
CIDE: An Integrated Development Environment for Microservices

Desheng Liu#, Hong Zhu*, Chengzhi Xu+, Ian Bayley*, David Lightfoot*, Mark Green* and Peter Marshall*

(#) Science & Technology on Complex Electronic System Simulation Laboratory, Beijing, China. Email: liudsnudt@126.com
 (*) Dept. of Comp. & Comm. Tech., Oxford Brookes Univ., Oxford, UK. Email: hzhu@brookes.ac.uk

 (+) School of Computer Science, Hubei University of Technology, Wuhan, China. Email: xcz911@gmail.com

Abstract – Microservices is a flexible architectural style that
has many advantages over the alternative monolithic style.
These include better performance and scalability. It is
particularly suitable, and widely adopted, for cloud-based
applications, because in this architecture a software system
consisting of a large suite of services of fine granularity, each
running its own process and communicating with the others.
However, programming such systems is more complex. In this
paper we report on CIDE, an integrated software development
environment that helps with this. CIDE supports programming
in a novel agent-oriented language called CAOPLE and tests
their execution in a cluster environment. We present the
architecture of CIDE, discuss its design based on the principles
of the DevOps software development methodology, and
describe facilities that support continuous testing and seamless
integration, two other advantages of Microservices.

Keywords – Integrated Software Development Environment
(IDE); Microservices; Service-Oriented Architectures; Agent-
Oriented Programming; Programming Languages and Tools.

I. INTRODUCTION

Microservices (MS) is a software architecture style in which
a large complex software application is decomposed into
many services each of small (hence micro) size [1, 2]. These
services can be independently deployed to a cluster of
computers and duplicated to achieve load balance and
system-performance optimization. Each runs in its own
process and interacts with other services through lightweight
communication mechanisms. The alternative is the so-called
monolithic style, in which number of services is small. MS
brings many benefits for engineering service-oriented
systems. These include support for team development,
continuous testing and seamless integration. It is widely
considered to be an effective architecture for cloud
computing and service-oriented applications [3].

However, developing a system that consists of a large
number of micro-scale services running on a farm of servers
imposes grave challenges to software engineering [4, 5].
These include:
• Program complexity, due to the thousands of services at

micro scale running asynchronously in a distributed
computer network. Programs that are difficult to
understand are also hard to write and hard to modify.

• Performance criticality, especially because MS is often
adopted in order to improve performance, and this
requires the system to be elastic according to the
workload. MS enables services to be duplicated and

distributed to a cluster of servers but the choice of
where to duplicate and distribute to can have a great
impact on performance. We must therefore be able to
test systems with different duplication and distribution
patterns.

• Evolution continuity, which is often required by the
application domain for which MS has been chosen. MS
enables flexible modification of the component
microservices and seamless integration of new
functionality into an existing system. However,
ensuring this advantage is a difficult task, because the
development and testing must be done in a cluster
environment.
Our solution to the complexity challenge is a novel

programming language called CAOPLE, introduced in our
previous work [6] where we demonstrated that it can be
used to program service-oriented systems as part of MS.
COAPLE is based on the caste-centric conceptual model of
multi-agent systems [7]. It has been implemented by
compiling high-level source code into object code for a
lightweight language-specific virtual machine called
CAVM-2, which is a complete redesign of an initial
prototype called CAVM. In this paper, we present an
integrated software development environment called CIDE
(CAOPLE Integrated Development Environment) that
supports programming in CAOPLE. Most importantly, it
supports the precise control over deployment and testing
that is necessary to overcome the performance criticality
and evolution continuity challenges mentioned above.

II. OVERVIEW OF CAOPLE LANGUAGE

A. Key Features of CAOPLE Language

CAOPLE stands for Caste-centric Agent-Oriented
Programming Language and Environment [7]. Here, agents
are service providers that are analogous to real-world
counterparts such as estate agents that buy and sell
properties, and travel agents that buy and sell air tickets. It is
worth noting that agents can themselves be service
requesters.

In the literature on service-oriented architectures,
including that on MS, the word “service” can mean either
the functionality provided by the computer system [8] or the
computational entity that provides that functionality. Here,
we use the word “service” with only the first meaning,
reserving the word “agent” for the second. In our conceptual

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/220155656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

model, an agent is an autonomous entity running in its own
process. Agents encapsulate data, operations and behaviour
rules. They execute in parallel and cooperate with each
other through a set of well-defined asynchronous
communication channels. This corresponds exactly with the
second meaning of services.

CAOPLE also introduces the classifier of agents as a
language facility, which is called a caste. Therefore, agents
are runtime instances of castes just like objects are runtime
instances of classes. Conversely, a caste is a template for
agents just like a class is a template for objects. The word
“microservice” can either mean one of several identical
copies of a service, each being an agent in our conceptual
model, or it can mean a template from which instances can
be generated and deployed to different servers, i.e. a caste in
our conceptual model. So the concepts of caste and agent
that we have just introduced correspond precisely to these
two different meanings.

An important difference between caste and class is that
an agent can join a caste and quit from a caste dynamically,
even suspending and resuming its caste membership at
runtime. Moreover, an agent can be a member of multiple
castes and a caste can extend multiple castes. The caste
facility provides a powerful language facility that supports
programming microservices.

CAOPLE is agent-oriented because agents are the basic
building blocks of programs. It is in fact purely agent-
oriented because the agent is the only building block we
have. It is also caste-centric because programs are
constructed from castes and every agent must be created as
an instance of a caste. Readers are referred to [6] for more
details of the language.

B. Implementation of COAPLE on CAVM Virtual Machine

COAPLE is implemented as the compilation of source code
into object code of the CAVM-2 virtual machine, which is
designed for languages like CAOPLE running in a
distributed computing environment. CAVM-2 provides a
runtime environment in the same way that Java Virtual
Machine (JVM) supports the execution of Java program.

However, CAVM-2 is significantly different from the
JVM in both architecture and functionality. CAVM-2
consists of two key elements:
• Communication Engine (CE) provides a lightweight

communication mechanism for network transparent
communications between agents.

• Local execution engine (LEE) executes the instructions
of the program code and fulfils the computation logic.
These elements can be distributed on each hardware

node of a cluster in any combination: CE only, LEE only or
both CE and LEE. This is illustrated in Figure 1. Agents can
be executed on any LEE and communicate with other agents
through the CE without knowing their physical location on
the network, so CAOPLE code can be network-transparent.
More details of the virtual machine and its implementation
can be found in [6].

To achieve optimal performance for the cluster, it is
important to allocate carefully the CEs and LEEs to the
computer nodes, to deploy and distribute the castes to the
CEs and to allocate and distribute agents to various LEEs in
the network. As the workload profile of an application
changes dynamically, these CE/LEE allocations and
caste/agent distributions must be adapted flexibly. The
CAVM-2 virtual machine provides a flexible mechanism for
such configuration of the cluster and deployment and
distribution of agents; see [6] for more details.

However, the challenge that remains is how to turn such
a mechanism into a facility that enables the developers to
test and debug such a system in various platform
configurations and code distributions.

III. THE CIDE DEVELOPMENT ENVIRONMENT

A. Overall Architecture and Design Principle

CIDE is designed based on two principles. The first is that it
should support the caste-centric agent-oriented software
development methodology [7]. This methodology deals with
the complexity of dynamic multi-agent systems through
modelling and formal specification at a high level of
abstraction, together with automated tools transforming
models and formal specifications into program code.

Therefore, as shown in Figure 2, we integrated into
CIDE a tool for constructing graphic models of systems in a
modelling language called CAMLE. We also integrated

Figure 1 Overall Structure of CAVM Virtual Machine

Figure 2 Architecture of CIDE

tools for checking model consistency and completeness, for
transforming CAMLE models into formal specifications in
SLABS [9, 10, 11], for editing formal specification of multi-
agent systems in SLABS [12], and for automatically
transforming formal specifications in SLABS into CAOPLE
source code skeletons. Such tools help to reduce the
complexity of programming by modelling system structure
with graphic models. They also help with the testing,
validation and verification of the program against formal
specifications.

Figure 3 shows the overall GUI of CIDE, in which
various types of software artefacts, including bytecode in
the case shown, can be viewed and edited in multiple tabs,
and then processed to generate new artefacts with various
types of tools.

The second principle on which CIDE is designed is to
support evolutionary and agile development, including
continuous testing and integration in particular. It followed
the so-called “shift to the left” principle of DevOps
philosophy. In DevOps, engineering activities associated
with testing, deployment and operation are shifted towards
earlier stages of development (e.g. coding) in order to
enable incremental development and seamless integration.
Following this principle, we designed and implemented a set
of tools and facilities that help to narrow the gap between
development and operation of service-oriented systems.

As shown in Figure 2, CIDE also extends the traditional
software development environment with three new types of
facilities: (a) the management and configuration of cloud
resources, (b) the deployment and distribution of object
code to a cluster of computers, (c) parallel and distributed

execution and monitoring
of MS on a cluster.

These facilities
provide key support for
MS. There are some tools
already available on the
market that provide
similar supports, often as
a part of the container
technology. However, as
far as we know, all the
existing tools are
operational tools, not IDE
plug-ins. Turning existing
tools into IDE plug-ins is
difficult, if not
impossible, because these
tools allow only one
instance to run at a time to
manage a cluster, whereas
an IDE is normally used
by many developers
simultaneously. It is also
difficult to design and
implement a tool that

enables multiple developers to manage and monitor multiple
clusters as a part of the development environment. From a
developer’s point of view, such a cluster could be either a
testing facility or a real operation facility. Whichever it is,
the tool should treat them in the same way so that test
executions can be realistic. The difficulty of managing and
configuring the cluster is even greater if the environment
includes a complicated software stack. Luckily, CAOPLE
programs can be run on a much simpler platform of CAVM-
2. CIDE overcomes these difficulties by taking advantage of
the existing mechanisms provided by the CAVM-2 virtual
machine. The following describes these facilities of CIDE.

B. Management and Configuration of Cloud Resources

The prototype tool for cloud resource management and
configuration in CIDE has two main functions. First of all, it
can deploy the CAVM-2 virtual machine to any of the nodes
in a cluster. It scans the IP addresses in a user-specified
range to detect active computer nodes and then it obtains
their host names. CAVM-2 can then be deployed on a
computer node when authorized remotely through file
transmission and remote execution of programs. Secondly,
the tool enables the developer to turn on and off the CEs and
LEEs on each node of a cluster of computers. In this way, a
cluster can be configured by setting which nodes run CEs
and are communication-only, which run LEEs, and are
computation-only, and which nodes run both, as identifying
these can reduce the cross-node communications. Figure 4
shows the graphical user interface for the cloud
management tool.

Figure 3 CIDE’s Graphic User Interface

C. Deployment of Castes to CEs

If a caste is deployed to a CE then that CE manages all
instances of the caste (i.e. its agents). In addition, all
messages sent to and generated by these agents are through
the CE. The object code of the caste is also stored on the
computer node and when an agent is instantiated on an LEE,
the object code is downloaded to the computer node where
the LEE is located, if the code does not already exist on the
node.

The deployment tool allows the user to see a list of the
castes on a CE, and to manually load the object code of a
new caste to the CE. Figure 5 shows its user interface.

D. Agent Management

The agent management facility allows the user to create and
launch agents on an LEE running in the network and to
monitor the execution states of agents on a specific LEE. As
Figure 6 shows, only a few button clicks are needed to
deploy an agent and launch it on any LEE. Its ID and
execution state are also displayed.

IV. CONCLUSION

In this paper, we proposed a new type of integrated software
development environment that supports the development of
service-oriented applications in MS and we reported the

CIDE system that we have been developing for the
CAOPLE programming language.

A. Related Work

As cloud computing and big data have become the main
trend of recent years, the IT industry urgently needs a new
approach to meet the scalability challenges of so-called Big
SaaS [13]. Many companies and organizations have adopted
MS. These include Amazon, eBay, and Netflix. However,
problems remain in how to develop applications in MS and
how to improve the efficiency of running a large number of
microservices in a cluster of servers. In [6], we identified
three main challenges to the development and operation of
service-oriented applications in the MS architecture. These
are (a) how to program a large set of fine-grained services
running in parallel, (b) the need for a lightweight
communication facility for the large number of MS to
collaborate with each other, and (c) the need for a flexible
code deployment mechanism and facility that enable
services to be deployed to a cluster easily.

In the past two years, much work has been reported to
address challenges (b) and (c) above. Almost all of them
adopt the so-called container technology, which is a kind of
lightweight virtualization technique. It allows programs to
share memory, processors and the file system, but provides
separation to the customers [14]. Thousands of containers
can be deployed on one host easily and they can restart
quickly too. Processes can be deployed to containers
flexibly at a cost much less than that of starting a new
virtual machine.

Many kinds of containers have emerged. Docker is an
open-source project that automates the deployment of
applications inside containers by providing an additional
layer of abstraction and automation of operating-system-
level virtualization on Linux [15]. Many companies have
adopted Docker. Amazon has published Container Service
(Amazon ECS), which is a highly scalable and fast
container management service that makes it easy to run,
stop and manage Docker containers on a cluster of Amazon
EC2 instances [16]. Google has published an open-source
platform, Kubernetes, for automating deployment, scaling
and operations of applications on Linux containers across
clusters of hosts [17]. Oracle provides Solaris Zones as
Container for Oracle Solaris 11 OS [18]. Microsoft has also
started to work on the container technology.

However, while container technologies improve the
infrastructure on which microservices execute, the programs
running in the containers are still programmed in traditional
programming languages. Challenge (a) remains an unsolved
problem. In fact, the complexity of the programming task
for developing MS increases due to the introduction of
additional elements of containers and the need to consider
runtime efficiency and scalability in a cluster environment.

Our approach proposed in [6] differs from that of
container technologies. It advocates a new programming
paradigm based on the caste-centric agent-oriented

Figure 4 The Cloud Management and Configuration Facility

Figure 5. The Caste Deployment Facility

Figure 6. The Agent Management Facility

conceptual model of service-oriented applications. A new
programming language called CAOPLE was proposed and
implemented. This paper further develops this approach by
introducing CIDE, first of a new generation of integrated
development environment. It has two distinctive features.

Firstly, it is based on the principles of DevOps software
development philosophy. CIDE provides facilities and tools
for the developers to manage computational resources in a
cluster, to deploy program components to the nodes on a
cluster and to create and execute instances of MS on the
node. These are the functionalities and facilities that are
traditionally provided by system management and
monitoring tools and software deployment tools. By
integrating them into the IDE, we enable the developers to
execute and test their code in a real cluster environment,
thereby narrowing the gap between development,
deployment, operation and maintenance.

Secondly, CIDE is based on the agent-oriented software
development methodology CAMLE for conceptual design
of service-oriented systems. In particular, it integrates
CAMLE with the agent-oriented modelling language and
tools. The graphical models of agent-oriented systems can
be automatically checked for their consistency,
completeness, and automatically transformed into formal
specifications written in SLABS. A formal specification of a
service-oriented system written in SLABS can be
automatically transformed by CIDE into a CAOPLE code
skeleton. Therefore, CIDE not only provides a coding
environment, but also supports the complete lifecycle of
specification, design, coding, testing and run-time
performance tuning of service-oriented applications in a
consistent conceptual model.

B. Further Work

CIDE has been implemented in Java and tested on a mini-
cluster. More advanced features that provide stronger
support to system monitoring, testing and debugging are
being developed. In particular, we are revising and adapting
a testing automation framework [19] developed for testing
multi-agent systems based on SLABS formal specification.
Another subject worth further research is the facility for
debugging microservices in a distributed parallel computing
environment. We are also conducting case studies with the
system in the development of programs in CAOPLE with a
more powerful cloud infrastructure.

ACKNOWLEDGEMENT

The work reported in this paper is partially supported by EU
FP7 project MONICA on Mobile Cloud Computing (Grant
No. PIRSES-GA-2011-295222), Oxford Brookes
University’s Central Research Fund (CRF Phase-2 2015),
National Natural Science Foundation of China (Grant No.
61170025), and Natural Science Foundation of Hubei
Province, China (Grant No. 2013CFB021).

REFERENCES

[1] Lewis, J., and Fowler, M., “Microservices”, URL: http:
//martinfowler.com/articles/microservices.html#footnote-
monolith, 25 Mar. 2014. (Last access on 2 Nov. 2015)

[2] Richardson C., “Introduction to Microservices”. URL: https:
//www.nginx.com/blog/introduction-to-microservices/, May
19, 2015. (Last access on 2 Nov. 2015)

[3] High Scalability, “The Great Microservices Vs Monolithic
Apps Twitter Melee”, URL: http://highscalability.com/
blog/2014/7/28/the-great-microservices-vs-monolithic-apps -
twitter-melee.html, Jul., 2014. (Last access on 2 Nov. 2015)

[4] NewMan, S., Building Microservices: Designing Fine-
Grained Systems, O’Reilly, Feb., 2015.

[5] Krause, L., Microservices: Patterns and Applications,
Amazon.co.uk, Marston Gate, April, 2015.

[6] Xu, C., Zhu, H., Bayley, I., Lightfoot, D., Green, M., and
Marshall, P., “CAOPLE: A Programming Language for
Microservices SaaS”, in Proc. of SOSE 2016, pp42-52.

[7] Zhu, H., “Towards An Agent-Oriented Paradigm of
Information Systems”. In Handbook of Research on Nature
Inspired Computing for Economy and Management, Jean-
Philippe Rennard (Ed), Chapter XLIV, pp679–691, 2006.

[8] Singh, P. M., and Huhns, N. M., Service-Oriented
Computing: Semantics, Processes, Agents, Wiley, 2005.

[9] Zhu, H. and Shan, L., “Caste-Centric Modelling of Multi-
Agent Systems: The CAMLE Modelling Language and
Automated Tools”, in Model-Driven Software Development,
Research and Practice in Software Engineering, Vol. II,
Beydeda, S. and Gruhn, V. (eds), Springer, 2005, pp57-89.

[10] Shan, L., Du, C., and Zhu, H., “Modeling and Simulating
Adaptive Multi-Agent Systems with CAMLE”, In Proc. of
COMPSAC 2015, 1-5 July, 2015, Vol. 2, pp147-152.

[11] Zhu, H. and Shan, L., “Agent-Oriented Modelling and
Specification of Web Services”, International Journal of
Simulation and Process Modelling, Vol. 3, No.1&2, pp26 –
44, August, 2007.

[12] Zhu, H., “SLABS: A Formal Specification Language for
Agent-Based Systems”, International Journal of Software
Engineering and Knowledge Engineering, Vol. 11. No. 5,
pp529-558, Nov., 2001.

[13] Zhu, H., Bayley, I., Younas, M., Lightfoot, D., Yousef, B.,
Liu, D., “Big SaaS: The Next Step Beyond Big Data”, in
Proc. of CLOUD 2015, pp1131-1140.

[14] Pahl, C., “Containerization and the PaaS Cloud”, IEEE
Cloud Computing, Vol. 2, No. 3, pp24-31, May-Jun. 2015.

[15] Merkel, D., “Docker: Lightweight Linux Containers for
Consistent Development and Deployment”. Linux Journal,
Vol. 2014, No. 239, p2, 2014.

[16] Amazon Products & Services, “Amazon EC2 Container
Service”, URL: https://aws.amazon.com/ecs/. (Last access
on 2 Nov. 2015)

[17] Brewer, E. A., “Kubernetes And The Path To Cloud Native”,
In Proc. of SoCC’15, 2015, pp167-167.

[18] Van Surksum, K., “Release: Oracle Solaris 11”. URL:
http://virtualization.info/en/news/2011/11/release-oracle-
solaris-11.html. (Last access on 2 Nov. 2015)

[19] Wang, S., and Zhu, H., “CATest: A Test Automation
Framework for Multi-Agent Systems”, in Proc. of IEEE
COMPSAC 2012, July 2012, pp148-157.

