluid domain
or fully occupied by the solid obstacle), and boundary ones (partially filled by the fluid); (ii) evolv-
ing the solution in the interior cells only; (iii) replacing the unreliable data in the boundary cells
with the data obtained by the solid wall extrapolation followed by the interpolation in the phase
space. A slightly different approach was adopted in [18], in which arbitrary domains with moving
boundaries were modeled using the level set method [25, 27] and a FV method on a Cartesian
mesh for compressible Euler equations in one, two and three space dimensions was proposed.

One of the main advantages of the FV method proposed in [8] is its efficiency and robustness
thanks to the lack of necessity to consider small internal cells near boundary (see, e.g., [4–6,11,21,
23]). However, the boundary representation in this interface tracking approach is only first-order
accurate (as only the cells where the boundary is located were detected and no information on the
exact location of the boundary was used). It should be observed that this drawback may be quite
significant since moving boundaries/rigid objects typically generate waves of a large magnitude.
Therefore, more accurate treatment of the moving solid wall boundary conditions is required to
achieve a higher overall resolution.

In a recent work [2], a high-order shock-capturing FD method for hyperbolic conservation laws
on arbitrary fixed 2-D domains was presented. In this method, the domain Ω is implicitly described

Compressible Fluids in Domains with Moving Boundaries 3

by a level set function and the method is based on discretizing the equation on a regular Cartesian
grid in a rectangular domain ΩR ⊃ Ω. Inner points and ghost points are identified on the grid
according to whether they are inside Ω or are outside Ω but have at least a neighbor inside it.
The solution values at the inner points are obtained from the conservative FD discretization of the
governing equation, while the values at the ghost points are obtained by a suitable extrapolation,
which takes into account the boundary conditions on the field variables, when they are available.

In this paper, we develop a second-order conservative FD method for problems with both
fixed and moving boundaries. In the case of fixed boundaries, our method is similar to the scheme
from [2]. We, however, derive suitable boundary conditions for all field variables and use a different
extrapolation technique, which is analogue to the one adopted in the context of elliptic [10] and
elastic [9] problems. In particular, a 2-D interpolation which includes ghost points is used in order
to impose boundary conditions on the projection of the ghost point values onto the boundary. A
slightly modified procedure is derived in the case of moving boundaries, where the sets of inner
and ghost points are time-dependent.

The paper is organized as follows. In §2 and §3, we describe the 1-D and 2-D numerical
methods, respectively. We then test the proposed methods on several numerical examples reported
in §4. In the test cases in which the solution is sufficiently smooth, we observe the second order of
accuracy, while in the test cases with nonsmooth solutions, we demonstrate an advantage of the
proposed boundary treatment by comparing it with a simple constant extrapolation.

2 One-Dimensional Numerical Method

We first consider the 1-D compressible Euler equations
ρ

ρu

E


t

+


ρu

ρu2 + p

u(E + p)


x

= 0, (2.1)

which is closed with the 1-D version of the EOS (1.2):

E =
p

γ − 1
+
ρu2

2
, γ = Const. (2.2)

The system (2.1) can be written in the vector form

Ut + f(U)x = 0, U :=


ρ

ρu

E

 , f(U) :=


ρu

ρu2 + p

u(E + p)

 .

In this section, we describe a numerical method for the system (2.1), (2.2) in the case of moving
boundaries. We use a non-oscillatory second-order FD scheme from [28, 29, 31], which is briefly
described in §2.1. To preserve the second order of accuracy, we introduce a special second-order
boundary treatment procedure, see §2.2.

4 A. Chertock, A. Coco, A. Kurganov & G. Russo

2.1 One-Dimensional Finite-Difference Scheme

We consider a uniform grid with xj+1 − xj = ∆x, ∀j. The point values Uj(t) :≈ U(xj, t) in the
interior of the computational domain are then evolved in time using the following semi-discrete
scheme:

dUj

dt
= −

f̂j+ 1
2
− f̂j− 1

2

∆x
, j = 1, . . . , J. (2.3)

The ODE system (2.3) is numerically integrated using the three-stage third-order strong stability
preserving (SSP) Runge-Kutta method; see, e.g., [19, 20].

The numerical fluxes {f̂j+ 1
2
} are computed as follows (see [28, 29, 31]). We first split the flux

function f as

f(Uj) = f+
j + f−j , f±j :=

1

2

(
f(Uj)± ajUj

)
, (2.4)

where aj is the spectral radius of the Jacobian matrix at x = xj, which for compressible Euler
equations is

aj := |uj|+ cj. (2.5)

We then use a non-oscillatory generalized minmod reconstruction to evaluate the values of f+ and
f− at the cell interfaces xj+ 1

2
:

fE
j := f+

j +
∆x

2
(fx)

+
j , fW

j := f−j −
∆x

2
(fx)

−
j , (2.6)

where the slopes are computed using the generalized minmod limiter (see, e.g., [22, 24,32,33]):

(fx)
±
j = minmod

(
θ
f±j − f±j−1

∆x
,
f±j+1 − f±j−1

2∆x
, θ
f±j+1 − f±j

∆x

)
, (2.7)

where the minmod function is defined by

minmod(z1, z2, . . .) :=


min(z1, z2, . . .), if zi > 0 ∀i,
max(z1, z2, . . .), if zi < 0 ∀i,
0, otherwise.

(2.8)

Here, θ ∈ [1, 2] is a parameter that can control the amount of numerical dissipation: larger values
of θ typically lead to sharper resolution of discontinuities, but may cause some oscillations. Finally,
the numerical fluxes are given by

f̂j+ 1
2

= fE
j + fW

j+1. (2.9)

Remark 2.1 The local choice of aj in (2.5) may cause the numerical diffusion present in the
scheme to be insufficient to prevent oscillations. The amount of numerical diffusion can be in-
creased by replacing aj with maxj aj.

Remark 2.2 The spatial accuracy of the scheme can be increased if one replaces the second-order
minmod reconstruction (2.6)–(2.8) with a higher-order one such as ENO or WENO reconstructions
(see, e.g., [28, 29,31]).

Compressible Fluids in Domains with Moving Boundaries 5

Remark 2.3 Since we consider the case of moving boundaries, the set of interior points may
change after one time step. Due to the CFL restriction, we may assume that the right-moving
boundary, located at time t + ∆t between the points xJ and xJ+1, could be at time t either in
the same interval (xJ , xJ+1] or on the left in (xJ−1, xJ] or on the right in (xJ+1, xJ+2], see the
schematic (x, t)-picture in Figure 2.1.

xB

xB

t+∆ t

t

x x
J

x
J+1J−1

xB

xB

t+∆ t

x
J

x
J+1

t

xB

xB

t+∆ t

x
J

x
J+1

x
J+2

t

Figure 2.1: Three possible scenarios of the boundary (xB) movements from time t to t+ ∆t: Case 1
(center), Case 2 (right) and Case 3 (left).

Case 1: If xB(t) ∈ (xJ , xJ+1], then the ghost value UJ+1(t) should be computed using the bound-
ary procedure described in §2.2.

Case 2: If xB(t) ∈ (xJ+1, xJ+2], then the value UJ+1(t) is available and no boundary extrapolation
is needed.

Case 3: If xB(t) ∈ (xJ−1, xJ], then we first need to compute the ghost value UJ(t) and then to
use the same boundary extrapolation procedure to obtain an additional ghost value UJ+1(t).

2.2 One-Dimensional Boundary Treatment

In this section, we will assume that only one ghost value on each side of the computational
domain is needed to be able to use the scheme (2.3)–(2.9). Then, one has to specify how the
values U0 and UJ+1 at the ghost points x0 and xJ+1 are extrapolated from the interior values of
Uj, j ∈ {1, . . . , J}. Our goal is to impose (at least) second-order solid wall boundary conditions
in the case of moving boundaries (it is well-known that the solid wall boundary conditions for
non-moving boundaries are very easy to impose even for high-order schemes).

For the simplicity of the presentation, we consider the case in which the left boundary is fixed,
while the right boundary is moving and its equation of motion xB = xB(t) is prescribed (piston
problem). In what follows, we will assume that xJ < xB(t+ ∆t) ≤ xJ+1; see Figure 2.2.

xB

x x
J

x
J+1

x
J−1 J+2

Figure 2.2: 1-D mesh: xB represents the position of the right moving boundary.

As explained in §2.1, the FD method will require the values of u, p and ρ at the ghost points at
time t in order to evolve the variables inside the domain. The boundary condition on the velocity
is determined by the velocity of the right boundary so that we set u(xB, t) = x′B(t). The pressure

6 A. Chertock, A. Coco, A. Kurganov & G. Russo

and density are extrapolated to the ghost points. This can be performed either in a naive way by
extrapolating from internal to ghost points, or by considering additional conditions the pressure
and density must satisfy at the boundary. In this paper, we follow the latter approach in which
the required boundary conditions are obtained by imposing the compatibility with the governing
equations of gas dynamics, as described in [16]. A comparison between the naive procedure and
the proposed boundary treatment is performed in the 2-D numerical experiments; see §4.2.

In order to derive the solid wall boundary conditions at xB, we first note that the Euler
equations imply (for a smooth flow)

ρ
Du

Dt
+
∂p

∂x
= 0 and

DS

Dt
= 0,

where D/Dt := ∂/∂t + u∂/∂x denotes the Lagrangian derivative and S is the entropy. Imposing
that the first equation is valid near the wall gives a relation between the pressure gradient and the
acceleration, while imposing that the space derivative of the entropy is zero near the wall (which
is true for smooth solutions if it is true at the initial time; see [16] for details) gives a relation
between the space derivatives of pressure and density. Summarizing, the three conditions at point
xB at any given time read as

u(xB) = x′B,

∂p

∂x

∣∣∣∣
x=xB

= −ρ(xB)x′′B,

∂ρ

∂x

∣∣∣∣
x=xB

=
1

c2(xB)
· ∂p
∂x

∣∣∣∣
x=xB

= − ρ(xB)

c2(xB)
x′′B.

(2.10)

Observe that the condition on the pressure is a consequence of Newton’s second law, while the
condition on the density is obtained assuming that the boundary is adiabatic. To discretize
the system (2.10), we approximate u(xB), ρ(xB) and c2(xB) using an interpolation between the
corresponding values at xJ and xJ+1. We also discretize the spatial derivatives using the FD
approximation. The resulting discrete version of the system (2.10) is then

αuJ+1 + (1− α)uJ = x′B,

pJ+1 − pJ
∆x

= − [αρJ+1 + (1− α)ρJ]x′′B,

ρJ+1 − ρJ
∆x

= −αρJ+1 + (1− α)ρJ
αc2

J+1 + (1− α)c2
J

x′′B,

(2.11)

where

α :=
xB − xJ

∆x
. (2.12)

The system (2.11), (2.12) can be analytically solved for the unknowns ρJ+1, uJ+1 and pJ+1. Since
the first equation is, in fact, decoupled from the other two equations, uJ+1 can be computed
directly, and the remaining equations form a 2× 2 system for ρJ+1 and pJ+1, which can be solved
explicitly. However, one can simplify the discrete boundary conditions even further by using

Compressible Fluids in Domains with Moving Boundaries 7

simpler approximations of ρ(xB) ≈ ρJ and c2(xB) ≈ c2
J , which lead to the system

αuJ+1 + (1− α)uJ = x′B,

pJ+1 − pJ
∆x

= −ρJx′′B,

ρJ+1 − ρJ
∆x

= −ρJ
c2
J

x′′B,

(2.13)

which can be explicitly solved to obtain the following boundary conditions:

uJ+1 =
x′B − (1− α)uJ

α
, pJ+1 = pJ −∆xρJx

′′
B, ρJ+1 = ρJ

[
1− ∆x

c2
J

x′′B

]
. (2.14)

The second-order numerical boundary conditions (2.11), (2.12) are, in fact, derived by using a
linear interpolation between the corresponding point values at x = xJ and x = xJ+1. For Dirichlet
boundary conditions, this linear interpolation may lead to numerical instabilities for small values
of α (that is, when xB is close to xJ). To overcome this difficulty, we interpolate between the
nodes {xJ−1, xJ+1} instead of {xJ , xJ+1} when α is below a fixed threshold α < α∗. In this case,
the ghost value uJ+1 is

uJ+1 =
x′B − (1− α̃)uJ−1

α̃
with α̃ =

xB − xJ−1

2∆x
≥ 1

2
. (2.15)

The value of α∗ should be proportional to the mesh size; see, e.g., [2, 3, 17]. In our numerical
experiments, we have used for simplicity α∗ = 1/10, which is five times larger than the biggest
mesh size adopted (∆x = ∆y = 1/100).

Remark 2.4 We notice that even though the boundary approximation (2.13) is by construction
less accurate than (2.11), the boundary conditions (2.14), (2.12) remain second-order accurate as
confirmed by the numerical experiments reported below.

Remark 2.5 To achieve a higher order of accuracy, say 2k > 2, we need to use a (2k)-order FD
method at the interior points, which will require k ghost points xJ+1, . . . , xJ+k. For these points,
one can use a higher-order polynomial interpolant using 2k grid points. In particular, for a ghost
point xJ+p, with 1 ≤ p ≤ k, one may use the point values at{

xJ−(2k−2)p, xJ−(2k−3)p, . . . , xJ−2p, xJ−p, xJ , xJ+p

}
to approximate the point values and spatial derivatives at x = xB in (2.10). For Dirichlet boundary
conditions, if α < α∗ then this stencil can be replaced by{

xJ−(2k−2)p−1, xJ−(2k−3)p−1, . . . , xJ−2p−1, xJ−p−1, xJ−1, xJ+p

}
.

In our paper, we only implement and test the second-order scheme, however we include this
description for higher-order extensions.

Remark 2.6 In the 2-D case, the structure of ghost points is more complex and the equations
analogous to the system (2.11), (2.12) are strongly coupled. Therefore, the 2-D boundary treat-
ment procedure is much more complicated as we will see in §3.2.2.

8 A. Chertock, A. Coco, A. Kurganov & G. Russo

3 Two-Dimensional Numerical Method

Let us suppose that the domain Ω is defined by a level set function φ(x), where x := (x, y),
namely as the set {x ∈ R2 : φ(x) < 0}, while the obstacle is identified by {x ∈ R2 : φ(x) > 0} and
the boundary by Γ := {x ∈ R2 : φ(x) = 0}.

We observe that the level-set function φ that implicitly describes the obstacle is not unique,
and that a particular level-set function is the signed distance function:

φ(x, y) =

{
−dist

(
(x, y),Γ

)
, if (x, y) ∈ Ω,

dist
(
(x, y),Γ

)
, if (x, y) /∈ Ω,

(3.1)

where dist
(
(x, y),Γ

)
is the distance between the point (x, y) and the boundary Γ. The signed

distance function of an obstacle can be obtained from a generic level-set function by adopting
specific numerical methods, such as the reinitialization procedure; see, e.g., [15, 26].

Using the signed distance function (3.1), we identify the following three types of points (see
Figure 3.1):

• Internal points with indices (j, k) ∈ I, such that φ(xj, yk) < 0, that is, (xj, yk) ∈ Ω. These
are grid points at which the solution is evolved;

• Ghost points with indices (j, k) ∈ G, such that 0 ≤ φ(xj, yk) < 2h. These are grid points
located outside of Ω, but near the boundary. In particular, for a second-order method, the
ghost points are within one or two grid cells (in either x- or y-direction) from the boundary.

Within the ghost points, we distinguish between the first L1 (0 ≤ φ(xj, yk) < h) and second
L2 (h ≤ φ(xj, yk) < 2h) layers (L1 ∪ L2 = G).

In other words, the layer L1 is made by the ghost points located within one grid cell from
the boundary, while the layer L2 is made of the ghost points located within two grid cells
from the boundary that are not in the first layer; see Figure 3.1.

• Inactive points. These are grid points located outside of Ω, but not ghost points (φ(xj, yk) ≥
2h).

Figure 3.1: Grid points setup: The red filled circular points are inner points, the light blue unfilled
circular and yellow unfilled square points are the first and second layers of ghost points, respectively.

Compressible Fluids in Domains with Moving Boundaries 9

Remark 3.1 The reinitialization step to obtain a signed distance function is fundamental for
complex geometries. Our numerical experiments have been conducted in a relatively simple case
of a (moving) disk, for which the signed distance function can be obtained explicitly:

φ(x, y) = R−
√

(x− xc)2 + (y − yc)2,

where R is the radius and (xc, yc) = (xc(t), yc(t)) is the center of the disk.

3.1 Two-Dimensional Finite-Difference Scheme

We begin by rewriting the 2-D compressible Euler equations (1.1) in the vector form:

Ut + f(U)x + g(U)y = 0, U :=


ρ

ρu

ρv

E

 , f(U) :=


ρu

ρu2 + p

ρuv

u(E + p)

 , g(U) :=


ρu

ρuv

ρv2 + p

v(E + p)

 .

As in the 1-D case, we consider a uniform grid with xj+1−xj = ∆x, yk+1− yk = ∆y, ∀j, k and
evolve the point values Uj,k(t) :≈ U(xj, yk, t) in the interior of the computational domain using
the following semi-discrete FD scheme:

dUj,k

dt
= −

f̂j+ 1
2
,k − f̂j− 1

2
,k

∆x
−
ĝj,k+ 1

2
− ĝj,k− 1

2

∆y
, (j, k) ∈ I. (3.2)

The ODE system (3.2) is numerically integrated, as in the 1-D case, using the three-stage third-
order SSP Runge-Kutta method. The numerical fluxes {f̂j+ 1

2
,k} and {ĝj,k+ 1

2
} are to be computed

at interfaces between internal cells or between internal and first layer cells.
Following [28,29,31], we first split the flux functions f and g as

f(Uj,k) = f+
j,k + f−j,k, f±j,k :=

1

2

(
f(Uj,k)± aj,kUj,k

)
,

g(Uj,k) = g+
j,k + g−j,k, g±j,k :=

1

2

(
g(Uj,k)± bj,kUj,k

)
,

(3.3)

where aj,k and bj,k are the spectral radii of the Jacobian matrices ∂f
∂U

(Uj,k) and ∂g
∂U

(Uj,k), respec-
tively, which for compressible Euler equations are

aj,k := |uj,k|+ cj,k, bj,k := |vj,k|+ cj,k. (3.4)

We then use a non-oscillatory generalized minmod reconstruction to evaluate the values of f± and
g± at the cell interfaces (xj+ 1

2
, yk) and (xj, yk+ 1

2
), respectively:

fE
j,k := f+

j,k +
∆x

2
(fx)

+
j,k, fW

j,k := f−j,k −
∆x

2
(fx)

−
j,k,

gN
j,k := g+

j,k +
∆y

2
(gy)

+
j,k, gS

j,k := g−j,k −
∆y

2
(gy)

−
j,k,

(3.5)

10 A. Chertock, A. Coco, A. Kurganov & G. Russo

where the slopes are computed using the generalized minmod limiter (see, e.g., [22, 24,32,33]):

(fx)
±
j,k = minmod

(
θ
f±j,k − f

±
j−1,k

∆x
,
f±j+1,k − f

±
j−1,k

2∆x
, θ
f±j+1,k − f

±
j,k

∆x

)
,

(gy)
±
j,k = minmod

(
θ
g±j,k − g

±
j,k−1

∆y
,
g±j,k+1 − g

±
j,k−1

2∆y
, θ
g±j,k+1 − g

±
j,k

∆y

)
,

(3.6)

where the minmod function is defined by (2.8). Finally, the numerical fluxes are given by

f̂j+ 1
2
,k = fE

j,k + fW
j+1,k, ĝj,k+ 1

2
= gN

j,k + gS
j,k+1. (3.7)

Remark 3.2 The local choices of aj,k and bj,k in (3.4) may cause the numerical diffusion present
in the scheme to be insufficient to prevent oscillations. The amount of numerical diffusion can be
increased by replacing aj,k and bj,k with max

j,k
aj,k and max

j,k
bj,k, respectively.

Remark 3.3 The spatial accuracy of the scheme can be increased if one replaces the second-order
minmod reconstruction (3.5), (3.6) with a higher-order one such as ENO or WENO reconstructions
(see, e.g., [28, 29,31]).

The computation of the values Uj,k at interior points
{

(xj, yk) : (j, k) ∈ I
}

according to (3.2)–
(3.6) requires the information on the solution values at ghost points

{
(xj, yk) : (j, k) ∈ G

}
that

arises from the discretization of the boundary conditions described below.

3.2 Two-Dimensional Boundary Treatment

In this section, we describe how the boundary conditions are set and discretized in both fixed and
moving boundary cases.

We denote by n and τ the normal and tangential unit vectors to the boundary ∂Ω, respectively,
and by κ the signed curvature of ∂Ω (see Figure 3.2). We assume that the unit normal points
outside the fluid domain. We also denote by u := (u, v)T the velocity vector and by un = u · n
and uτ = u · τ its normal and tangential components, respectively.

n

τ

Ω

n

τ

Ω

Figure 3.2: Locally convex (κ < 0, left) and concave (κ > 0, right) boundaries.

3.2.1 Fixed Boundary

We begin with a simpler case of a fixed (non moving) boundary and set four boundary conditions
on the normal and tangential components of the velocity, pressure and density.

Compressible Fluids in Domains with Moving Boundaries 11

Condition on the normal component of the velocity. The condition on the normal ve-
locity on the boundary ∂Ω is

un = 0. (3.8)

Condition on the pressure. We first rewrite the momentum equations (the second and third
equations in (1.1)) as

ρ
Du

Dt
+∇p = 0, (3.9)

where D/Dt = ∂/∂t+ u · ∇ denotes the Lagrangian derivative.
The normal velocity condition (3.8) implies that along ∂Ω the velocity vector is

u = uττ .

Therefore, taking into account the Frenet-Serret formulae we obtain

Du

Dt
=
Duτ
Dt

τ + uτ
Dτ

Dt
= aττ + u2

τκn, (3.10)

where aτ is the tangential acceleration of the fluid and the curvature κ can be computed using the
formula |κ| = 1/R, where R is the local radius of curvature of the boundary. With the notation
in the Figure 3.2, κ is negative for locally convex regions and positive for locally concave ones.

We finally project equation (3.9) onto the normal direction and use (3.10) to obtain the bound-
ary condition on the pressure:

∂p

∂n
= −ρu2

τκ. (3.11)

Condition on the density. As in the 1-D case, the boundary condition on the density is
obtained from the requirement that the boundary is adiabatic. More precisely, we assume that
∂S/∂n = 0, where S denotes the entropy (this assumption has been widely used; see, e.g., [12–14]).
This implies

∂p/∂n

∂ρ/∂n
=
∂p

∂ρ

∣∣∣∣
S=Const

= c2 =⇒ ∂ρ

∂n
=

(
ρ

γ p

)
∂p

∂n
. (3.12)

Condition on the tangential component of the velocity. To derive the boundary condi-
tions on the tangential velocity, we consider the vorticity ω := vx− uy and compute it in the local
coordinates (n, τ):

ω =
∂uτ
∂n
− ∂un

∂τ
− uτκ. (3.13)

We then use (3.8) to obtain that ∂un/∂τ = 0 on the boundary, which reduces (3.13) to

∂uτ
∂n

= uτκ+ ω. (3.14)

Finally, we assume that the flow is irrotational, which implies that ω = 0 and then (3.14) becomes

∂uτ
∂n

= uτκ. (3.15)

12 A. Chertock, A. Coco, A. Kurganov & G. Russo

Remark 3.4 The boundary condition (3.15) can be also obtained by imposing the normal deriva-
tive of the total enthalpy density to be zero at the boundary. This condition has been used, for
example, in [12–14].

In the case of a polytropic gas, the total enthalpy density is given by

h =
γ

γ − 1
· p
ρ

+
1

2
|u|2, (3.16)

and thus its normal derivative is

∂h

∂n
=

γ

(γ − 1)ρ

(
∂p

∂n
− p

ρ

∂ρ

∂n

)
+ u · ∂u

∂n
.

Using the conditions (3.11) and (3.12), we simplify the previous expression to obtain

∂h

∂n
= u · ∂u

∂n
− u2

τκ.

Finally, using (3.8) and the relation

u · ∂u
∂n

= uτ
∂uτ
∂n

+ un
∂un
∂n

,

we arrive at the same boundary condition (3.15) on the tangential component of the velocity.

3.2.2 Discretization of the Fixed Boundary Conditions

In this section, we present a numerical discretization of the boundary conditions (3.8), (3.11),
(3.12) and (3.15), derived in §3.2.1 for the case of fixed boundary. Notice that in this case we
only need to compute the values of u, v, p and ρ at the ghost points in the first layer L1 of ghost
points; see Figure 3.1.

Let us consider a ghost point G ∈ L1. We first compute the projection point B ∈ ∂Ω, which is
the closest point to G on the boundary (see Figure 3.3). To this end, we use the signed distance
function (3.1), that is,

B ≡ (xB, yB) = G− φ(G)
∇φ(G)

|∇φ(G)|
. (3.17)

We then define a 3 × 3 stencil SG also outlined in Figure 3.3. Note that this stencil consists of
ghost and interior points only and that the boundary point B is contained within SG.

Let us denote by Q[ψ;S] the bi-quadratic interpolant of a grid function {ψj,k} in the 3 × 3
stencil S. We recall that the bi-quadratic interpolant is the polynomial

Q[ψ;S](x, y) =
2∑

m,n=0

amnx
myn,

such that Q[ψ;S](xj, yk) = ψj,k for any point (xj, yk) of the stencil S. Then, the discretization of
the boundary conditions is obtained by approximating all of the values at point B in (3.8), (3.11),

Compressible Fluids in Domains with Moving Boundaries 13

G

B

Ω

Figure 3.3: Ghost point G ∈ L1, its boundary projection B ∈ ∂Ω, and the stencil SG (red filled circular
points).

(3.12) and (3.15) using the corresponding bi-quadratic interpolants:

Q[un;SG](B) = 0,

∂Q[uτ ;SG](B)

∂n
= κQ[uτ ;SG](B),

∂Q[p;SG](B)

∂n
= −κQ[ρ;SG](B)

(
Q[uτ ;SG](B)

)2
,

∂Q[ρ;SG](B)

∂n
=
Q[ρ;SG](B)

γQ[p;SG](B)
· ∂Q[p;SG](B)

∂n
.

(3.18)

It can be shown that the computation of (un)G through the bi-quadratic interpolationQ[un;SG](B)
leads to a denominator of αxαy(1 + αx)(1 + αy)/4, where (see Figure 3.4)

αx =
|xB − xP |

∆x
and αy =

|yB − yP |
∆y

with B := (xB, yB) and P := (xP , yP),

and P is the internal grid point closest to B. As in the 1-D case, this may produce numerical
instability when at least one of αx and αy is small. If so, we avoid small denominators by modifying
the stencil as follows. If αx is below a prescribed threshold α∗x, then the stencil is enlarged in the
x-direction, as shown in Figure 3.4. If αy is below a prescribed threshold α∗y, then the stencil is
modified analogously in the y-direction. Note that if both αx and αy are below their respective
thresholds, then the stencil is modified in both directions. Following the same argument of the
1-D case, in our numerical experiments we have used α∗x = α∗y = 1/10.

We now note that unlike the 1-D case, we cannot solve separately the 4× 4 systems obtained
from (3.18) for each ghost point G, since each 4×4 system may be coupled with the corresponding
4× 4 systems obtained at other ghost points. We therefore adopt an iterative technique that was
successfully employed in the context of elliptic equations in [10]. In particular, we transform the
system of boundary conditions (3.8), (3.11), (3.12) and (3.15) into a time-dependent problem with

14 A. Chertock, A. Coco, A. Kurganov & G. Russo

Figure 3.4: Enlarged stencil SG for the ghost point G: since αx = |xB−xP |
∆x

is below a prefixed threshold,
the original stencil (blue unfilled circular points) is enlarged in the x-direction (red filled circular points).

a fictitious time σ:
∂un
∂σ

= −un,

∂uτ
∂σ

= −µ2

(
∂uτ
∂n
− uτκ

)
,

∂p

∂σ
= −µ1

(
∂p

∂n
+ ρu2

τκ

)
,

∂ρ

∂σ
= −µ3

(
∂ρ

∂n
− 1

c2
s

∂p

∂n

)
,

(3.19)

where µ1, µ2 and µ3 are suitable constants, which will be chosen below. The iterative scheme is
then obtained by discretizing (3.19) in space and time (the fictitious time σ represents an iterative
parameter) and computing its steady-state solution. The partial derivatives with respect to σ are
discretized at the ghost points G using the first-order forward Euler method (this is good enough
to reach the steady state), while all the other terms are discretized at the corresponding boundary
points B using the same second-order discretization as in (3.18). The resulting iterative scheme
reads as

u(m+1)
n (G) = u(m)

n (G)−∆σQ[u(m)
n ;SG](B),

u(m+1)
τ (G) = u(m)

τ (G)− µ2∆σ

(
∂Q[u

(m)
τ ;SG](B)

∂n
− κQ[u(m)

τ ;SG](B)

)
,

p(m+1)(G) = p(m)(G)− µ1∆σ

(
∂Q[p(m);SG](B)

∂n
+ κQ[ρ(m);SG](B)

(
Q[u(m)

τ ;SG](B)
)2
)
,

ρ(m+1)(G) = ρ(m)(G)− µ3∆σ

(
∂Q[ρ(m);SG](B)

∂n
− Q[ρ(m);SG](B)

γQ[p(m);SG](B)
· ∂Q[p(m);SG](B)

∂n

)
.

(3.20)

The fictitious time step ∆σ and the constants µi, i = 1, 2, 3 are chosen in order to satisfy the CFL
conditions for (3.20), namely we take:

∆σ < 1 and µi∆σ < min(∆x,∆y), i = 1, 2, 3.

Compressible Fluids in Domains with Moving Boundaries 15

Iterations (3.20) are performed until the residual falls below a prescribed tolerance.

Remark 3.5 In all of the numerical examples presented below, the computational time devoted
to the solution in the iterative process is a small fraction of the total computational time. However,
in more complicated geometries, a direct implementation of the iterative scheme (3.20) may lead
to slow convergence. It would be therefore convenient to apply a block-relaxation approach, which
takes advantage of the fact that the systems (3.20) for different ghost points are not always fully
coupled, or Newton’s iteration scheme, which would lead to even faster convergence. Moreover,
in a special case of an obstacle being a rigid disk, the systems are even fully decoupled. In fact,
it can be easily proven that for any G ∈ L1, the stencil SG may only involve the ghost points,
which are closer to the interface than G. Then, if we order the ghost points according to the
distance from the interface and perform the iteration from the closest to the farthest point in a
Gauss-Seidel fashion (obtained by using a suitable choice of ∆σ and µi’s in (3.20)), the iterations
would convergence in one sweep only, but even without such an ordering of the ghost points, the
scheme converges in just few iterations.

3.2.3 Moving Boundary

In this section, we extend the boundary conditions presented in §3.2.1 from the case of a fixed
boundary to the case of a moving boundary. As before, we assume that the boundary is adiabatic
and the flow is irrotational.

Let us assume that the solid obstacle/boundary is moving according to a prescribed equation
of motion and that the normal boundary velocity is a given function V (x, t). In this case, the
boundary can be represented by the signed distance function φ(x, t) that satisfies the following
PDE:

∂φ

∂t
+ V (x, t) |∇φ| = 0.

Then, the normal boundary velocity V (x, t) can be expressed by

V (x, t) = −∂φ
∂t
.

For example, if the moving obstacle is a disk of radius R centered at c(t) ≡ (xc(t), yc(t)) and
moving with the given velocity uc(t), then one has

φ(x, t) = R− |c(t)− x| =⇒ V (x, t) =
c(t)− x
|c(t)− x|

· uc(t) = n · uc(t).

Condition on the normal component of the velocity. In the case of a moving boundary,
the boundary conditions on ∂Ω for the normal velocity becomes

un = V. (3.21)

Condition on the pressure. The condition is obtained as follows. The normal velocity con-
dition (3.21) implies that along ∂Ω the velocity vector is

u = uττ + V n. (3.22)

16 A. Chertock, A. Coco, A. Kurganov & G. Russo

The Lagrangian derivative of the velocity is given by

Du

Dt
=
Duτ
Dt

τ + uτ
Dτ

Dt
+
DV

Dt
n,

and therefore its projection on the the normal direction is

Du

Dt
· n = uτ

Dτ

Dt
· n+

DV

Dt
.

Using the equation of motion (3.9) yields

∂p

∂n
= −ρDu

Dt
· n = −ρuτ

Dτ

Dt
· n− ρDV

Dt
.

Furthermore,
Dτ

Dt
=
∂τ

∂t
+ u · ∇τ =

∂τ

∂t
+ uτ

∂τ

∂τ
=
∂τ

∂t
+ uτκn,

which gives
∂p

∂n
= −ρu2

τκ− ρuτ
∂τ

∂t
· n− ρDV

Dt
. (3.23)

Notice that DV/Dt = ∂V/∂t+ u · ∇V can be easily computed using the analytical expression of
V . Finally, one can show that

∂τ

∂t
· n = −φxφyt + φyφxt,

where the subscripts denote the corresponding partial derivatives.

Condition on the density. The condition on the density remains the same as in the fixed
boundary case, namely (3.12).

Condition on the tangential component of the velocity. This condition is obtained as
in §3.2.1, except that the normal component of the the velocity is no longer zero on the boundary
and should be taken into account in (3.13). The boundary condition (3.15) then becomes

∂uτ
∂n

=
∂un
∂τ

+ uτκ,

and using (3.21), we obtain
∂uτ
∂n

=
∂V

∂τ
+ uτκ, (3.24)

where ∂V/∂τ is assigned from the motion of the obstacle. Again, if one considers the case of a
translational motion of a disk of radius R centered at c(t) ≡ (xc(t), yc(t)) and moving with given
velocity uc(t), then V = n · uc(t),

∂V

∂τ
=
∂n

∂τ
· uc +

∂uc

∂τ
· n = −κτ · uc = −ucτκ,

and therefore the boundary condition (3.24) becomes

∂uτ
∂n

= (u− uc)τκ. (3.25)

Compressible Fluids in Domains with Moving Boundaries 17

3.2.4 Discretization of the Moving Boundary Conditions

We now turn to a numerical discretization of the boundary conditions (3.12), (3.21), (3.23) and
(3.24), which are valid in the case of moving boundary. Unlike the fixed boundary case, here we
will need to compute the values of u, v, p and ρ at the ghost points in both first, L1, and second,
L2, layers of ghost points.

Let us first consider a ghost point G ∈ L2. As in the fixed boundary case, we use formula
(3.17) to compute the projection point B ∈ ∂Ω, which is the closest point to G on the boundary
(see Figure 3.5). We then define two 3× 3 stencils associated with the ghost point G: SIG and SIIG
also outlined in Figure 3.5. Note that both stencils consists of ghost and interior points only and
that the boundary point B is contained in both SIG and SIIG .

G

BΩ

Figure 3.5: Ghost point G ∈ L2, its boundary projection B ∈ ∂Ω, and two stencils: SIG (red filled
circular points) and SIIG (blue unfilled circular points).

Then, the discretization of the boundary conditions is obtained by using the corresponding
bi-quadratic approximation in (3.12), (3.21), (3.23) and (3.24):

Q[un;SIIG](B) = V (B),

∂Q[uτ ;SIIG](B)

∂n
= κQ[uτ ;SIIG](B),

∂Q[p;SIIG](B)

∂n
= −Q[ρ;SIG](B)

{
κ
(
Q[uτ ;SIG](B)

)2

−Q[uτ ;SIG](B)

[
∂φ(B)

∂x

∂2φ(B)

∂y∂t
+
∂φ(B)

∂y

∂2φ(B)

∂x∂t

]
+
∂V (B)

∂t
+Q[u;SIG](B)

∂V (B)

∂x
+Q[v;SIG](B)

∂V (B)

∂y

}
,

∂Q[ρ;SIIG](B)

∂n
=
Q[ρ;SIIG](B)

γQ[p;SIG](B)
· ∂Q[p;SIG](B)

∂n
,

(3.26)

where, as before, Q[ψ;S] is a bi-quadratic interpolant of a grid function {ψj,k} in the stencil S.
Notice that in each of the four equations in (3.26) the quantity on the left-hand side and the
same quantities on the right-hand side (RHS) are discretized using the larger stencil SIIG (this is

18 A. Chertock, A. Coco, A. Kurganov & G. Russo

needed to include the sought values of u(G), v(G), p(G) and ρ(G) into the system), while the
other quantities on the RHS are discretized in a more accurate manner using the smaller stencil
SIG.

Finally, we follow the approach described in §3.2.2 and transform the system of boundary
conditions (3.12), (3.21), (3.23), (3.24) into a time-dependent problem with a fictitious time and
compute its steady-state solution using an iterative scheme similar to the one presented in §3.2.2.
Observe that Remark 3.5 for the fixed boundary case holds also in the case moving boundaries.

Remark 3.6 Note that if the ghost point G belongs to the first layer of ghost points, that is, if
G ∈ L1, the boundary procedure presented in this section is substantially simplified since in this
case SIIG ≡ SIG and only one interpolant Q[· ;SIG] is used for each interpolated quantity.

4 Numerical Examples

In this section, we perform several numerical tests and demonstrate the performance of the pro-
posed numerical method (a special focus will be put on the accuracy of the numerical boundary
treatment).

In all of the examples, we take the specific heat ratio constant γ = 1.4 and set the minmod
parameter in (2.7) and (3.6) to be θ = 1.5.

4.1 One-Dimensional Example

We begin with a 1-D example, in which we numerically study a gas in a tube with a moving right
boundary located at x = xB(t).

Example 1—One-Dimensional Accuracy Test

In this example, we take the computational domain to be [0, 1] with the solid wall boundary
conditions imposed at both ends. While the left boundary is fixed, we assume that the right
boundary oscillates according to the a-priori prescribed equation of motion

xB(0) = 0.9, x′B(t) = 0.25 sin3(2πt).

The initial data are taken to be constant:

ρ(x, 0) ≡ 1, u(x, 0) ≡ 0, p(x, 0) ≡ 1.

In Figure 4.1, we show the density computed by the FD scheme (2.3)–(2.9) on a uniform spatial
grid with ∆x = 1/200 at times t = 0.25, 0.5, 0.75 and 1.00. As one can clearly see, the solution
at times t = 0.25, 0.5 and 0.75 is smooth, while by the time t = 1 the solution breaks down and a
shock wave develops.

In order to demonstrate the second order of accuracy, we study the self-convergence of the
computed solutions. To this end, we compute the solutions on 5 uniform grids with ∆x = 1/200,
1/400, 1/800, 1/1600 and 1/3200 and measure the L1- and L∞-norms of the differences between the
solutions computed on two consecutive grids. To compute the experimental rates of convergence,

Compressible Fluids in Domains with Moving Boundaries 19

0 0.2 0.4 0.6 0.8
0.8

0.9

1

1.1

1.2

t=0.25

0 0.2 0.4 0.6 0.8
0.8

0.9

1

1.1

1.2

t=0.5

0 0.2 0.4 0.6 0.8
0.8

0.9

1

1.1

1.2

t=0.75

0 0.2 0.4 0.6 0.8
0.8

0.9

1

1.1

1.2

t=1

Figure 4.1: Example 1: Density computed using the proposed FD scheme at four different times.

r1 and r∞, at the uniform grid of size ∆x, we take the solutions on two coarser grids of size 2∆x
and 4∆x and use Aitken’s formula [1] to obtain

r = log2

(
‖ρ2∆x − ρ4∆x‖
‖ρ∆x − ρ2∆x‖

)
.

The obtained errors and experimental rates of convergence are shown in Table 4.1. We note
that the global L1 convergence rates of the proposed method are about 2 as expected, while the
L∞ convergence rates are slightly lower. The latter can be explained by the clipping phenomenon
typical for the generalized minmod reconstruction.

∆x ‖ρ∆x − ρ2∆x‖1 r1 ‖ρ∆x − ρ2∆x‖∞ r∞

1/400 2.05 · 10−4 – 3.90 · 10−3 –

1/800 5.03 · 10−5 2.03 1.31 · 10−3 1.58

1/1600 1.29 · 10−5 1.96 3.82 · 10−4 1.77

1/3200 3.25 · 10−6 1.99 1.04 · 10−4 1.88

Table 4.1: Example 1: L1- and L∞-errors and the experimental convergence rates at time t = 0.75.

20 A. Chertock, A. Coco, A. Kurganov & G. Russo

4.2 Two-Dimensional Examples

In the 2-D examples, the computational domain is [0, 1] × [0, 1] and the fluid domain is Ω =
[0, 1] × [0, 1] \ BR(t), where BR(t) is the rigid ball of radius R = 0.1 and center (xc(t), yc(t)), see
Figure 4.2. We implement inflow boundary conditions at the left boundary and outflow boundary
conditions at the right boundary, while the top and the bottom boundaries of the domain as well
as the boundaries of the moving circle are assumed to be solid walls.

Instead of adopting the boundary treatment proposed in §3.2, a simpler (but less accurate)
approach can be obtained by an extrapolation of p, ρ and uτ from inside the domain to the ghost
points without exploiting the physical meaning of these quantities on the boundary. The simplest
way to extrapolate these values is by using a constant extrapolation along the normal direction
to the boundary, or, alternatively, prescribing vanishing Neumann conditions on the boundary. In
this case, the set of boundary conditions will read as

∂ρ

∂n
= 0, un = V,

∂uτ
∂n

= 0,
∂p

∂n
= 0. (4.1)

We will compare the numerical solutions obtained using two different boundary conditions
implemented at the surface of the ball: (i) the boundary conditions proposed in §3.2 and (ii) the
constant extrapolation (4.1).

To better illustrate the advantages of the proposed boundary treatment, we will plot the 1-D
slices of the computed solutions along the three directions outlined in Figure 4.2.

Figure 4.2: 2-D examples: Computational domain and vertical (blue), oblique (red) and horizontal
(green) directions, along which the 1-D slices of the computed solutions will be presented.

Example 2—Two-Dimensional Accuracy Test

In the first 2-D example, we consider a simple wave that propagates around a steady disk with
xc(t) ≡ 0.6 and yc(t) ≡ 0.5 in a constant medium. The initial conditions are

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)) =

{(
ρ̃(x, y), ũ(x, y), 0, p̃(x, y)

)
, if |x− 0.35| < 0.25,(

ρ0, 0, 0, p0

)
, otherwise,

where

ũ(x, y) = 0.5 e−
(x−0.35)2

0.005 , ρ̃(x, y) = ρ0

(
1 +

γ − 1

2
· ũ(x, y)

c0

) 2
γ−1

, p̃(x, y) = p0

(
ρ̃(x, y)

ρ0

)γ
.

We set ρ0 = p0 = 1 and c0 =
√
γp0/ρ0 =

√
1.4.

Compressible Fluids in Domains with Moving Boundaries 21

Note that these initial data indeed correspond to a simple wave since in the absence of the
obstacle, the exact solution would be

u(x, y, t) = u(ξ, y, 0), ρ(x, y, t) = ρ0

(
1 +

γ − 1

2
· u(x, y, t)

c0

) 2
γ−1

, p(x, y, t) = p0

(
ρ(x, y, t)

ρ0

)γ
,

where ξ satisfies

x = ξ +
(
c0 +

γ + 1

2
u(ξ, y, 0)

)
t.

We performed the simulation until the final time t = 0.2 on four different uniform grids with
∆x = ∆y = 1/50, 1/100, 1/200 and 1/400. The density ρ(x, y, 0.2) computed on the finest of
these grids is shown in Figure 4.3 together with the initial condition ρ(x, y, 0).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9

1

1.1

1.2

1.3

1.4

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9

1

1.1

1.2

1.3

1.4

1.5

Figure 4.3: Example 2: Density computed by the proposed FD scheme at times t = 0 (left) and
t = 0.2 (right).

At time t = 0.2, the exact solution is still smooth, but due to the interaction with the disk its
analytic expression is unavailable. We therefore once again use Aitken’s formula to estimate the
L1-errors and compute the experimental convergence rates, which are presented in Table 4.2 for
the density ρ and x-component of the velocity u. As one can see, the convergence rates approach
2 for finer grids.

∆x = ∆y ‖ρ∆x − ρ2∆x‖1 rate ‖u∆x − u2∆x‖1 rate

1/100 2.71 · 10−3 – 2.62 · 10−3 –

1/200 1.09 · 10−3 1.31 1.08 · 10−3 1.28

1/400 3.12 · 10−4 1.80 3.11 · 10−4 1.80

Table 4.2: Example 2: L1-errors for ρ and u and the corresponding experimental convergence rates.

Finally, we compare the results obtained by the same second-order FD scheme but with two
different boundary conditions: equations (3.8), (3.15), (3.11) and (3.12) and the constant extrap-
olation (4.1). In Figure 4.4, we show the 1-D slices of the corresponding solutions along the blue
line, that is, in the vertical direction of Figure 4.2. As one can clearly see, the use of the pro-
posed boundary conditions leads to a substantial improvement of the computed solution near the
boundary. This is especially pronounced in the tangential velocity field.

22 A. Chertock, A. Coco, A. Kurganov & G. Russo

Figure 4.4: Example 2: Density, normal and tangential velocities and pressure as functions of the
signed distance from the boundary in the vertical direction at t = 0.2. The results are computed by
the proposed FD scheme with ∆x = ∆y = 1/50 (circles), 1/100 (stars) and 1/200 (dots) using the
boundary conditions (3.8), (3.15), (3.11) and (3.12) (right) and the constant extrapolation (4.1) (left).

Example 3—Shock Hitting a Steady Disk

In this example, we perform the moving shock-steady disk test from [8, Example 3]. We consider
a flow generated by a vertical shock which moves from its initial position at x = 0.25 to the right,
hitting a steady disk with xc(t) ≡ yc(t) ≡ 0.5. The initial conditions are:

(ρ(x, y, 0), u(x, y, 0), v(x, y, 0), p(x, y, 0)) =

{
(4/3, 35/99, 0, 1.5), x ≤ 0.25,

(1, 0, 0, 1), x > 0.25.

We perform the simulation until the final time t = 0.4 on three different uniform grids with
∆x = ∆y = 1/50, 1/100 and 1/200. We compare the results obtained by the same second-order
FD scheme but with two different boundary conditions: the boundary conditions (3.8), (3.15),
(3.11), and (3.12) and the constant extrapolation (4.1). In Figures 4.5 and 4.6, we show the 1-D
slices of the corresponding solutions along the vertical (blue) and oblique (red) lines, respectively,
of Figure 4.2. As one can clearly see, the use of the proposed boundary condition drastically
improves the quality of the results near the boundary.

Compressible Fluids in Domains with Moving Boundaries 23

Figure 4.5: Example 3: Density, normal and tangential velocities and pressure as functions of the
signed distance from the boundary in the vertical direction at t = 0.4. The results are computed by
the proposed FD scheme with ∆x = ∆y = 1/50 (circles), 1/100 (stars) and 1/200 (dots) using the
boundary conditions (3.8), (3.15), (3.11) and (3.12) (right) and the constant extrapolation (4.1) (left).

Example 4—Moving Ball

In the final example taken from [8, Example 4], we perform a moving boundary simulation. A
ball oscillates up and down in a translational motion. The center of the ball is initially located at
xc(0) = yc(0) = 0.5 and moves with velocity (x′c(t), y

′
c(t)) = (0, 0.1π cos(10πt)).

We perform the simulation until the final time t = 0.2 (after one period of the motion of the ball
center) on three different uniform grids with ∆x = ∆y = 1/50, 1/100 and 1/200. We compare the
results obtained by the same second-order FD scheme but with two different boundary conditions:
the boundary conditions (3.21), (3.24), (3.23) and (3.12) and the constant extrapolation (4.1). In
Figures 4.7, 4.8 and 4.9, we show the 1-D slices of the corresponding solutions along the vertical
(blue), oblique (red) and horizontal (green) lines, respectively, of Figure 4.2. Also in this case
there is a noticeable improvement in the numerical solution when adopting the proposed boundary
conditions, even in the vertical slice, for which obviously uτ = 0.

24 A. Chertock, A. Coco, A. Kurganov & G. Russo

Figure 4.6: Example 3: Density, normal and tangential velocities and pressure as functions of the
signed distance from the boundary in the oblique direction at t = 0.4. The results are computed by
the proposed FD scheme with ∆x = ∆y = 1/50 (circles), 1/100 (stars) and 1/200 (dots) using the
boundary conditions (3.8), (3.15), (3.11) and (3.12) (right) and the constant extrapolation (4.1) (left).

5 Conclusions

In this paper, we presented a new FD shock-capturing scheme for the numerical solution of the
Euler equations of gas dynamics on a Cartesian mesh in an arbitrary 2-D domain in the presence of
moving boundary. We restricted our consideration to the case in which the changes in the domain
boundary are prescribed and occur due to the movement of solid objects/obstacles/walls, which
is assumed to be independent of the fluid flow. The core of the proposed method is the following:
the computational domain Ω(t) is embedded in a rectangular region ΩR, which is discretized by a
regular Cartesian grid. Three sets of nodes are defined at each time step: internal nodes (belonging
to Ω(t)), ghost nodes (external nodes within one or few grid points from an internal node), and
inactive nodes (neither internal nor ghost nodes). A conservative FD scheme is used as a space
discretization. The evolution of the system in the time interval [tn, tn+1] is performed as follows:
for points that will be internal at time tn+1, the field variables are evolved by integrating the
governing equations in time, while boundary conditions are used to compute the values of all
the ghost points which are required to close the system of equations. The approach is general

Compressible Fluids in Domains with Moving Boundaries 25

Figure 4.7: Example 4: Density, normal and tangential velocities and pressure as functions of the
signed distance from the boundary in the vertical direction at t = 0.2. The results are computed
by the proposed FD scheme with ∆x = ∆y = 1/50 (circles), 1/100 (stars) and 1/200 (dots) using
the boundary conditions (3.21), (3.24), (3.23) and (3.12) (right) and the constant extrapolation (4.1)
(left).

and allows a treatment of boundary condition with arbitrary order of accuracy, depending on the
accuracy of the interpolation scheme. Here, we limit ourselves to the second order of accuracy
only.

Slip wall boundary conditions are considered, that is, the normal velocity of the fluid is equal
to the normal velocity of the boundary, while no restrictions are imposed on the tangential com-
ponent. A detailed description of proper boundary conditions for Euler equations, motivated by
physical principles, is provided; such boundary conditions allow the assignment of all four compo-
nents of the field vector (density, pressure and the two components of the velocity) at each ghost
point.

The effectiveness of the proposed technique is checked a-posteriori by detailed numerical sim-
ulations, both in one and two space dimensions, and both for fixed and moving boundaries. The
expected second-order accuracy has been numerically verified both in the 1-D and 2-D cases.
A boundary condition is derived for the normal derivative of the tangential component of the
fluid velocity. The validity of such condition is verified by comparing the numerical results with

26 A. Chertock, A. Coco, A. Kurganov & G. Russo

Figure 4.8: Example 4: Density, normal and tangential velocities and pressure as functions of the
signed distance from the boundary in the oblique direction at t = 0.2. The results are computed
by the proposed FD scheme with ∆x = ∆y = 1/50 (circles), 1/100 (stars) and 1/200 (dots) using
the boundary conditions (3.21), (3.24), (3.23) and (3.12) (right) and the constant extrapolation (4.1)
(left).

those obtained when imposing the trivial first-order boundary condition that assumes zero normal
derivative of the tangential component of the velocity. Much better results are obtained when the
proper boundary condition is adopted for the normal derivative of the tangential component of
the velocity.

Although in the present paper we assume that the (possibly moving) geometry of the domain
is known a-priori, the approach is general and can be extended to the case in which the geometry
itself is an unknown of the problem. The coupling between the fluid and one or several rigid bodies
suspended in it can be treated as described in §5.1 below. For more complex objects, for example
for deformable ones, the boundary of the domain Ω would satisfy a suitable level set equation,
which is coupled with the evolution equation of the gas. This topic is a subject of future study.

Compressible Fluids in Domains with Moving Boundaries 27

Figure 4.9: Example 4: Density, normal and tangential velocities and pressure as functions of the
signed distance from the boundary in the oblique direction at t = 0.2. The results are computed
by the proposed FD scheme with ∆x = ∆y = 1/50 (circles), 1/100 (stars) and 1/200 (dots) using
the boundary conditions (3.21), (3.24), (3.23) and (3.12) (right) and the constant extrapolation (4.1)
(left).

5.1 Suspended objects

The presented method can be used to describe the interaction between the gas and a suspended
solid object, which moves as a result of the actions that the gas exerts on it.

Let us denote by D(t) the region occupied by a rigid object and let M be its mass (per unit
thickness). Let us also denote by xD(t) := (xD(t), yD(t)) the center of mass of the object and by
ID its barycentric moment of inertia. If the object is homogeneous and its density is ρD, then

M = ρD|D|, ID = ρD

∫
D

|x− xD|2 dx,

where by |D| we denote the area of D.

The object D has three degrees of freedom, for example, the coordinates of the center of mass,
xD and the angle θ that the x-axis of a frame of references moving with the body forms with the

28 A. Chertock, A. Coco, A. Kurganov & G. Russo

x-axis of the fixed frame of reference. The motion of the object can be described by the equations
for the dynamics of a rigid body:

ẋG = vD, M v̇D = F , θ̇ = ω, ID ω̇ = Tz,

where F and Tz denote the total force (per unit thickness) and torque (per unit thickness),
respectively, that the gas exerts on the object D. The total force can be obtained from the
pressure as

F = −
∫
Γ

p(x)n(x) dΓ,

where Γ := ∂D denotes the boundary of D, and we used the convention that the unit normal n
to Γ points out of D (and therefore points inside Ω), as illustrated in Figure 5.1 (right). The total
torque acting on D can be computed as

T = −
∫
Γ

(x− xD)× n(x)p(x) dΓ.

In practice, only the z-component of the torque, Tz, will be nonzero. Such component can be
written as

Tz =

∫
Γ

(x− xD) · τ (x)p(x) dΓ.

Both the total force F and torque Tz can be easily computed to second order accuracy using the
information that is already available on the node and ghost points. Let us denote by q the generic
grid square with four grid points at its corners, and let us denote by Q the set of such grid squares
that intersect Γ. Generically, each intersection identifies a segment ∆Γ, whose endpoints will be
denoted by x+

q and x−q ; see Figure 5.1 (right). The value of the pressure at each endpoint can then
be computed by the 1-D linear interpolation between the values at an internal and ghost nodes.

Figure 5.1: Setting for the computation of the total force and torque, obtained by integrating along
the boundary of the object D (left); the square q, segment ∆Γq (dashed line) and unit normals at the
end points used for the computation of a contribution to the total force F and torque T (right).

Compressible Fluids in Domains with Moving Boundaries 29

Then, using the trapezoidal rule on each of such segments, we obtain

F = −1

2

∑
q∈Q

|∆Γq|
(
p(x+

q)n(x+
q) + p(x−q)n(x−q)

)
+O(h2),

where |∆Γq| denotes the length of the segment ∆Γq and h := max(∆x,∆y). A similar expression
can be obtained for the torque:

Tz =
1

2

∑
q∈Q

|∆Γq|
(
p(x+

q)τ (x+
q) · (x+

q − xD) + p(x−q)τ (x−q) · (x−q − xD)
)

+O(h2). (5.1)

The treatment of the interaction with a rigid body then just requires to consider six scalar ODEs
in addition to the system (3.2). Since only the points near the boundary are involved, the com-
putation of F and Tz leads to only a small increase in the computational time compared to the
case in which the motion of the object is prescribed. In the case of a circular disk, the torque is
zero since x− xD and τ are orthogonal, and therefore ω is constant and has no influence on the
dynamics.

If more than one object is immersed in the gas, the interaction between the gas and immersed
objects can be similarly treated by solving the equations of the dynamics of the various objects
until the objects touch. When this occurs, suitable collision rules should be adopted.

Application of the above formulae (supplemented by collision rules) for studying the motion
of rigid bodies in an inviscid compressible flow is the subject of ongoing research.

Acknowledgment. The work of A. Chertock was supported in part by the NSF Grants DMS-
1216974 and DMS-1521051. The work of A. Kurganov was supported in part by the NSF Grants
DMS-1216957 and DMS-1521009. The work of G. Russo was supported partially by the University
of Catania, project F.I.R. Charge transport in graphene and low dimensional systems, and partially
by ITN-ETN Horizon 2020 Project ModCompShock, Modeling and Computation on Shocks and
Interfaces, Project Reference 642768.

References

[1] K. E. Atkinson, An introduction to numerical analysis, John Wiley & Sons Inc., New York,
second ed., 1989.

[2] A. Baeza, P. Mulet, and D. Zoŕıo, High order boundary extrapolation technique for
finite difference methods on complex domains with Cartesian meshes, J. Sci. Comput., 66
(2016), pp. 761–791.

[3] , High order weighted extrapolation for boundary conditions for finite difference methods
on complex domains with Cartesian meshes, J. Sci. Comput., 69 (2016), pp. 170–200.

[4] F. Bassi and S. Rebay, High-order accurate discontinuous finite element solution of the
2D Euler equations, J. Comput. Phys., 138 (1997), pp. 251–285.

[5] A. Chaudhuri, A. Hadjadj, and A. Chinnayya, On the use of immersed boundary
methods for shock/obstacle interactions, J. Comput. Phys., 230 (2011), pp. 1731–1748.

30 A. Chertock, A. Coco, A. Kurganov & G. Russo

[6] A. Chaudhuri, A. Hadjadj, O. Sadot, and E. Glazer, Computational study of shock-
wave interaction with solid obstacles using immersed boundary methods, Internat. J. Numer.
Methods Engrg., 89 (2012), pp. 975–990.

[7] A. Chertock, S. Karni, and A. Kurganov, Interface tracking method for compressible
multifluids, M2AN Math. Model. Numer. Anal., 42 (2008), pp. 991–1019.

[8] A. Chertock and A. Kurganov, A simple Eulerian finite-volume method for compressible
fluids in domains with moving boundaries, Commun. Math. Sci., 6 (2008), pp. 531–556.

[9] A. Coco, G. Currenti, C. Del Negro, and G. Russo, A second order finite-difference
ghost-point method for elasticity problems on unbounded domains with applications to vol-
canology, Commun. Comput. Phys., 16 (2014), pp. 983–1009.

[10] A. Coco and G. Russo, Finite-difference ghost-point multigrid methods on Cartesian grids
for elliptic problems in arbitrary domains, J. Comput. Phys., 241 (2013), pp. 464–501.

[11] A. Dadone, Symmetry techniques for the numerical solution of the 2D Euler equations at
impermeable boundaries, Internat. J. Numer. Methods Fluids, 28 (1998), pp. 1093–1108.

[12] A. Dadone and B. Grossman, Surface boundary conditions for the numerical solution of
the Euler equations, AIAA Journal, 32 (1994), pp. 285–293.

[13] , Ghost-cell method for inviscid two-dimensional flows on Cartesian grids, AIAA Journal,
42 (2004), pp. 2499–2507.

[14] , Ghost-cell method for analysis of inviscid three-dimensional flows on Cartesian-grids,
Comput. & Fluids, 36 (2007), pp. 1513–1528.

[15] A. du Chéné, C. Min, and F. Gibou, Second-order accurate computation of curvatures
in a level set framework using novel high-order reinitialization schemes, J. Sci. Comput., 35
(2008), pp. 114–131.

[16] R. Fazio and G. Russo, Central schemes and second order boundary conditions for 1D
interface and piston problems in Lagrangian coordinates, Commun. Comput. Phys., 8 (2010),
pp. 797–822.

[17] F. Gibou, R. P. Fedkiw, L.-T. Cheng, and M. Kang, A second-order-accurate sym-
metric discretization of the Poisson equation on irregular domains, J. Comput. Phys., 176
(2002), pp. 205–227.

[18] Y. Gorsse, A. Iollo, H. Telib, and L. Weynans, A simple second order Cartesian
scheme for compressible Euler flows, J. Comput. Phys., 231 (2012), pp. 7780–7794.

[19] S. Gottlieb, D. Ketcheson, and C.-W. Shu, Strong stability preserving Runge-Kutta
and multistep time discretizations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
2011.

[20] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time
discretization methods, SIAM Rev., 43 (2001), pp. 89–112.

Compressible Fluids in Domains with Moving Boundaries 31

[21] L. Krivodonova and M. Berger, High-order accurate implementation of solid wall bound-
ary conditions in curved geometries, J. Comput. Phys., 211 (2006), pp. 492–512.

[22] K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscil-
latory central difference schemes for systems of conservation laws, SIAM J. Sci. Comput., 24
(2003), pp. 1157–1174.

[23] L. Monasse, V. Daru, C. Mariotti, S. Piperno, and C. Tenaud, A conservative
coupling algorithm between a compressible flow and a rigid body using an embedded boundary
method, J. Comput. Phys., 231 (2012), pp. 2977–2994.

[24] H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyperbolic conserva-
tion laws, J. Comput. Phys., 87 (1990), pp. 408–463.

[25] S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces, vol. 153 of
Applied Mathematical Sciences, Springer-Verlag, New York, 2003.

[26] G. Russo and P. Smereka, A remark on computing distance functions, J. Comput. Phys.,
163 (2000), pp. 51–67.

[27] J. A. Sethian, Level set methods and fast marching methods, vol. 3 of Cambridge Mono-
graphs on Applied and Computational Mathematics, Cambridge University Press, Cambridge,
second ed., 1999. Evolving interfaces in computational geometry, fluid mechanics, computer
vision, and materials science.

[28] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes
for hyperbolic conservation laws, in Advanced numerical approximation of nonlinear hyper-
bolic equations (Cetraro, 1997), vol. 1697 of Lecture Notes in Math., Springer, Berlin, 1998,
pp. 325–432.

[29] , High order weighted essentially nonoscillatory schemes for convection dominated prob-
lems, SIAM Rev., 51 (2009), pp. 82–126.

[30] C.-W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-
capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471.

[31] , Efficient implementation of essentially nonoscillatory shock-capturing schemes. II, J.
Comput. Phys., 83 (1989), pp. 32–78.

[32] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws,
SIAM J. Numer. Anal., 21 (1984), pp. 995–1011.

[33] B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel
to Godunov’s method, J. Comput. Phys., 32 (1979), pp. 101–136.

