

If Docker Is The Answer, What Is The Question?
A Case for Software Engineering Paradigm Shift Towards Service Agent Orientation

Hong Zhu and Ian Bayley
School of Engineering, Computing and Mathematics
Oxford Brookes University, Oxford OX33 1HX, UK
Email: hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

Abstract—The recent rise of cloud computing poses serious
challenges for software engineering because it adds complexity
not only to the platform and infrastructure, but to the software
too. The demands on system scalability, performance and
reliability are ever increasing. Industry solutions with
widespread adoption include the microservices architecture,
the container technology and the DevOps methodology. These
approaches have changed software engineering practice in
such a profound way that we argue that it is becoming a
paradigm shift. In this paper, we examine the current support
of programming languages for the key concepts behind the
change in software engineering practice and argue that a novel
programming language is required to support the new
paradigm. We report a new programming language CAOPLE
and its associated Integrated DevOps Environment CIDE and
demonstrate the utility of both.
Keywords— Cloud computing, Microservices, DevOps, Service
agent orientation, Software engineering paradigms, Parallel and
distributed programming models, Software development
methodology, Programming languages, Integrated Software
Development Environment.

I. INTRODUCTION
Cloud-based applications are becoming more and more
complex, whilst having to meet unprecedented and ever
increasing demands on system performance, scalability,
reliability and maintainability. Solutions for meeting this
demand have been proposed that increase system flexibility
by means of greater elasticity and evolvability. These
solutions include the microservices architecture [1, 2, 3],
container technology [4, 5], DevOps tools and methodology
[6], etc. Behind these solutions is a set of novel concepts that
have become the basis for a set of new techniques. In this
paper we will argue that the changes to practice that they
bring about are so fundamental that they are causing a
paradigm shift right now. We will recognize the key
characteristics of the new paradigm, identify the missing
pieces in that emerging paradigm, and propose further
research directions. We will also report our own research and
demonstrate how the power of new paradigm can be further
strengthened.

The remainder of this paper is organized as follows.
Section II discusses what is meant by a software engineering
paradigm and why paradigm shifts become necessary.
Section III reviews the current best practice in software
engineering of cloud native software to identify the
characteristic features of the emerging new paradigm.
Section IV examines existing programming models in the

light of the new paradigm by comparing our service agent
model to actor and reactive programming models. Section V
reports our ongoing research into the development of a new
programming language called CAOPLE, and an associated
DevOps environment called CIDE. Section VI concludes the
paper with a summary and a discussion of further research.

II. SOFTWARE ENGINEERING PARADIGMS

A. What is a paradigm?
A paradigm of software engineering is a consistent set of
software development techniques and methodologies guided
by a philosophical model of computing; this is an abstract
model of computer systems and of software systems running
on hardware. The model dictates how applications should be
constructed and how they should evolve.

For structured software engineering, the first well-
established paradigm, the philosophical model can be
summarized as: computing is processing of data stored in the
computer. The hardware is assumed to be a stand-alone
general-purpose digital mainframe computer with a
collection of data storage and input/output devices. A
software system is considered to be a collection of
procedures, each defining a routine operation in the
processing of data, and organized in a hierarchical structure
with a top-level “main” procedure for overall control.

The philosophical model for object-oriented software
engineering, on the other hand, can be summarized as:
computing is interactions between objects, which are
computational entities that encapsulate data and operations.
The hardware can be a network of computers instead of
simply a standalone. Data is no longer separated from the
code that processes it.

Note that the existence of a philosophical model is
essential for a paradigm to become well-established. This is
even true for the paradigms that have not yet become
mainstream. For example, logic programming views
computing as logical inference whereas functional
programming views it as function application, in the
mathematical sense of the symbol manipulation in lambda
calculus [7].

Three conditions are needed for a paradigm to become
mainstream. First of all, the philosophical model must be
supported directly by the hardware and enable the power of
the hardware to be fully utilized. Secondly, there should be
an associated development process such as the waterfall
method for structured programming and the use case driven

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/220155646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and agile process models for the object-oriented paradigm.
Finally, there should be an associated programming language
based on the philosophical model. Examples include the
languages Fortran, Basic, Pascal and C for structured
programming and the languages Smalltalk, Eiffel, C++ and
Java for object-orientation.

B. What drives paradigm shifts?
Paradigms guide, but also impose constraints, on how we
develop, operate, maintain and evolve computer applications.
When hardware advances make new kinds of application
possible, these constraints can become a development
bottleneck. When that happens, the philosophical model of
computing needs to change, in order to improve productivity
and software quality. This is called a paradigm shift, a
concept due to the American physicist and philosopher
Thomas Kuhn who defined it as a fundamental change in the
basic concepts and experimental practices of a scientific
discipline [8].

The two major paradigm shifts in software engineering
over the last few decades have been from assembly code to
structured software engineering, using procedural high-level
programming languages, and from that to object-oriented
software engineering. The main driving force behind both
paradigm shifts was a desire to improve software
productivity and reliability and to make it possible to write
more complex and larger-scale software systems.

Efficiency, in contrast, has always been a lesser concern.
In fact, both paradigm shifts were at the expense of
efficiency. The intention in both cases was that the
programmer should be able work at a higher level of
abstraction, concentrating on the business logic of the
application, with the compiler mapping a high-level model of
computation used by the programmer to the low-level model
of the machine, with some performance penalty.

It is the advances in hardware, making computing
cheaper, faster and smaller, that prompts the aforementioned
desire for more complex and larger-scale systems. The
limitations of the old paradigm became a bottleneck that the
paradigm shift then overcomes. With this in mind, it is
instructive to note that the cheaper/faster/smaller trend has
continued, bringing about wireless networks and smart
devices. These have led to the development of cloud, mobile,
and IoT (Internet of Things) applications.

However, the object-oriented paradigm, in which
computer systems are viewed as consisting of passive objects
waiting for method calls from each another, is a poor fit for
such applications, in which the computational entities are
autonomous, collaborative and proactive. The programmer
must therefore deal with all the technical details of network
communication, collaboration protocols and fault tolerance.
Even to deploy a software system to a cluster and to monitor
its execution is a non-trivial task. These technicalities could
instead become only a compiler concern if the move was
made to a yet higher level of abstraction with another
paradigm shift.

III. REVIEW OF THE CURRENT PRACTICE
We will now deduce an ideal philosophical model for cloud
computing in the proposed new paradigm by reviewing the
dominant software architectures and platforms for purpose-
built or cloud-native applications. We will also in this section
review the development process models from a management
perspective in order to understand what are the bottlenecks
of the existing paradigm. This will lay a foundation for a
review in the next section of current programming
languages. That review will help to identify a route from the
current state-of-the-art to a more mature paradigm for cloud
computing that supports the philosophical model.

A. Microservices
The microservices architecture became widely adopted for
cloud-native applications during the 2010s. Santoli [9]
pointed out that all successful IT companies have taken an
aggressive approach to adopting it. Well-known examples
include NetFlix [10, 11], Amazon [12], EBay [13], Google
[13] and Microsoft (with Azure) [14]. A global survey by
Smartbear in 2016 [15] found that 73% of organizations
provide both internal and external APIs, which is a key
technique used to integrate services in the microservices
architecture [16].

(1) The Concept of Microservices

As Martin Fowler [1] puts it, the idea of the microservices
architectural style is that an application consists of "a suite of
small services, each running in its own process and
communicating with lightweight mechanisms, often an
HTTP resource API". These services are "independently
deployed" with a "bare minimum of centralised
management". Nevertheless, the exact definition is still a
matter of controversy [17, 18].

Focusing on the software architecture point of view, the
microservices architectural style has the following
properties:
• Components are services.

o Each component is autonomous, i.e. running on its
own process and managing its own resources.

o Each implements a single function and so is of fine
granularity.

o Each can be independently deployed to different
machines over a cluster.

• Connectors are service requests and responses.
o Communication is only through service requests and

responses via a lightweight mechanism.
o Connections between a service provider and a service

requester can be established dynamically at runtime.
• Configuration is dynamic and decentralised.

o Services communicate with each other to form a
collaborating network, typically without a central
controller.

o New copies of a service can be created if needed and
idle existing copies can be destroyed, both at runtime.

o Multiple copies of a service may exist in the system
and they can be distributed to multiple machines.

(2) Benefits of The Microservices Architecture

The benefits of microservices for large cloud-based
applications [19] over alternative styles, such as monolithic
architecture, include the following:
• Continuous software evolution. Introducing new

functionality can be achieved by adding new services,
and bugs can be fixed at runtime by replacing existing
services. Only one service (and possibly its
dependencies) needs to be rebuilt and redeployed. This
can be done without stopping the rest of the application,
which is of particular importance for cloud-based
applications.

• Seamless technology integration. It is easy to combine
many different programming languages, varieties of
database, hardware and software environments and other
computing technology depending on what fits best, all
running on a heterogeneous cluster of different platforms.

• Optimal runtime performance. This can easily be
achieved in the microservices architecture by running
multiple copies of a service when there is high demand
and balancing the system load by deploying the right
number of these copies to the correct servers, and moving
them between servers.

• Horizontal scalability. The system can be easily scale out
by running multiple copies of individual services on new
servers in response to demand rather than running
multiple copies of the whole system.

• Reliability through fault tolerance. Fault tolerance can be
achieved by running multiple copies of some services for
redundancy and multiple implementations of the same
service for diversity. Recovery from failure simply
requires a new copy of the service.

(3) Challenging Problems

Adopting the microservices architecture is difficult,
however, because of the following problems.
• Complexity in Deployment, due to the large number of

services that must be deployed to the cluster and started
quickly. This deployment must be done dynamically to
achieve the advantages of load balance and elastic
scalability. As Daya et al. pointed out [20],
“microservices cause an explosion of moving parts. It is
not a good idea to attempt to implement microservices
without serious deployment and monitoring automation”.

• The Need to Monitor Execution, to diagnose hardware
and software failures quickly and to replace failed parts
with new instances, thereby conferring the benefits of
fault tolerance and reliability. Workload must also be
monitored to achieve load balance and elastic scalability.
Monitoring services is even more difficult when there is a
large number of them, due to the fine granularity, all
running in parallel in a distributed environment.

• Network Latency, which is a greater problem when
services communicate with each other a lot over the
network.

• Cognitive Load of the extra complexity brought by the
microservices architecture including message formats,

load balance and fault tolerance. This is shifted to the
monitoring tools. The usual problems of complex parallel
and distributed software remain. One approach to
developing the microservices architecture is to refactor a
monolithic architecture in a gradual way. This approach
has worked for eBay, Twitter, Google, and Amazon [13].

These challenges have led to the rise of technologies and
methodologies that support microservices such as container
technology and DevOps, both of which we review in the next
two subsections.

B. Container Technology
Container technology [21, 22] enables a piece of runnable
software code to be wrapped, together with any resources
needed, into a package, called a container image. This is
then deployed onto a machine, which generates a container
instance running as an isolated process in user space. Each
machine can run several containers, all sharing the same OS
kernel. Each container typically takes up far less space than a
virtual machine would (e.g. tens of MBs vs several GBs). It
can therefore be sent through a network more quickly and
started almost instantly as a process on an operating system,
whereas it takes far longer, often a few minutes, to reboot a
virtual machine. Containers also provide separation between
users, thereby achieving the same security and privacy
advantages that virtual machines have. Figure 1 shows the
differences between container and virtual machine
techniques [23].

 (a) Container (b) Virtual Machine

Figure 1. Comparison of Container with Virtual Machine [23]

Since a container comes with all the resources it needs to
run, it can be deployed on any machine that runs the
operating system it targets. This is described as “package
once and deploy anywhere” [24] but that differs from “write
once and run anywhere” motto of Java because a container
can only run on one operating system. The code must be
packaged once for each operating system. Further flexibility
is given by the fact that containers can be run on virtual
machines which can then be on different platforms, as shown
in Figure 2.

Figure 2. Containers and Virtual Machines Used Together [23]

Launched in 2013, Docker is the de facto industry
standard for container technology, with 40% of enterprises

 App A App B App C
 Bins/Libs Bins/Libs Bins/Libs App D

 Docker Docker Bins/Libs

 Guest OS Guest OS Guset OS

 Hypervisor OS

 Infrastructure

 CONTAINER
 App A App B App C

 Bins/Libs Bins/Libs Bins/Libs

 Docker

 Host OS

 Infrastructure

 VM
 App A App B App C

 Bins/Libs Bins/Libs Bins/Libs

 Guest OS Guest OS Guest OS

 Hypervisor OS

 Infrastructure

using it and 30% more planning to do so. Figure 3 charts this
rapid growth in popularity, counting pulls from GitHub [23].
Docker is also provided as container-as-a-service, as seen in
AWS ECS (35%), Azure Container Service (11%), and
Google Container Engine (8%). Docker combines two open
standards: (a) Docker Image Specification, which defines the
format used to package contents into a container and (b)
Docker Runtime Specification, which defines the runtime
components.

Figure 3. The Growth of Popularity of Docker [23]

Because the runtime environment of a service is
packaged with the code, there is no need to configure
hardware and software, nor versions of languages and tools.
The complexity is pushed into containers that are easy to
build, share and run.

The deployment of applications can be automated with
the use of container orchestration engines, which deploy a
suite of containers to a cluster of machines in a pre-scripted
configuration. Docker has its own built-in orchestration
engine called Swarm but alternatives include Kubernetes and
Mesos [25].

C. DevOps
DevOps, a concatenation of (software) development and (IT)
operations, is a whole life cycle methodology that stresses
the integration of those two tasks, which are traditionally
handled by separate teams. This integration requires the
removal of communication boundaries and must happen as
early as possible for the greatest gains at combating
complexity. DevOps requires that the products of
development be moved smoothly in a pipeline in turn to
platforms for development, testing, stage and operation.
Each of these is typically a heterogeneous cluster of
computers. Figure 4 shows a typical DevOps pipeline as
suggested by Sharma and Coyne [6].

Figure 4. A Typical DevOps Pipeline [6]

Many tools are available for each of these stages, in

addition to the traditional phases of software development,
but there is no single tool available for them all [26].
DevOps tools fall into the following categories.
• Software Package Management: package creation,

artifact repositories, and staging prior to deployment.
Docker is also referred to as a DevOps tool because it
provides software packaging as well as automated
container deployment and metrics for monitoring the
execution of containers.

• Service Release Management: change management,
release approval, and release automation.

• System Configuration and Deployment Management:
Infrastructure and deployment to a cluster, for example,
Jenkins, Puppet, Vagrant, Ansible, etc.

• System Monitoring: Collecting system state data,
statistical analysis of that data and visual display, for
example, Nagios/Icinga, Monit, Collectd/Collectl.

• Log File Analysis: Used for diagnostic purposes, such as
ELK (Elasticsearch, Logstash and Kibana).

• Service registration and discovery: Registration of and
access to services deployed to a cluster, for example,
Consul, Zookeeper, etcd,
DevOps applies many of the principles of agile

methodology to large-scale clusters and due to its
widespread popularity it is often used with microservices and
container technology. The overall DevOps adoption rate rose
from 66% in 2015 to 74% in 2016 to 78% in 2017. For larger
enterprise organizations, the adoption rates are even higher:
81% in 2016 and 84% in 2017 [27, 28].

D. Discussion
Cloud-native applications are made not from objects and
classes but from microservices, which are active
computational entities dynamically created from a template
(container image) and deployed to a network of computers.
The communication links are dynamically bound. Systems
evolution is by continuous integration and continuous
delivery. A collection of communicating microservices
forms an ecosystem. Likewise, the teams working on each
microservice also form an ecosystem.

These changes have permeated all aspects of software
engineering and the new practices and techniques have
evolved to replace them. This is why we say a software
paradigm shift is taking place right now.

IV. SEARCH FOR NEW PROGRAMMING LANGUAGES
A crucial aspect of the emerging new paradigm as yet not
discussed is the choice of programming languages in which
microservices are written. Many new programming
languages have arisen in the past few years. Some like
ActorScript [29] are specifically aimed at cloud-based
applications while others, like Go [30] and Scala [31], are
general purpose languages with an emphasis on network
systems. A thorough survey is beyond the scope of this
paper, so here, we discuss a few general approaches.

A. Actor Model
The Actor model, a mathematically-based formalism dating

DevOps For Dummies, 2nd IBM Limited Edition 26

 By using an environment management and deployment tool
like IBM UrbanCode Deploy with Patterns, organizations can
design, deploy, and reuse environments quickly and help
accelerate the delivery pipeline.

 Delivery pipeline
 A delivery pipeline consists of the stages an application goes
through from development through to production. Figure 3-1
shows a typical set of stages. These stages may vary from
one organization to another, however, and may also vary from
one application to another based on the organization’s needs,
software delivery process, and maturity. The level of automa-
tion may also vary. Some organizations fully automate their
delivery pipelines; others put their software through manual
checks and gates due to regulatory or company requirements.
You don’t have to address all stages at once. Start by focusing
on the critical parts of organization — not everything all at
once — and then gradually broaden to include all stages.

 Figure 3-1 : Stages of a typical DevOps delivery pipeline.

 A typical delivery pipeline has the stages described in the fol-
lowing sections.

 Development environment
 An application’s development effort takes place in a develop-
ment environment, which provides multiple tools that enable
the developers to write and test code. Beyond the integrated
development environment (IDE) tools that developers use to
write code, this stage includes tools that enable collaborative
development, such as tools for source control management,
work-item management, collaboration, unit testing, and project

back to a paper from 1973 [32], proposes actors as universal
primitives of concurrent computation. Each actor is an entity
that can do the following:

a) Send messages to other actors;
b) Perform computation in response to messages it

receives;
c) Create new actors either locally or remotely.

An actor A may modify its own private state but it cannot
directly change that of another actor B, though B may choose
to change its state in response to a message from A.

Messages sent between actors must be:
• Sent directly to the receiver using a unique reference to

the receiver known to the sender;
• Location transparent, meaning that the sender only

needs the receiver’s reference but not its location;
• Asynchronous, meaning that the sender is not blocked

waiting for delivery of the message.
A sender A can obtain the unique reference to a receiver

B in one of the following ways:
• Initial condition: B is one of a number of fixed actors in

the system environment known to all actors in the
system.

• Parenthood: When A creates B, A obtains the unique
reference to B.

• Endowment: When A is created, its parent passes it the
reference to B.

• Introduction: Another actor C has sent A the reference
to B.

The above so-called reference capability model is
identical to that of object-orientation and is too restrictive for
service-oriented systems. For this reason, Akka adds to these
four the ability for A to search for the reference to B. Akka is
based on the so-called supervision hierarchy structure of
actor systems. If an actor A creates actor B, then A is the
parent of B in the hierarchy and B is one of its children. As
shown in Figure 5, the hierarchy has three guardian nodes as
follows.
• User Guardian, representing the user, and which can

create multiple actor systems.
• System Guardian, which creates all the System’s internal

actors.
• Root Guardian, which creates them both.

Figure 5. Akka’s Supervision Hierarchy of Actors [33]

An actor can then be searched for from some point in the

hierarchy, using an Akka method like actorSelection(…),
and often using a wildcard.

The supervision hierarchy also enforces the management
responsibility of actors in that a parent is responsible for
terminating its children and dealing with their failures. An
actor has four lifecycle methods, each of which can be
overridden.
• preStart(): invoked after the actor has been created and

just before the actor is started;
• postStop(): invoked just after the actor is stopped;
• preRestart(): invoked just before a failed child actor is

restarted, as might be done as part of the actor’s failure
management strategy;

• postRestart(): invoked just after the restart, enabling re-
initialization of the actor.
It is possible to conceive of a pure actor system in which

everything is an actor, including even primitive data types
such as integers, real numbers and strings, but no practical
programming language exists for this as far as we know.
More usually, an actor is a kind of system component, such
as a web service, obtained by adding an Akka library to an
existing programming language such as Scala or Java [33].
More than 50 other such libraries are listed in the Wikipedia
page for Actor model [34].

An alternative is to extend an existing programming
language with language facilities for supporting actors, as
seen with ActorScript [Error! Bookmark not defined.].
More than 20 programming languages claim to support the
actor model [34], but Akka is perhaps the most mature
implementation of the actor model.

B. Reactive Model
The reactive model is event-driven whereas the actor model
is message-driven; both are asynchronous. The distinction
between the two is that messages are directed to a clear
single destination, whereas events are not: they are “facts for
others to observe” [35].

A consequence of this is that in the reactive
programming style, control flow is driven not by the thread
of execution but by the availability of new information.
Reactive programming languages therefore make it possible
to specify what actions must be taken in response to state
changes. These state changes are thereby automatically and
efficiently propagated across the network of dependent
computations by the underlying execution model. For this
reason, the reactive model has become popular for
concurrent programming, although its origins are in the
dataflow declarative programming languages of the 1980s
[36].

Like actor-based programming, reactive programming
can be enabled with either a language extension or a new
library. Of the dozen such approaches recorded in a survey
published in 2013 [36], the ReactiveX library for cloud
computing has received particular attention from industry.

ReactiveX provides operators for declaratively
composing sequences of data and events while abstracting
away from concerns such as low-level threading,
synchronization, thread-safety, concurrent data structures,

and non-blocking I/O. Such operators include those to filter,
select, transform, combine or compose sequences and
resemble those of functional programming languages.

ReactiveX is polyglot in the sense that it has been
extended to many (18 so far) languages, giving for example
RxJava as used by Netflix to make their entire service layer
asynchronous, RxPython and RxJS (for JavaScript); it has
also been extended to three platforms.

ReactiveX provides a framework based on the Observer
design pattern. An abstract class Observable (the Subject
class in the Observer pattern) may emit any number of items
(including zero) and then terminate either successfully or
with an error. Another abstract class Subscriber (the
Observer class in Observer pattern) reacts to this sequence in
a manner specified in a concrete subclass by overriding three
abstract methods:
• onNext(), invoked when it receives an item;
• onComplete(), invoked when it terminates successfully;
• onError(), invoked when it fails with an error.

A subscriber links to an Observable object by invoking
the latter’s method subscribe(Subscriber: sub), obtaining a
Subscription object that can then later be cancelled. The
Observable then invokes onNext(), onComplete() and
onError() when appropriate.

In the Android platform version of ReactiveX, the
Observables and Subscribers may be placed on different
threads, by using different arguments in two method calls
observerOn(scheduler) and subscriberOn(scheduler).

C. Service Agent Model
As a part of software engineering methodology for internet-
based applications, in 2000 we proposed an agent-oriented
parallel computing model [37, 38], which turns out to be a
good fit for cloud applications in the microservices
architecture. Here, agent means service provider, as in estate
agent and travel agent. Although our notion of agent was
inspired by the notion of agent in distributed artificial
intelligence, it is different from that in the agent models
proposed and advanced in the AI community. Each agent is a
computational entity that is:
• Active, running on its own process, and distributed to a

network of computers, and
• Autonomous, in that only the agent itself can change its

own state and it decides which actions to perform and
when.

An agent encapsulates the following elements:
• A set of state variables, each of which can either be

visible to other agents outside or invisible to them and
known only by the agent itself.

• A set of actions the agent can perform, each of which on
termination generates an event that will be seen by other
agents if the action is visible to them

• A description of the environment, which lists which
other agents are being observed for their visible actions
and states.

• A set of behavior rules, defining how the agents change
their state and take action in response to external events
and changes in internal conditions.

Another crucial concept of our model is caste, which acts
as the classifier for agents in much the same way as class is
the classifier for objects. Each caste can therefore be thought
of as a template from which agents are instantiated and
created. Similarly, a caste can inherit from another caste.
However, whereas an object’s membership of a class is fixed
at compile time, an agent can join, quit, suspend and resume
its membership to a caste dynamically, thereby
demonstrating adaptive behavior.

Here is an example of caste in the CAOPLE
programming language, which is based on the service agent
model. Please see Section V for more information about
CAOPLE.

CASTE Chatter(givenName: STRING){
 OBSERVE Chatter;
 VAR name: STRING;
 ACTION Say(word: STRING) { }
 INIT{
 name:=givenName;
 Say("Hello, World!") ;
 }
 BODY{
 WHEN EXIST x in Chatter:Say("Hello, World!"){
 Say("Hello, ” + x.name);
 }
 }
}

The OBSERVE clause indicates that each agent of caste

Chatter observes all other agents of the caste. The INIT
clause is the list of statements executed when the agent is
created; these save parameter givenName into visible state
variable name and perform the action Say(“Hello, World!”).
The BODY clause, which is repeatedly executed until the
agent terminates, responds to any such action from another
agent x with the action Say(“Hello, ” + x.name), where
x.name is the name of x.

The communication mechanism here, in which one agent
takes visible actions while another observes, is
fundamentally different from the subscribe-publish
mechanism because agents can be created, deployed over a
network, and destroyed dynamically. This is a close match
with the needs of microservices architecture, where a service
must communicate with multiple copies of other services
that are dynamically created and deployed to multiple
machines in a cluster. In spite of this flexibility, strong type
checking can be performed statically.

A further virtue of this mechanism, in addition to its
simplicity, is that communication is location transparent and
at a high level of abstraction; the programmer does not need
to know which agents are in the system, nor where they are
in the network, nor any details about communication ports or
low-level synchronization primitives. Furthermore, when an
agent’s action is observed, its identity can be obtained if
needed, as is done with agent x above. This breaks the
reference capability limitation.

There is strong support in the service agent model for
code deployment to a remote machine. For example, the
following statements deploy two agents of caste Chatter to
two different machines.
 CREATE Chatter(“John”) @ "192.168.1.65";

 CREATE Chatter(“Peter”) @ "192.168.1.71";
Other deployment-related operations for changing a caste’s
membership can be seen in Section V.A.

Table 1 summarises how the concepts and language
facilities in the service agent model match the key concepts
in the microservices architectural style.

Table 1. How Service Agent Model Supports MS
Concept of
Microservices

Meanings Concept in Service
Agent Model

Service The functionality provided by a
computer system and delivered to
the users

Service

The computational entity that
provides the services in the above
sense

Agent

Microservice Identical copies of a service,
where each copy is a runtime
computational entity

Agent

A template from which instances
can be generated and deployed to
different servers

Caste

D. Summary
From the summary in Table 2, it appears that the service
agent model is the most suitable for programming cloud
applications in a microservices architecture.

Table 2. Comparison of Programming Models
 Actors Reactive Service Agent
Runtime
element

Actors, [objects] Observables,
Subscribers,
Objects

Agents

Program unit Actor types,
[Classes]

Sub-Observables,
Sub-Subscribers,
Class

Castes

Reference
propagation
model

Reference
capability model

Reference
capability model

Reference
capability model +
message sender
identification

Uses of
Reference
propagation
Model

Lifecycle
management,
Communication
address

Lifecycle
management,
Subscription for
communication

Lifecycle
management
[optional],
Communication
address [optional]

Communication
mechanism

Asynchronous,
Direct addressing

Asynchronous,
Subscribe-
publish,
Explicit event-
driven

Asynchronous,
Implicit event-
driven,
Sender ID
identifiable

System
structure

Centrally
organised
hierarchy

Flat,
No central
organisation

No central
organisation

Location
transparency

Implicit by
reference

No Yes

V. THE EXPERIMENTS OF CAOPLE AND CIDE
The service agent model has been realized with a
programming language COAPLE [39] and an integrated
DevOps environment called CIDE for editing, compiling,
deploying, executing and testing code in a cluster. This
section examines each in turn and demonstrates their support
for the new paradigm.

A. The CAOPLE Programming Language
CAOPLE has the following properties. It is:
• Purely Agent-Oriented, in contrast to some languages

that allow classes alongside agents as an alternative kind
of building block.

• Caste-Centric, in the sense that agents can only be
created by instantiating castes, unlike other languages
where agents can be coded directly.

• Imperative, so programs take the form of a sequence of
commands, in contrast to some AI-inspired languages
that define agent behaviors in a logic or rules-based
approach, game-theory approaches that employ utility
functions and other approaches that are based on an
organizational/social model.
Network transparency and write-once-run-anywhere was

achieved by compiling source code to target a virtual
machine CAVM-2. The only configuration required is to
install CAVM-2 on every node of a cluster.

(1) Example 1: Hello World

The following “Hello World” example illustrates the notion
of caste, which is not only a compilation unit but also the
unit for code deployment and execution. CIDE can be used
to create instances of Peer and distribute them to machines
on a cluster. Each execution of an agent of the caste Peer will
perform an action Say("Hello World!").

1: CASTE Peer(){
2: ACTION Say(word: STRING) { }
3: INIT{ Say("Hello World!"); }
4: BODY{ }
5: }

To test whether this program behaves as we expect, instead
of modifying the code, we can write another caste to observe
its behaviour as follows.

1: USES Peer;
2: CASTE Observer() {
3: OBSERVE Peer;
4: INIT { }
5: BODY {
6: VAR word: STRING;
7: WHEN EXIST x IN Peer: Say(RCV word) {
8: print "Observer: "+ x.toString +
 " said ‘ " + word + “’”;
9: }
10: }
11: }

Provided that the Observer agent is created before the Peer
agent, when it is then executed, it will print the following
message.

where “ad846…” is the universally unique identifier of such
an agent. The creation of agents can also be done
programmatically as in the caste below that creates an
Observer and two Peers.

1: USES Peer, Observer;
2: CASTE Builder2a(){
3: INIT{
4: CREATE Observer();
5: wait 100;
6: CREATE Peer() @ "192.168.1.65";
7: CREATE Peer() @ "192.168.1.71";
8: }

9: BODY {}
10: }

The IP addresses are optional and if they are omitted then the
agents can be located anywhere on the network. They need
not be literals and can be constructed at run time. Note that
the Observer agent can be run on a different machine where
the Peer agents run.

(2) “Deployment” Mechanisms in CAOPLE

The following caste-membership operation statements form
a rich set of “code deployment” operations for distributed
programming.

AgentCreationStatement ::=
 create [AgentVar of] casteName ([params])
 [@ locationExp]
JoinStatement ::= join casteName ([params])
 QuitStatement ::= quit [casteName]
 SuspendStatement ::= suspend casteName
 ResumeStatement ::= resume casteName
 EvolveStatement::=
 evolve [casteName] to casteName ([params])
 destroyStatement := destroy [agentVar]

(3) Event-Driven Programming Facilities

CAOPLE has two statements that support event-driven
computing: the WHEN-statement and the TILL-statement.
Both test for whether the system is in a scenario, which are
conditions on whether an action is performed either by a
specific agent or an agent of a certain caste.

WhenStatement ::= when scenario { statements } ;
TillStatement ::= till scenario ;
scenario ::= AgentVar:ActionID([Params])
 |exist AgentVar in CasteName:ActionID([Params])
The statements in a WHEN-statement will be executed if

the scenario is true and skipped otherwise. The TILL-
statement will delay the execution until the scenario becomes
true.

(4) Prevention of Data Races

The write-write type of data racing is not possible because
the state variables of each agent can only be changed by the
agent itself. The write-read type of data racing can be
prevented by using the WITH-statement, which has the
following syntax:

WithStatement::= with var = expr { statements }
Here, expr is a variable of a structured data type. When the
statement is executed, the value of expr is copied to a new
variable var of the same data type, which is then changed by
the statements and copied back to expr as an atomic
operation. Consider the following example:

with date= conf.date {
 date.day := 29;
 date.month := 03;
 date.year := 2016;
};

This updates conf.date from a previous value such as
28/02/2018 to the new value 30/03/2018 in a single atomic
operation making it impossible for other agents to read the
data when, for example, only the day has been changed.

(5) Example 2: API

In the program below, an agent of caste RandomIntGenerator
is a service that generates a random integer whenever its
requestor asks for it, doing so by performing an observable
action that has the random number as a parameter; the details
of that action are omitted for the sake of space.

uses RandomIntRequestor;
caste RandomIntGenerator(req: RandomIntRequestor) {
 observe RandomIntRequestor;
 var randomInt: int;
 var myRequestor: RandomIntRequestor;
 action RandomIntGenerated(rand: int){
 … /* Details omoitted */
 rand := randomInt;
 }
 init{
 randomInt := 0;
 myRequestor:=req;
 }
 body{
 when myRequestor: RequestRandomInt() {
 RandomIntGenerated(randomInt);
 }
 }
}

uses RandomIntGenerator;
caste RandomIntRequestor(){

var myGenerator: RandomIntGenerator;
action RequestRandomInt(){}
init{
 create myGenerator of RandomIntGenerator(self);
}
body{}

}
The caste RandomIntRequestor can be considered to be an

API for using the service RandomIntGenerator, because it
creates an instance of it upon initialisation and defines an
action RequestRandomInt, which is taken by the requestor
when it requires a random integer. The following caste
ServiceRequestor uses the random number generator service
by extending the RandomIntRequestor caste.

uses RandomIntGenerator, RandomIntRequestor;
caste ServiceRequestor() extend RandomIntRequestor {
 observe RandomIntGenerator;
 var randomInt: int;
 action RequestService(){ }
 init {super();}
 body{
 RequestRandomInt();
 till myGenerator:
 RandomIntGenerated(rcv randomInt);
 var job : Job;
 job.content := randomInt;
 RequestService(job);
 }
}

(6) Example 3: Elastic Load Balancing

The caste LoadManager below implements a load balancer,
which receives service requests from agents of caste
ServiceRequestor and allocates the job to one of its workers
(agents of caste Worker), which provide the services. A
commonly used way of allocating these jobs is the round
robin algorithm, which assigns jobs to the workers in turn. It
is implemented below.

import LoadBalancorDefs;
uses ServiceRequestor, Worker;

caste LoadManager() {
 observe ServiceRequestor, Worker;
 var nWorkers: int;
 var nMachines: int;
 var index: int;
 var jobQueueLength: int;
 var listOfWorkers : ListOfWorkers;
 var listOfMachines: ListOfMachineIPs;
 var worker: Worker;
 action AllocateJob(i: int, j: Job){
 index:= index+1;
 if (index>=nWorkers){index:=0;}
 }
 action stopWorker(i: int){ }
 action AddWorker(){
 var machineIP: string;
 machineIP:=listOfMachines[nWorkers%nMachines];
 create worker of Worker(nWorkers) @ machineIP;
 till worker: iAmReady();
 listOfWorkers[nWorkers] := worker;
 nWorkers:=nWorkers+1;
 }
 action ReduceWorker(){
 nWorkers:=nWorkers-1;
 stopWorker(nWorkers);
 }
 init {
 listOfMachines := … /* initialise the var */
 nMachines :=listOfMachines.length;
 nWorkers:=0;
 for (var j:=0 to 4) { AddWorker(); };
 index:=0;
 jobQueueLength:=0;
 }
 body{
 var job: Job;
 when exist R in ServiceRequestor:
 RequestService(rcv job) {
 AllocateJob(index, job);
 jobQueueLength := jobQueueLength+1;
 if (jobQueueLength / (nWorkers+1) >=10){
 AddWorker();
 };
 };
 when exist W in Worker: JobDone() {
 jobQueueLength := jobQueueLength-1;
 if ((jobQueueLength < nWorkers)
 && (nWorkers >1)) {
 ReduceWorker();
 };
 };
 }
}

The above load balancer is elastic. The number of unfinished
jobs per worker on average is calculated as a measure of the
load. When it is greater than a threshold (10), the load
balancer will create a new worker to deal with the demand.
When it drops to below 1, at least one worker must be idle so
it is removed. The actions that implement addition and
removal of a worker are AddWorker and ReduceWorker.

The caste Worker below implements the service providers.
It defines two actions: JobDone for announcing that a job has
been finished by the service provider and iAmReady for
announcing that the service has finished initialisation and is
ready to take on jobs.

uses LoadManager;
caste Worker(id : int) {
 observe LoadManager;
 var myId: int;

 var workerId: int;
 var job: Job;
 action JobDone(wID: int) { }
 action iAmReady() { }
 init {
 myId:= id;
 iAmReady();
 }
 body{
 var hasNoWorkToDo: Bool;
 hasNoWorkToDo := true;
 when exist B in LoadManager:
 AllocateJob(rcv workerId, rcv job){
 if (workerId == myId) {
 hasNoWorkToDo:= false;
 wait 100; /* Do job */
 JobDone(myId);
 }
 };
 if (hasNoWorkToDo) {
 when exist B in LoadManager:
 stopWorker(myId){
 destroy;
 }
 }
 }
}
Note that when a worker receives the instruction to stop,

it will complete the queue of jobs already allocated to it.

B. The Integrated DevOps Environment CIDE
CIDE is an integrated DevOps Environment for the
CAOPLE language. Figure 6 is the user interface for editing
and compiling CAOPLE programs; there are also tools for
deploying and executing code.

Figure 6. CIDE’s Graphical User Interface for Editing Code

Caste is the unit both of compilation and of deployment.
There are no build or link operations. Each machine in a
cluster can run either a Communication Engine (CE) or a
Logic Execution Engine (LEE) or both, where CE and LEE
are two parts of the CAVM-2 virtual machine. The object
codes of the castes are deployed to the CEs and the agents
(i.e. the instances of the castes) run on the LEEs. Any LEE
can be chosen no matter where the object code is deployed.
The CE manages communication between agents. Each
cluster can have multiple CEs and LEEs.

The user can view the set of nodes in the network and
select a subset of them as his/her working cluster as shown in
Error! Reference source not found.. Each virtual machine
on the nodes can be, with a click, switched on (green) or off

(red). Machines can also be added to or removed from the
set. Information about the workloads on the selected
machines (such as the usages of CPU and memory, number
of agents running on the LEE and the number of castes
deployed to the CE) can also be obtained with a click of a
button and displayed on screen.

The object code for a caste can be deployed to a CE
using the caste tab; see Error! Reference source not
found.. Manual deployment can be easily performed by
selecting a object code file from the machine’s file system
and selecting the machine the code is to be deployed to and
then clicking the deploy button. Manual deployment can be
recorded, and saved to a configuration file with a click of
button. Previously recorded deployments can be loaded to
CIDE and automatically executed when a set of object codes
needs to be deployed again after testing and debugging. The
list of castes deployed to a CE can also be obtained and
displayed on screen.

Figure 9. CIDE’s Agent Management Tool

Once the object code has been deployed to a CE, agents

Figure 8. User Interface for managing cluster.

Figure 7. CIDE’s Caste Management Tool for Deployment of Object Code to Communication Engines

can be created to run on any machine in the cluster with a
couple clicks of buttons using the agent tab; see Figure 9.
The running state of each agent on each LEE can also be
monitored. A selected running agent can be stopped when
needed to with a click of the Delete Agent button.

CIDE has been implemented in Java. Error! Reference
source not found. shows the architecture of CIDE.

C. Summary
CIDE is an Integrated DevOps Environment because it offers
code deployment, cluster management and agent
management in addition to the features of a traditional
Integrated Development Environment. In this way,
distributed and parallel programs can be tested and run on a
cluster. Uploading a CAVM is all that is needed to install a
server.

Note also that CAOPLE programs are “write-once, run
anywhere”. The virtual machine has been tested on
Windows, Linux and Mac OS machines. No change is
needed to the object code when it is moved onto a different
machine so clusters can be heterogeneous.

Finally, note that the object code of a caste is two orders
of magnitude smaller than that of container images of
Docker, making it possible for the deployment and
initialization of an agent to take only a few milliseconds
rather than the seconds taken by Docker. The sizes of the
object code files for castes are typically a few KBs. Our
experience with CAOPLE and CIDE indicate that together
they achieve the aims of Docker and container orchestration
engines better than Docker does itself. More importantly,
testing microservices can be done in a cluster environment as
a part of the programming phase.

VI. CONCLUSION
The past few years have witnessed a paradigm shift in the
practice of cloud software engineering. There are a number

of new fundamental concepts:
• Software applications running on a cloud
consist of a large number of autonomous
active computational entities called
microservices, each wrapped as containers,
distributed over a network and executed in
parallel. We call them agents. Their
communication is asynchronous and non-
blocking. The connections are dynamically
established.
• Agents are dynamically instantiated from
templates, also called microservices but
represented as container images. We call
these castes.
• Software processes now include
development but also deployment and
operation. These processes are integrated and
pipelined to help deal with the complexity of
the infrastructure and environment. Since it
must be possible for microservices to be
continuously added and removed, the
emphasis is on continuous integration, testing
and delivery. Both the microservices

themselves and the developers maintaining them form an
ecosystem.

• Tools exist to make deployment of code, instantiation of
agents and monitoring of clusters as efficient as possible.
We argue that a new programming model that directly

supports the new paradigm would significantly improve both
software quality and productivity. This would necessitate a
new programming language for microservices instead of
viewing it as simply an architectural style for which any
programming language is suitable. Goals of such a new
programming language would include:
• Language facilities at a high level of abstraction that

match the metaphors of the paradigm;
• Obviating the needs for low level communication

primitives or network location sensitivity;
• Code-once-run-anywhere, reducing the complexities of

heterogeneous hardware and software platforms;
• Supporting DevOps in one Integrated DevOps

Environment;
In this paper, we examined some existing programming

models in the light of the emerging paradigm. We argued
that service agent is the best conceptual model for a
programming language in the new paradigm. We briefly
reported both CAOPLE and CIDE. Our preliminary
experiments show that both are promising.

For future work, we are searching for a new software
development methodology for cloud-based systems and a
way to reason about their properties.

REFERENCES

[1] Lewis, J., and Fowler, M., Microservices. URL: http:
//martinfowler.com/articles/microservices.html#footnote-
monolith, 25 Mar. 2014. (Last access on 2 Nov. 2015)

[2] NewMan, S., Building Microservices: Designing Fine-
Grained Systems. O’Reilly, Feb., 2015.

[3] Krause, L., Microservices: Patterns and Applications.

Figure 10. Architecture of CIDE

Amazon.co.uk, Marston Gate, April, 2015.

[4] Negus, C., Docker Containers: Build and Deploy with
Kubernetes, Flannel, Cockpit, and Atomic. Prentice Hall,
2016.

[5] Miell I., and Sayers, A. H., Docker in Practice. Manning,
2016.

[6] Sharma S., and Coyne, B., DevOps for the Dummies, 2nd IBM
Limited Edition. John Wiley & Sons, 2015.

[7] Barendregt, H., The Lambda Calculus: Its Syntax and
Semantics. College Publications, 2013.

[8] Kuhn, T., The Structure of Scientific Revolutions, 2nd, ed.
University of Chicago Press, 1970.

[9] Santoli, G., Microservices Architectures: Become A Unicorn
Like Netflix, Twitter And Hailo. Presentation Slides, Mar 31,
2016. URL: https://www.slideshare. net/gjuljo/microservices-
architectures-become-a-unicorn-like-netflix-twitter-and-hailo.
(Last access on 8 May, 2017)

[10] Mauro, T., Adopting Microservices at Netflix: Lessons for
Architectural Design. Technical Blog, NGINX, URL:
https://www.nginx.com/blog/microservices-at-netflix-
architectural-best-practices/ (Last access on 8 May 2017)

[11] Santoli, G., Microservices Architectures: Become A Unicorn
Like Netflix, Twitter And Hailo. Presentation Slides, Mar 31,
2016. URL: https://www.slideshare. net/gjuljo/microservices-
architectures-become-a-unicorn-like-netflix-twitter-and-hailo.
(Last access on 8 May, 2017)

[12] Munns, C., Microservices at Amazon. Slides of presentation at
the I-Love-APIs 2015. URL: https://www.slideshare.net/
apigee/i-love-apis-2015-microservices-at-amazon-54487258.
(Last access on 8 May 2017).

[13] Shoup, R., From Monolith to Microservices - Lessons from
Google and eBay. Webex recording (slides and audio) of
MicroServices Meetup. URL: https://cisco.webex.com/
ciscosales/lsr.php?RCID=8d18be1e6fef4a1dad8b408453a2f66
2 (Last access on 8 May 2017)

[14] Microsoft, Microsoft Azure Service Fabric. URL: https:
//azure.microsoft.com/en-us/ (Last access on 8 May 2017)

[15] Smartbear, State of API Report 2016: A Global Survey
Looking at the Growth, Opportunities, Challenges &
Processes in the API Industry in 2016. Feb 24, 2016. URL:
http://blog.smartbear.com/api-testing/api-trends2016/?q=
State+of+API+Report#ga=2.42711077.1495982967.1494325
736-971574768. 1494325564. (Last access on 8 May 2017)

[16] Clark, K., J., Microservices, SOA, and APIs: Friends or
enemies? A Comparison of Key Integration And Application
Architecture Concepts for An Evolving Enterprise. IBM
DeveloperWorks, January 21, 2016.

[17] Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J. and
Josuttis, N., “Microservices in Practice, Part 1: Reality Check
and Service Design”. IEEE Software, Vol. 34, No. 1, pp91-98,
Jan.-Feb., 2017.

[18] Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., and
Josuttis, N., “Microservices in Practice, Part 2: Service
Integration and Sustainability”, IEEE Software, Vol. 34, No.2,
pp97-104, Mar.-Apr., 2017.

[19] Nadareishvili, I., Mitra, R., McLarty, M., and Amundsen, M.,
Microservice Architecture: Aligning Principles, Practices,
And Culture. O’Reilly Media, Inc., June 2016.

[20] Daya, S. et al., Microservices from Theory to Practice:
Creating Applications in IBM Bluemix Using the
Microservices Approach. IBM Redbooks, IBM, August 2015.

[21] Pahl, C., “Containerization and the PaaS Cloud”, IEEE Cloud

Computing, Vol. 2, No. 3, pp24-31, May-Jun. 2015.

[22] Merkel, D., “Docker: Lightweight Linux Containers for
Consistent Development and Deployment”. Linux Journal,
Vol. 2014, No. 239, p2, 2014.

[23] Docker, What is a Container: A Standardized Unit of
Software. URL: https://www.docker.com/what-container.
(Last access on 8 May 2017)

[24] Gupta, A., Docker for Java Developers: Package, Deploy and
Scale with Ease. O’Reilley, 2016.

[25] Ismail, U., Comparing Orchestration Engine Options in
Rancher. Rancher Labs, Oct. 2016.

[26] Farcic, V., The DevOps 2.0 Toolkit: Automating the
Continuous Deployment Pipeline with Containerized
Microservices. Leanpub, May 2016.

[27] RightScale, RightScale 2016 State of the Cloud Report. URL:
http://assets.rightscale.com/uploads/pdfs/rightscale-2016-
state-of-the-cloud-report-devops-trends.pdf (Last access on 9
May 2017).

[28] RightScale, RightScale 2017 State of the Cloud Report. URL:
http://assets.rightscale.com/uploads/pdfs/RightScale-2017-
State-of-the-Cloud-Report.pdf. (Last access on 9 May 2017).

[29] Hewitt, C., ActorScript extension of C#, Java, Objective C,
JavaScript, and SystemVerilog using iAdaptive concurrency
for antiCloudTM privacy and security. URL: https://arxiv.org/
pdf/1008.2748.pdf. (Last access on 21 August 2017).

[30] Donovan, A. A. and Kernighan, B. W., The Go Programming
Language. Addison-Wesley, 2016.

[31] Odersky, M., Spoon L., and Venners, B., Programming in
Skala, 3rd Edition. Artima, 2016.

[32] Hewitt, C., Bishop, P., Steiger, R., "A Universal Modular
Actor Formalism for Artificial Intelligence". Proc. of
IJCAI’73, pp235-245, 1973.

[33] Akka: Build powerful reactive, concurrent, and distributed
applications more easily. URL: http://akka.io (Last access on
20 August, 2017)

[34] Wikipedia, Actor model. URL: https://en.wikipedia.org/wiki/
Actor_model. (Last access on 22 August 2017).

[35] Bonér J., and Klang, V., Reactive programming vs. Reactive
systems. O'Reilly Media, Dec. 2, 2016. URL: https://www.
oreilly.com/ideas/reactive-programming-vs-reactive-systems.
(Last access on 17 June 2017)

[36] Bainomugisha, E., Carreton, A. L., van Cutsem, T.,
Mostinckx, S., de Meuter, W., “A survey on reactive
programming”, ACM Computing Surveys, Vol. 45 Issue 4,
August 2013.

[37] Zhu, H., “Formal Specification of Agent Behaviour through
Environment Scenarios”, Formal Aspects of Agent-Based
Systems, Rash, J. et al. (eds.), Springer LNCS 1871, pp263-
277, April 2000.

[38] Zhu, H., “SLABS: A Formal Specification Language for
Agent-Based Systems”, International Journal of Software
Engineering and Knowledge Engineering, Vol. 11, No. 5,
pp529~558, Nov. 2001.

[39] Xu, C., Zhu, H., Bayley, I., Lightfoot, D., Green, M., and
Marshall, P., “CAOPLE: A Programming Language for
Microservices SaaS”, in Proc. of SOSE 2016, pp42-52, April
2016.

