
Evaluation of ACE Properties of Traditional SQL and NoSQL Big
Data Systems

ABSTRACT
Traditional SQL and NoSQL big data systems are the backbone for
managing data in cloud, fog and edge computing. This paper
develops a new system and adopts the TPC-DS industry standard
benchmark in order to evaluate three key properties, availability,
consistency and efficiency (ACE) of SQL and NoSQL systems.
The contributions of this work are manifold. It evaluates and
analyses the tradeoff between the ACE properties. It provides
insight into the NoSQL systems and how they can be improved to
be sustainable for a more wide range of applications. The
evaluation shows that SQL provides stronger consistency, but at the
expense of low efficiency and availability. NoSQL provides better
efficiency and availability but lacks support for stronger
consistency. In order for NoSQL systems to be more sustainable
they need to implement transactional schemes that enforce stronger
consistency as well as better efficiency and availability.

CCS Concepts
• Information systems➝Data management systems ➝Database
management system engines➝Database transaction
processing➝Data locking

Keywords
Big data; SQL; NoSQL; Riak; TPC-DS, Data consistency.

1. INTRODUCTION
Cloud computing delivers on-demand IT services, such as storage,
compute power and servers, over the Internet in order to offer
flexibility, scalability and elasticity in service provisioning. Cloud
service consumers only pay for the services they use. This reduces
their operational and maintenance cost of IT services. The common
model of cloud service provisioning is built around data centers
where cloud services are centrally stored and managed. In order to
alleviate issues of centralized cloud new models of edge and fog
computing have been emerged. Edge computing offers users and

developers cloud services and resources at the edge of a network or
Internet. It delivers compute, storage and data services much closer
to end devices and/or end users [1]. Fog computing model can be
defined as an additional layer that provides a bridge between edge
computing (resources) and the (centralized) cloud. For example,
fog computing can help in cloud resource virtualization in order to
dynamically distribute workload across different (edge) computing
nodes.

Despite the differences between cloud, fog and edge computing
models, they all share the need of storing, processing and analysing
data for different types of applications. The work presented in this
paper focuses on the traditional SQL and NoSQL big data systems
which are used by all the three models, cloud, edge and fog
computing. It evaluates the three key properties, availability,
consistency and efficiency (ACE). Availability means that data is
available. For instance, if one node (of a system) is failed or
overloaded (with many requests) then data can be accessed from
another node. Consistency means that data must remain in
consistent state whenever it is updated. Efficiency refers to the
process that data is efficiently accessed and/or updated.

Traditional SQL databases have widely been used for a number
of years by various organizations and companies. SQL databases
(such as MySQL, Oracle) are built using rigorous theoretical and
mathematical models such as relational algebra. They follow the
principles of data normalization and integrity constraints in order
to maintain strong data consistency. SQL database systems have
been used for applications that need strong consistency and data
integrity constraints, for example, banking applications, customers
and products data, online shopping and so on.

NoSQL big data systems (such as Riak, MongoDB, Couch) are
relatively new and they do not generally adopt strong
theoretical/mathematical models. They give preference to
efficiency and availability over data consistency. They do not
follow data normalization principles (as in SQL). Instead they
follow weaker or eventual consistency model.

NoSQL systems have been used for applications that need high
efficiency and availability but weaker consistency. For instance,
NoSQL systems are capable of processing hundreds of thousands
of social media messages/per sec. Social media data may tolerate
weaker consistency. But applications such as financial transactions
or online shopping may not tolerate weaker consistency. In such
applications problems caused by inconsistency could be more
serious than having lower efficiency or availability.

We believe that the three ACE properties are crucial to different
applications that use cloud, fog and/or edge computing. We
propose and develop a new system in order to evaluate and analyse

Maria Teresa Gonzalez-Aparicio
Department of Computing

University of Oviedo
Gijón, Spain

maytega@uniovi.es

Muhammad Younas
School of ECM

Oxford Brookes University
Oxford, United Kingdom
m.younas@brookes.ac.uk

Javier Tuya

Department of Computing
University of Oviedo

Gijón, Spain
tuya@uniovi.es

Rubén Casado
Accenture Digital

Spain
ruben.casado.tejedor@accenture.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/220155566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

t h es e pr o p erti es of S Q L a n d N o S Q L bi g d at a s yst e m s. W e
i m pl e m e nt a n o nli n e s h o p pi n g c art as a c a s e st u d y a n d u s e T P C- D S
i n d u str y st a n d ar d b e n c h m ar k [2] i n or d er t o e v al u at e t h e A C E
pr o p erti es.

T h e pr e mi s e b e hi n d i m pl e m e nti n g o nli n e s h o p pi n g c art is t h at
it i s m or e a p pr o pri at e t o e v al u at e a n d a n al ys e t h e A C E pr o p erti es
of S Q L a n d N o S Q L bi g d at a s y st e m s (s e e S e cti o n 4). T hi s w or k is
b as e d o n t h e w or k [3], w hi c h d e v el o p e d a n e w tr a n s a cti o n al m o d el
a n d t est e d t h e eff e cts of v el o cit y o n c o n sist e n c y i n N o S Q L bi g d at a
s yst e ms.

T h e c o ntri b uti o n s of t hi s w or k ar e m a nif ol d:
• It e v al u at es a n d a n al y s es t h e A C E pr o p erti es of S Q L a n d

N o S Q L bi g d at a s yst e m s. T his r e v e als t h e str e n gt h s a n d
w e a k n ess es of S Q L a n d N o S Q L s yst e ms.

• It u s es T P C- D S as a b e n c h m ar k w hi c h h as b e e n u s e d f or
e v al u ati n g r e al lif e a n d c o m m er ci al d at a s yst e ms. T P C
(Tr a n s a cti o n Pr o c es si n g C o u n cil) is a n o n- pr ofit c or p or ati o n
w hi c h d efi n e b e n c h m ar ks f or tr a n s a cti o n pr o c es si n g a n d
d at a b a s e s yst e ms w hi c h ar e u s e d b y i n d u str y [2].

• T h e r es ult s s h o w t h at S Q L pr o vi d es str o n g er c o n si st e n c y b ut at
t h e e x p e n s e of l o w effi ci e n c y a n d a v ail a bilit y. N o S Q L bi g d at a
s yst e ms pr o vi d e b ett er effi ci e n c y a n d a v ail a bilit y b ut t h e y l a c k
s u p p ort f or str o n g er c o n sist e n c y.

• It d e v el o p s a tr a n s a cti o n al s c h e m e i n or d er t o i m pr o v e N o S Q L
bi g d at a s yst e ms s o t h at t h e y ar e m or e s u st ai n a bl e f or a wi d e
r a n g e of a p pli c ati o n s (e. g., o nli n e s h o p pi n g, fi n a n ci al s yst e ms)
t h at n e e d str o n g er c o n si st e n c y.

T h e r e mi n d er of t hi s p a p er i s sr u ct ur e d as f oll o ws. S e cti o n 2

pr es e nts t h e r ati o n al e a n d b a c k gr o u n d of t his r es e ar c h w or k.
S e cti o n 3 r e vi e w s a n d a n al ys es r el at e d w or k a n d t e c h n ol o gi es.
S e cti o n 4 ill u str at es t h e c a s e st u d y a n d t h e pr o p o s e d a p pr o a c h. It
al s o pr es e nts e x p eri m e nt al r es ult s a n d a n al ysis. S e cti o n 5 pr es e nts
t h e c o n cl u si o n.

2. R A TI O N A L E A N D B A C K G R O U N D
T h e n u m b er of cl o u d, f o g, a n d e d g e u s er s a n d s er vi c es ar e
i ncr e asi n g at a v er y hi g h s p e e d. As a c o n s e q u e n c e, d at a st or a g e
s yst e ms h a v e t o m a n a g e e n or m o u s v ol u m e of d at a fr o m a wi d e
r a n g e of s o ur c es s u c h as o nli n e s o ci al m e di a, o nli n e s h o p pi n g,
c o m m er c e a n d b u si n ess, w e b s e ar c hi n g/ br o w si n g, cli e nt’ s r e vi e w s,
a n d s o o n. T hi s p h e n o m e n o n i s f ost eri n g a gi a nt l e a p i n t h e 2 1 st
c e nt ur y e c o n o m y gr o wt h [4], as str at e gi c d e cisi o n m a ki n g
i nf or m ati o n c a n b e i nf err e d fr o m t h e d at a s ets, u si n g diff er e nt
t e c h ni q u es. D at a t h er ef or e pl a y a cr u ci al r ol e i n diff er e nt fi el d s s u c h
as c o m m er c e, b u si n ess, h e alt h c ar e, a n d r es e ar c h a m o n g ot h er s [5].

T h e l ar g e- s c al e d at a, g e n er at e d fr o m diff er e nt s o ur c es, h as l e d
t o t h e cr e ati o n of t h e c o n c e pt of “ bi g d at a ” [6], w hi c h is
c h ar a ct eri z e d b y 3 V s, 4 V s or 5 V s m o d el [7], i. e. V ol u m e, V ari et y,
V el o cit y, V er a cit y a n d V al u e. V ol u m e r ef ers t o t h e m assi v e a m o u nt
of d at a w hi c h i s g at h er e d fr o m diff er e nt s o ur c es a n d i s pr o c es s e d
b y s c al a bl e cl o u d s yst e ms. V ari et y i s t h e diff er e nt t y p es of d at a
g at h er e d, i n cl u di n g, str u ct ur e d, s e mi- str u ct ur e d a n d u n str u ct ur e d
f or m at (i m a g es, t e xt, d at a l o gs, et c.). V el o cit y i s t h e s p e e d at w hi c h
d at a i s cr e at e d, st or e d, a n al ys e d a n d vi s u ali z e d. V er a cit y is r el at e d
t o q u alit y of d at a s u c h as d at a a c c ur a c y, tr u st, a n d r eli a bilit y. V al u e
is t h e pr o c ess of o bt ai ni n g (m o n et ar y, s o ci al, b u si n ess) v al u e fr o m
t h e d at a.

Tr a diti o n al r el ati o n al S Q L d at a b a s es ar e n ot w ell- e q ui p p e d t o
m a n a g e t h e bi g d at a m o d el s. T h u s a n e w g e n er ati o n of d at a b as es
n a m e d as N o S Q L (“ N ot o nl y S Q L ” or “ N o S Q L ”) h a s e m er g e d. I n
g e n er al, N o S Q L bi g d at a s yst e m s s u p p ort s c h e m a-fr e e, r e pli c ati o n
of d at a a n d d o n ot r e q uir e n or m ali z ati o n of d at a (as i n tr a diti o n al

S Q L s yst e m s). T h e y u s e C R U D (Cr e at e, R e a d, U p d at e, D ur a bilit y)
o p er ati o n s f or d at a m a ni p ul ati o n. T h e y g e n er all y i m pl e m e nt “ w e a k
c o n sist e n c y ”, m e a ni n g t h at t h er e i s n o g u ar a nt e e t h at a n a p pli c ati o n
(or u s er) will a c c ess t h e l at est v ersi o n of a s p e cifi c d at a. T h e y ar e
b as e d o n t h e c o n c e pt of e v e nt u al c o n sist e n c y w hi c h st at es t h at
e v e nt u all y all t h e u p d at es will r e a c h all t h e r e pli c as a n d d at a will
e v e nt u all y b e c o m e c o n si st e nt.

I n or d er t o ill u str at e t h e i ss u e of e v e nt u al c o n si st e n c y i n N o S Q L
d at a b as es, l et’s c o n si d er t h e c o m m o nl y u s e d ar c hit e ct ur e of a
N o S Q L d at a b as e, as s h o w n i n Fi g. 1. I n N o S Q L d at a b as es, d at a i s
g e n er all y r e pli c at e d a cr o ss t hr e e n o d es s o as t o pr o vi d e b ett er
effi ci e n c y a n d a v ail a bilit y of d at a. W h e n o n e r e pli c a i s u p d at e d
t h e n, i d e all y, t h e u p d at e s h o ul d b e i n st a ntl y r efl e ct e d a cr oss all t h e
t hr e e n o d es. T hi s i s t o e n s ur e t h at all t h e r e pli c as (at diff er e nt n o d es)
ar e c o n sist e nt — w hi c h is t h e c as e of str o n g c o n sist e n c y.

H o w e v er, a c c or di n g t o e v e nt u al c o n sist e n c y it i s p er mi ssi bl e
t h at s o m e of t h e r e pli c as (at s o m e n o d es) m a y n ot b e u p d at e d
i n st a ntl y d u e t o n et w or k or s o m e ot h er l at e n c y. It m e a n s t h at f or a
c ert ai n p eri o d of ti m e s o m e r e pli c as r e m ai n i n c o n si st e nt a n d
diff er e nt a p pli c ati o n s (or u s er s) c o ul d r e a d diff er e nt v al u es aft er a n
u p d at e o p er ati o n.

I n s o m e a p pli c ati o n s, s u c h as s o ci al m e di a, it i s t ol er a bl e if
s o m e of t h e r e pli c as ar e n ot u p d at e d i n st a ntl y. F or e x a m pl e, it c o ul d
b e a c c e pt a bl e if s o ci al m e di a m es s a g es (e. g., ‘ O ur l u n c h br e a k i s at
1 2: 3 0 p m.’ or ‘ W e pl a n t o h a v e grill e d fi s h f or l u n c h.’) ar e n ot
i n st a ntl y u p d at e d a cr oss all t h e n o d es. Fi g. 1 s h o ws t h e sit u ati o n
w h er e s o m e s o ci al m e di a d at a is u p d at e d at N o d e 1 (R e pli c a 1) a n d
N o d e 2 (R e pli c a 2) b ut n ot at N o d e 3 (R e pli c a 3). I n t hi s sit u ati o n,
d at a a v ail a bl e fr o m N o d e 3 will n ot b e c o n sist e nt b ut it c o ul d b e
t ol er a bl e.

N o w c o n si d er a n e x a m pl e of a b a n k d at a w hi c h is u p d at e d b y

a n o nli n e (s h o p pi n g) a p pli c ati o n or tr a n s a cti o n, as s h o w n i n Fi g. 2.
If a c u st o m er h as 5 0 E U R i n t h e a c c o u nt a n d s/ h e b u ys s o m et hi n g
f or 2 0 E U R, t h e n all t h e r e pli c a s (at t hr e e n o d es) s h o ul d st or e t h e
u p d at e d v al u e of 3 0 E U R. T his i s t o m ai nt ai n t h e c o n sist e n c y of
d at a. I n a d diti o n, a n y ot h er tr a n s a cti o n o v er 2 0 E U R s h o ul d b e
r ej e ct e d b y t h e s yst e m. B ut t h e t e c h ni q u e of e v e nt u al c o n sist e n c y
m a y n ot pr e v e nt s u c h tr a n s a cti o n a s d at a c o ul d n ot b e u p d at e d
i n st a ntl y. I n Fi g. 2, d at a r e a d fr o m N o d e 3 (5 0 E U R) is n ot
c o n sist e nt, as t his n o d e d o es n ot r efl e ct t h e u p d at e d v er si o n of d at a,
w hi c h is 3 0 E U R.

Fi g ur e 1. N o S Q L a n d s o ci al m e di a d at a.

Si mil arl y, i n ot h er e- c o m m er c e s yst e m s s u c h a s A m a z o n’s
A u cti o n s a n d e B a y it is criti c al t o e n s ur e a n e- c o m m er c e q u alit y
[8], s u c h as r eli a bilit y, effi ci e n c y a n d pr o d u ct a v ail a bilit y a m o n g
ot h ers. B ut at t h e s a m e ti m e, d at a a b o ut pr o d u ct s, tr a n s a cti o n s, a n d
s h o p pi n g c art, m u st b e st or e d a n d pr o c ess e d c o n sist e ntl y.

It is o b s er v e d fr o m t h e a b o v e dis c u s si o n t h at hi g h effi ci e n c y
a n d a v ail a bilit y ar e i m p ort a nt f or bi g d at a s y st e ms, b ut c o n si st e n c y
m u st b e d e alt wit h pr o p erl y. If n ot, t h er e ar e s eri o u s c o n s e q u e n c es
of i n c o n sist e nt d at a as s e e n i n t h e e x a m pl e of b a n k d at a.

3. R E L A T E D W O R K A N D
T E C H N O L O GI E S

T his s e cti o n ill u str at es t h e S Q L a n d N o S Q L bi g d at a s yst e ms. It
al s o e x pl ai n s t h e k e y- v al u e N o S Q L bi g d at a s yst e m, Ri a k, w hi c h is
u s e d i n t hi s st u d y. F urt h er it r e vi e w s e xisti n g w or k o n tr a n s a cti o n al
s er vi c es i n N o S Q L bi g d at a s yst e m s.

3. 1 N o S Q L d at a b a s es
R el ati o n al d at a b as es e nf or c e r el ati o n s hi p b et w e e n d at a t a bl es
(rel ati o n s) a n d s u p p ort A CI D (At o mi cit y, C o n sist e n c y, Is ol ati o n,
D ur a bilit y) pr o p erti es t h at g u ar a nt e e str o n g c o n si st e n c y of d at a a n d
c o n c urr e n c y of tr a n s a cti o n s. S Q L h as b e e n wi d el y u s e d i n
r el ati o n al d at a b a s es. B ut wit h t h e e m er g e n c e of n e w t e c h n ol o gi es
s u c h as s er vi c e- ori e nt e d c o m p uti n g, cl o u d, f o g or e d g e c o m p uti n g,
t h er e h a s b e e n si g nifi c a n c e i n cr e a s e i n t h e a m o u nt of d at a w hi c h is
g e n er at e d t hr o u g h a p pli c ati o n s or s er vi c es s u c h as o nli n e s o ci al
m e di a, w e b s e ar c hi n g/ br o w si n g, c u st o m er s r e vi e w s, r o a d tr affi c
a n d w e at h er d at a. I n s u c h a p pli c ati o n s it i s diffi c ult t o m ai nt ai n
str o n g c o n sist e n c y (as i n r el ati o n al d at a b as es) as w ell as a v ail a bilit y
a n d s c al a bilit y. A c c or di n g t o t h e C A P t h e or e m [9], c o n sist e n c y,
a v ail a bilit y a n d p artiti o n t ol er a n c e c a n n ot b e g u ar a nt e e d
si m ult a n e o u sl y. T his h as l e d t o a n e w tr e n d i n d at a b a s es, n a m e d as
N o S Q L d at a b as es (a s d es cri b e d a b o v e).

N o S Q L d at a b as es pr o c ess l ar g e v ol u m e of d at a a n d g e n er at e
r es ult s i n r e al ti m e s u c h as a n al ysis of milli o n s of t w e ets or
pr o c essi n g of li v e r o a d tr affi c d at a. T h er ef or e, s u c h a p pli c ati o n s
d e m a n d hi g h effi ci e n c y, r es p o n s e ti m e, s c al a bilit y a n d a v ail a bilit y.
Diff er e nt N o S Q L d at a b as es f oll o w diff er e nt d at a m o d els a n d
pr o vi d e diff er e nt l e v els of c o n sist e n c y, a v ail a bilit y a n d effi ci e n c y.
T h e m ost c o m m o n N o S Q L d at a b as es m o d el s ar e D o c u m e nt
d at a b as es, K e y- v al u e d at a b as es, C ol u m n st or e a n d Gr a p h d at a b as es
[1 0]. T h es e m o d els ar e i m pl e m e nt e d i n diff er e nt N o S Q L d at a b as es
s u c h as o n g o D B, C ass a n dr a, M e m c a c h e D B, N e o 4 J, Ri a k a n d s o o n.

C o m p ari n g t h e diff er e nt N o S Q L d at a b as es is b e y o n d t h e s c o p e
of t hi s p a p er. I n t hi s p a p er, w e u s e Ri a k w hi c h is o n e of t h e m ost
wi d el y u s e d N o S Q L bi g d at a s yst e ms. Ri a k w or ks as a cl u st er
w hi c h i s c o m p os e d of m ulti pl e p h ysi c al n o d es. E a c h n o d e i s
l o gi c all y di vi d e d i nt o virt u al n o d es. Effi ci e n c y a n d a v ail a bilit y ar e
a c hi e v e d t hr o u g h d at a p artiti o ni n g a n d r e pli c ati o n. E a c h d at a p air
i s r e pli c at e d at ‘ N’ virt u al n o d es, w hi c h ar e l o c at e d i n disti n ct
p h ysi c al n o d es. M or e o v er, k e y/ v al u e p airs ar e gr o u p e d i nt o a
n a m es p a c e c all e d “ b u c k et ”. T hi s i s t o all o w st ori n g diff er e nt p air s
wit h t h e s a m e k e y b ut i n diff er e nt b u c k ets. B u c k et s ar e gr o u p e d i n
a n ot h er n a m es p a c e n a m e d “ b u c k et t y p e ”, w h er e a s et of s yst e m
b e h a vi o ur al pr o p erti es c o ul d b e est a blis h e d. F or i n st a n c e,
pr o p erti es li k e t h e n u m b er of r e pli c a s (N) a n d t h e l e v el of
c o n sist e n c y/ a v ail a bilit y c o ul d b e i niti ali z e d at t h e b u c k et t y p e, i n
or d er t o d et er mi n e w h e n a r e a d (“r ”) or a writ e (“ w ”) o p er ati o n will
b e c o n si d er e d s u c c e ssf ul or n ot. I n g e n er al, c o n si st e n c y i s
m ai nt ai n e d b y a q u or u m t e c h ni q u e a n d a d e c e ntr ali z e d r e pli c a
s y n c hr o ni z ati o n pr ot o c ol. T h e s yst e m will pr o vi d e str o n g er
c o n sist e n c y if (r + w > N) t h a n if (r + w ≤ N).

3. 2 T r a ns a cti o n al s e r vi c es f o r N o S Q L
d at a b a s es

N o S Q L s yst e ms pr o vi d e a v ail a bilit y, s c al a bilit y a n d effi ci e n c y i n a
c o m pl et el y diff er e nt w a y i n c o m p aris o n wit h t h e S Q L d at a b as es.
T h e k e y- v al u e d at a m o d els d o n ot a d o pt stri ct r el ati o n s hi p s
b et w e e n d at a e ntiti es a s r el ati o n al d at a b as es d o. M or e o v er, t h e
N o S Q L q u er y l a n g u a g e i s si m plifi e d t o G et/ P ut o p er ati o n s. A CI D
tr a n s a cti o n s ar e n ot g u ar a nt e e d as N o S Q L d at a b as es pri oriti z e
effi ci e n c y a n d a v ail a bilit y o v er c o n si st e n c y. E x a m pl es of s u c h
N o S Q L d at a b as es ar e Bi g T a bl e [9], F a c e b o o k C a ss a n dr a [1 1], a n d
Wi n d o ws A z ur e [1 2].

Diff er e nt a p pr o a c h es h a v e b e e n pr o p o s e d t o i m pl e m e nt
tr a n s a cti o n s i n N o S Q L s yst e ms, i n or d er t o pr o vi d e diff er e nt l e v el s
of c o n si st e n c y  w hi c h c a n b e i m pl e m e nt e d at t hr e e diff er e nt
l a y ers s u c h as d at a st or e, mi d dl e w ar e a n d cli e nt si d e. S yst e m s s u c h
as S p a n n er [1 3] or C O P S [1 4] h a v e b e e n d e v el o p e d t o s u p p ort
tr a n s a cti o n s at t h e d at a st or e l e v el. B ut t his m et h o d m a y
c o m pr o mis e o n s c al a bilit y a n d a v ail a bilit y. Mi d dl e w ar e
a p pr o a c h es i n cl u d e G o o gl e M e g a st or e [1 5], Cl o u d T P S [1 6], or
C u m ul o Ni m b o [1 7]. S u c h a p pr o a c h es i m pl e m e nt tr a n s a cti o n al
s er vi c es at t h e mi d dl e w ar e l e v el w hi c h i s a n i nt erf a c e b et w e e n
cli e nt s a n d a d at a b as e. It m e a n s t h at c o n c urr e n c y c o ntr ol a n d A CI D
pr o p erti es ar e m a n a g e d at t h e mi d dl e w ar e l e v el. Fi n all y, i n t h e
cli e nt l a y er a p pr o a c h, A PI’ s ar e d e v el o p e d t h at s e n d a n d r e c ei v e
m et a d at a fr o m cli e nt’s a p pli c ati o n s. E x a m pl es i n cl u d e, P er c ol at or
[1 8] a n d R e T S O [1 9].

E xisti n g r es e ar c h pr o p os es t e c h ni q u es t o a d dr es s t h e i ss u e of
c o n sist e n c y i n N o S Q L s yst e ms b ut t h e y d o n ot pr o vi d e e v al u ati o n
of c o n si st e n c y wit h r es p e ct t o a v ail a bilit y a n d effi ci e n c y.

4. T H E P R O P O S E D A P P R O A C H
T his s e cti o n pr es e nts t h e pr o p os e d a p pr o a c h f or e v al u ati n g t h e S Q L
a n d N o S Q L bi g d at a s yst e ms w hi c h ar e c o m m o nl y u s e d i n cl o u d,
f o g a n d e d g e c o m p uti n g.

4. 1 O nli n e s h o p pi n g c a rt – c a s e st u d y
W e first e x pl ai n t h e pr o bl e m of A C E pr o p erti es of S Q L a n d N o S Q L
bi g d at a s yst e m s u si n g a c as e st u d y of a n o nli n e p ur c h a s e or d er of
a s h o p pi n g c art. W e t h e n u s e t hi s c as e st u d y t o e v al u at e t h e eff e ct s
of c o n si st e n c y (a n d i n c o n si st e n c y) o n t h e effi ci e n c y a n d
a v ail a bilit y of d at a.

A s d es cri b e d a b o v e, w e u s e t h e T P C b e n c h m ar k, T P C- D S [2]
i n t h e e v al u ati o n. It pr o vi d es a b u si n ess m o d el of a r et ail c o m p a n y

Fi g ur e 2. N o S Q L a n d b a n k a c c o u nt d at a.

— i.e., recording client purchases, modifying prices according to
promotions, maintaining customer profiles are some of the
examples of business processes. In this paper, our study is focused
on part of the recording client purchases process.

Specifically, we explore the problem of how concurrently
issued purchase orders (or transactions) can affect availability,
efficiency and consistency. If multiple (purchase) orders or
transactions are concurrently updating the data (e.g., buying same
product or unit) then the chances of data inconsistency are also
increased. During an update operation data may remain
inconsistent for a certain period of time. The inter-arrival time since
the update operation has started until it has finished and recorded
updated data in the database is referred to as “inconsistency
window” [20]. This can happen due to several reasons such as
network communication delay, number of replicas or a system load.

The issue of inconsistency arises when two or more clients
concurrently order the same product/unit and their orders overlap
during a purchase process. The issue is illustrated through an
example in the Fig. 3. At time t1 and t2 the number of available
units (#units) in the database for a specific product (“id_product”)
is the same for both client 1 and client 2. Clients place orders
independently of each other. The number of available items (in the
database) at the time of the clients’s orders, should be:
#units_client 1 ≤ #units or #units_client 2 ≤ #units. That is, the
number of units should be equal to or greater than the units
specified in client’s order 1 or client order 2.

If client 1 order is completed first, then the number of available
items will decrease. Thus it is possible that client 2 may not get
sufficient units if (#units_client 2 > #units) after the purchase of
client 1.

Therefore, it is necessary to process client requests so that data is
consistent while maintaining appropriate level of efficiency and
availability.

4.2 The process model of an online shopping
cart

This section explains the process model of an online shopping cart.
We use the online shopping cart case study as it is more appropriate
to evaluate the ACE properties of the SQL and NoSQL big data
systems. For instance, maintaining consistency is crucial in online
shopping cart as clients’ orders and product records must be
consistently processed and stored in databases. Efficiency is also
important as clients requests need to be processed quickly.
Availability is important too as sellers want their products to be
available to many clients.

The aim of describing the process model is to study the
behaviour of an online purchase system which simultaneously
manages purchase requests from different clients. When a client
makes a purchase request for a specific product the system will
display the number of units (or products) available in the database.
If there are no units available, the client’s request will be declined,
otherwise the system proceeds with the purchase request. The
system must manages a client’s request and keeps consistency of
the database.

The purchase process used in our study is illustrated in the Fig.
4. Note that there exist various models of implementing the
purchase process in online shopping carts. However, comparing
different online shopping carts is beyond the scope of this research.

In Fig. 4, the flow of different steps is numbered in order to
provide a better understanding of how the system carries out the
purchase process.

The client’s purchase process comprises the following three main
phases:
1. Initial phase: the system receives a client’s request to

purchase a product (1). It checks the number of available units
(2, 3), and sends the information to the client (4). If there are

Figure 4. An online shopping cart purchase process model.

Figure 3. A product purchase by two concurrent clients.

Client 1 Server

Client 2

t2

t4

t1

t3

no units, then the system discards client’s request (5),
otherwise the client should choose number of units which are
to be purchased (6), and the purchase will start.

2. Purchase phase: the system receives the number of units
chosen by the client (7). However, it has to be taken into
account that other clients coexist due to the concurrent nature
of the purchase system. Therefore, any client is highly likely
to make decisions based on a stale version of a product in their
initial phase. For this reason, it is necessary to check if there
are still enough number of units available in the database that
fulfil client’s needs (8, 9). If there are not enough units
available, then the client’s request is declined (10, 11),
otherwise the system proceeds with the purchase order.

3. Payment phase: this is the most critical point during the
purchase procedure as during this phase client’s decision will
be finalized (and recorded) in the database (commit or abort).
This implies that a certain concurrency control technique [21]
should be implemented in order to consistently manage data
updates in the database. At this stage, the system definitely
confirms the availability of units (13, 14). Then, if the check-
out is successful the purchase will commit (17, 18, 19),
otherwise it will abort (15, 16). The goal is to avoid or reduce
the number of database inconsistencies and payment conflicts,
especially in a database system that lacks appropriate
concurrency control technique.

According to the purchase process model, every client’s request
starts at the “Initial” phase. But it is possible that all clients may not
be able to finish their purchases successfully due to the level of
competitiveness between them – that is, system allows multiple
clients at the same time to enable high availability of data (or
products). It is possible that some purchase orders are discarded at
the beginning of the process as they cannot get sufficient units (i..e,
#units_client > #units). Other purchase requests (where
#units_client ≤ #units) will pass to the “Purchase” phase. At the
end, only when a client’s request has enough available units along
the three phases (“Initial”, “Purchase”, “Payment”) then his/her
purchase will complete successfully. Otherwise the client’s request
will be cancelled at the specific phase of the purchase process.

4.3 Evaluation and testing
The purchase process model is implemented using Java, SQL and
NoSQL big data system. The goal is to analyse how a purchase
system works with two different data systems, a traditional SQL
database and a NoSQL big data system. We use MySQL and Riak
for traditional SQL and NoSQL big data system respectively.
Specifically, we analyse how concurrent read-write operations
affect the ACE properties. With MySQL we use locks and no locks
in the experiments. Riak does not use locks and it lacks appropriate
concurrency control mechanisms.

Several experiments have been carried out in order to simulate
concurrent client’s requests (or transactions) with different degrees
of concurrency. The number of requests (transactions) per
experiment varies exponentially from 1 to 2048 (2, 4, 8, 16, …,
2048), so the order of magnitude in the input size changes.
Therefore, an experiment with an input size ‘x’ (1 ≤ x ≤ 2048)
means that the system is trying to perform ‘x’ transactions
concurrently. Note that from 4096 transactions and onward, the
system could not cope with high number of requests due to
constraints on hardware resources used in the experiments.

Given a specific number of transactions, each experiment has
been run 30 times; which comply with recommended sample in
statistical analysis. In our study, the percentage of transactions

which reach the “Payment” phase is represented in Fig. 5. It is to
be noted that there is a big difference in the results between using
locks and no locks. In MySQL with locks, most of the transactions
have the possibility of reaching the “Payment” phase. But in Riak
and MySQL with no locks, the percentage plummet from 32
transactions and onward, i.e. most of the transactions are discarded
in the first “Initial” and second “Purchase” phases of the purchase
process.

Figure 5. Percentage of transactions in the “Payment” phase.
Moreover, the lack of any lock-based concurrency control

mechanism leads to the absence of controlling the conflict between
transactions. Thus the speed of the database system plays an
important role, i.e. how fast the transactions arrive at the system. In
summary, the faster the system is, the higher the level of
competitiveness (or conflict).

The goal is to establish a global mean time and a mean
percentage of transactions that are able to complete successfully per
group of transactions. However, any transaction can be discarded
at any of the three phases, so the mean execution time and the
percentage of successful transactions are worked out for each
specific phase, i.e. not all transactions will reach the “Purchase” or
the “Payment” phase. In addition, the relation between the number
of transactions that arrive at a specific phase divided by the mean
execution time of that phase provides a measure in relation to the
number of transactions per millisecond (‘tpm’) that the purchase
system can cope with. For each specific phase, the combination of
the measure ‘tpm’ with the percentage of successful transactions is
a plausible way of comparing MySQL and Riak.

The experiments were carried out using the following
hardware/software features: a CPU core with 2.4 GHz Intel(R)
Core(TM) i7-5500, an operating system Ubuntu 14.04 LST with 64
bits, Eclipse Luna 4.42 as IDE (Integrated Development
Environment), Oracle Java 7 as the programming language, a client
API supported by MySQL and NoSQL key/value Riak (by Basho)
2.1.1. The simulation run over the SQL store MySQL and the
NoSQL key-value Riak with a cluster of five nodes over one CPU.

4.3.1 “Initial” phase
At the beginning of the purchase process, a group of

transactions start their execution at the “Initial” phase, but not all
will accomplish the next phase for several reasons such as the level
of competitiveness (or concurrency) between them and the features
of the database management system. The results for this “Initial”
phase are shown in the Fig. 6.

0

20

40

60

80

100

120

%
 T

ra
ns

ac
tio

ns
Number of concurrency transactions

Transactions in the "Payment" phase

Riak MySQL (no locks) MySQL (locks)

Figure 6. MySQL and Riak performance in the “Initial” phase.

In MySQL (with no locks) the percentage of successful
transactions is always above 58% where the ‘tpm’ varies from 0.05
to 0.5. At the beginning, the ‘tpm’ increases from 0.05 to 0.5 as the
number of concurrent transactions increases from 1 to 16, but with
32 and onward the system starts decreasing the ‘tpm’ rate, and it
falls from 0.3 to 0.08, and so does the percentage of successful
transactions. In MySQL with locks, the ‘tpm’ rate increases from
0.4 to 2.4 as the number of concurrent transactions increases and
with a 100% of successful transactions. On the contrary, Riak is
able to manage higher ‘tpm’ rates than MySQL in most concurrent
transactions. It varies from 0.2 to 8.6.

MySQL with no locks reaches its maximum ‘tpm’ value (0.5)
for 16 concurrent transactions. MySQL with locks handles 2048
with 2.4 ‘tpm’. However, the ‘tpm’ in Riak is higher with a value
between 1.8 and 3.5 for 16 and 32, and above 4.7 ‘tpm’ for more
than 32 concurrent transactions.

According to the results, the level of competition for a specific
number of units of the same product is higher in Riak than in
MySQL. As a consequence, it has a direct impact on the percentage
of successful transactions, especially when the number of
concurrent transactions is above 64, then the percentage of
successful transactions plummets from 45% to 1%.

4.3.2 “Purchase” phase
Some transactions have already finished (discarded) in the “Initial”
phase. Indeed, depending on the database management system, the
number of transactions which achieve the “Purchase” phase is
different as explained in the previous section. The results of second
phase are shown in Fig. 7.

Figure 7. MySQL and Riak performance in the “Purchase” phase.

In Riak, the percentage of transactions which achieve the
“Payment” phase falls drastically from 82% to 1% (from 32
concurrent transactions and onwards). This fact implies a decrease
in the ‘tpm’ in the “Purchase” phase. For example, the ‘tpm’ in the
“Initial” phase for 32 concurrent transactions is 3.5 and in the
“Purchase” phase it is 1.6. This is due to the fact that the number of
concurrent transactions which reaches the second phase is lower,
i.e. 26 out of 32 (82%). This results in an enormous decrease in the
number of ‘tpm’ which moves down from 1.5 to 1.3 in comparison
with the “Initial” phase which is around 8 ‘tpm’. In MySQL with
no locks, as the ‘tpm’ increases from 0.01 to 0.16 the percentage of
transactions which pass to the next phase moves from 30% to
100%. Finally, in MySQL with locks the percentage of successful
transactions is mainly always above 95% with a ‘tpm’ from 0.04 to
1.4.

In summary, MySQL with locks enable a high percentage of
transactions which reach the final stage (Payment), than MySQL
with no locks and Riak. Though Riak is faster than both versions of
MySQL (with and with no locks), it results in a drastic fall in the
number of successful transactions — above 64 concurrent
transactions, where the ‘tpm’ decreases from 1.6 to 1.4 due to the
high level of competition.

4.3.3 “Payment” phase
Finally, the “Payment” phase will determine the number of
transactions which are able to commit or abort at the end of the
purchase process, as shown in Fig. 8.

Figure 8. MySQL and Riak performance in the “Purchase” phase.

In MySQL the ‘tpm’ is below 0.04 in both cases (with and
without locks), and the percentage of transactions which achieve
this phase is neither high. In MySQL, the number of successful
transactions is lower than 50% with a ‘tpm’ below 0.005 (with
locks) and 0.007 (with no locks). On the contrary, Riak is faster
than MySQL, where the percentage of successful transactions is
below 50% with a ‘tpm’ between 0.8 and 1. Moreover, Riak
provides better results than MySQL with locks when ‘tpm’ is lower
than 0.6 — with more than 70% of successful transactions. This is
because not many transactions are competing, otherwise the
percentage will drop when the ‘tpm’ increases from 0.8 to 1 ‘tpm’,
i.e. more clients in the system. MySQL with no locks achieves a
higher percentage of successful transactions than both MySQL with
locks and Riak, with a ‘tpm’ below 0.04 and more than 2 concurrent
transactions.

0 2 4 6 8 10
0

20

40

60

80

100

120

Transactions/ ms ('tpm')

%
 S

uc
ce

ss
fu

l t
ra

ns
ac

tio
ns

Initial phase

Riak MySQL (no locks) MySQL (locks)

0 0.5 1 1.5 2
0

20

40

60

80

100

120

Transactions / ms ('tpm')

%
 S

uc
ce

ss
fu

l t
ra

ns
ac

tio
ns

Purchase phase

Riak MySQL (no locks) MySQL (locks)

0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

120

Transactions / ms ('tpm')

%
 S

uc
ce

ss
fu

l t
ra

ns
ac

tio
ns

Payment phase

Riak MySQL (no locks) MySQL (locks)

4.3.4 Consistency versus availability
Since product data is not locked in Riak and MySQL with no locks,
it cannot be guaranteed that a purchase request ends up in a
consistent state at the “Payment” phase. This fact is highly likely to
cause an inconsistent database state. Our approach therefore makes
a distinction between transactions which conflict and those which
do not. The detection of conflicts is carried out with the read-write
conflict rule [22]. Two transactions t1 with (ts1, tc1) and t2 with
(ts2, tc2) may lead to consistency breach in the database when their
execution time overlap, i.e. (ts1 < tc2) or (ts2 < tc1), and when both
are allowed to commit. In our approach, if some transactions are
conflicting but there are enough available units (or products), then
they are allowed to commit, otherwise they will abort. We therefore
differentiate between the following four cases during the
“Payment” phase:

a) Availability (A) and Consistency (C): the number of units in
the database is sufficient to fulfil one transaction’s needs
(client’s request), and it does not conflict with others.

b) Availability (A) and No Consistency (NC): the number of
units in the database is sufficient to fulfil one transaction’s
needs, but it conflicts with others.

c) No Availability (NA) and Consistency (C): the number of
units in the database is not sufficient to fulfil one transaction’s
needs, and it does not conflict with others.

d) No Availability (NA) and No Consistency (NC): the number
of units in the database is not sufficient to fulfil one
transaction’s needs, and it conflicts with others.

Based on the above cases, different experiments were conducted.
The results are explained as follow. In the first case “Availability
and Consistency” (AC), Riak is faster than MySQL and all
transactions conflict with each other, i.e. there is a complete lack of
consistency as it can be observed in the Fig. 9. In MySQL (with
locks) there is a complete avoidance of conflicts, so the first
transactions to lock the system will be the one to purchase the
number of units it requires. Although, in MySQL (with no locks)
more transactions can make purchases in comparison to MySQL
(with locks), and in Riak, the data in the database is highly likely to
end up in an inconsistent state, i.e. negative values. This is due to
the lack of an appropriate concurrency control at the beginning and
at the end of the “Payment” phase.

Figure 9. AC in MySQL and Riak in the “Payment” phase.

Figure 10 shows the results of the “Availability and No
Consistency” (ANC) case. In it, when the number of concurrent
transactions is very low, there is a high likelihood that their arrival

happens at once. They arrive extremely close to each other, i.e.
there is no difference at all, so the system might set the same start
time to some of them. Moreover, if there is a lack of concurrency
control their commit time can be close to each other too. Therefore,
the percentage of transactions which clashes increases. Indeed, in
MySQL with no locks and Riak the percentage is bigger than in
MySQL with locks. On the contrary, in MySQL with locks the
percentage is lower because the implementation of locks imposes
an order of execution on the transactions. That is, a transaction has
to wait until another one is completed. Thus the commit time
between the transactions, which are allowed to commit, are not so
close to each other.

Figure 10. ANC in MySQL and Riak in the “Payment” phase.

The last two cases “No Availability and Consistency” (NAC) and
“No Availability and No Consistency” (NANC) are analyzed
together. The results are illustrated in the Fig. 11. It can be observed
that in MySQL with locks a high percentage of transactions do not
commit because there were not enough available units in the
database. Indeed, only those transactions that get the lock first, are
able to satisfy their needs and get the required number of units. In
MySQL with no locks and in Riak the percentage of transactions
that fail due to the shortage of units in the database is very low,
because the number of transactions which reach this phase is also
low, as it is explained in the Section 4.3.

Figure 11. No availability in MySQL and Riak in the “Payment”

phase.

0

20

40

60

80

100

120

Number of concurrency transactions

%
 T

ra
ns

ac
tio

ns

Availability and consistency

Riak MySQL (no locks) MySQL (locks)

0

20

40

60

80

100

120

Number of concurrency transactions

%
 T

ra
ns

ac
tio

ns

Availability and no consistency

Riak MySQL (no locks) MySQL (locks)

0

20

40

60

80

100

120

%
 T

ra
ns

ac
tio

ns

Number of concurrency transactions

No availability

Riak MySQL (no locks) MySQl (locks)

5. CONCLUSIONS
This paper studied the three main ACE properties, availability,
consistency and efficiency (or performance) of the traditional SQL
and NoSQL data systems which are used in cloud, fog and edge
computing for storing and processing data. In it, we developed a
new system using real case study of an online shopping cart and the
industry standard benchmark of the TPC-DS in our experiments.
We also used the widely used MySQL (traditional database system)
and Riak (NoSQL big data system) in the design and
implementation of the proposed system and experimentation.
Our work is first that studied the ACE properties of SQL and
NoSQL big data systems. It provided greater insights into the
strengths and weaknesses of both SQL and NoSQL big data
systems. Our extensive experimentation produced various
interesting results which show that MySQL with locks provide
better consistency. Thus, it is more appropriate for applications that
need strong consistency such as online shopping or banking.
However, in terms of efficiency and availability Riak outweighs
MySQL. But Riak does not ensure strong consistency. Thus, in its
current form Riak is not sustainable to be used for applications
(such as online shopping or banking). Our recommendation is that,
in order for Riak, to be used in such applications it needs to support
appropriate concurrency control and transaction management
mechanisms.

6. REFERENCES
[1] S. Yi, C. Li, and Q. Li, "A survey of fog computing: concepts,

applications and issues," in Proceedings of the 2015
workshop on mobile big data, 2015, pp. 37-42.

[2] TPC. (2001-2018). Available: http://www.tpc.org/tpcds/
[3] M.T. González-Aparicio, M. Younas, J. Tuya, and R. Casado,

"Testing of transactional services in NoSQL key-value
databases," Future Generation Computer Systems, vol. 80,
pp. 384-399, 2018.

[4] M. Chen, S. Mao, and Y. Liu, "Big data: A survey," Mobile
Networks and Applications, vol. 19, pp. 171-209, 2014.

[5] M. Cecowski, S. Becker, and S. Lehrig, "Cloud computing
applications," in Engineering Scalable, Elastic, and Cost-
Efficient Cloud Computing Applications, ed: Springer, 2017,
pp. 47-60.

[6] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C.
Roxburgh, and A. H. Byers, "Big data: The next frontier for
innovation, competition, and productivity," 2011.

[7] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A.
Gani, and S. U. Khan, "The rise of “big data” on cloud
computing: Review and open research issues," Information
Systems, vol. 47, pp. 98-115, 2015.

[8] L. Jiang, M. Jun, and Z. Yang, "Customer-perceived value
and loyalty: how do key service quality dimensions matter in
the context of B2C e-commerce?," Service Business, vol. 10,
pp. 301-317, 2016.

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, "Bigtable: A Distributed Storage System for
Structured Data," ACM Trans. Comput. Syst., vol. 26, pp. 1-
26, 2008.

[10] A. Moniruzzaman and S. A. Hossain, "Nosql database: New
era of databases for big data analytics-classification,
characteristics and comparison," arXiv preprint
arXiv:1307.0191, 2013.

[11] A. Lakshman and P. Malik, "Cassandra: a decentralized
structured storage system," ACM SIGOPS Operating Systems
Review, vol. 44, pp. 35-40 2010.

[12] D. G. Campbell, G. Kakivaya, and N. Ellis, "Extreme scale
with full SQL language support in microsoft SQL Azure,"
presented at the Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data,
Indianapolis, Indiana, USA, 2010.

[13] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford,
"Spanner: Google's Globally Distributed Database," ACM
Trans. Comput. Syst., vol. 31, pp. 1-22, 2013.

[14] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen, "Don't settle for eventual: scalable causal
consistency for wide-area storage with COPS," presented at
the Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, Cascais, Portugal, 2011.

[15] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J.
Larson, J. M. Leon, Y. Li, A. Lloyd, and V. Yushprakh,
"Megastore: Providing Scalable, Highly Available Storage
for Interactive Services," in CIDR, 2011, pp. 223-234.

[16] K. Chitra and B. Jeevarani, "CLOUD TPS: SCALABLE
TRANSACTION IN THE CLOUD COMPUTING,"
International Journal of Engineering and Computer Science,
vol. 2, pp. 2280-2285, July, 2013.

[17] R. Jimenez-Peris, M. Patino-Martinez, B. Kemme, I.
Brondino, J. O. Pereira, R. Vilaça, F. Cruz, R. Oliveira, and
M. Y. Ahmad, "CumuloNimbo: A Cloud Scalable Multi-tier
SQL Database," IEEE Data Eng. Bull., vol. 38, pp. 73-83,
2015.

[18] D. Peng and F. Dabek, "Large-scale Incremental Processing
Using Distributed Transactions and Notifications," in OSDI,
2010, pp. 1-15.

[19] F. Junqueira, B. Reed, and M. Yabandeh, "Lock-free
transactional support for large-scale storage systems," in
Dependable Systems and Networks Workshops (DSN-W),
2011 IEEE/IFIP 41st International Conference on, 2011, pp.
176-181.

[20] W. Vogels. (2008). All things distributed. Available:
https://www.allthingsdistributed.com/2008/12/eventually_c
onsistent.html

[21] C. G. D. J. K. Tim, Distributed Systems. Concepts and
design.: Addison-Wesley 2001.

[22] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and
P. O'Neil, "A critique of ANSI SQL isolation levels,"
SIGMOD Rec., vol. 24, pp. 1-10, 1995.

