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ABSTRACT
Themain aims and contributions of thepresent paper are tousenewsoft computingmethods for the
simulation of scour geometry (depth/height and locations) in a comparative framework. Fivemodels
were used for the prediction of the dimension and location of the scour pit. The five developedmod-
els in this study are multilayer perceptron (MLP) neural network, radial basis functions (RBF) neural
network, adaptive neuro fuzzy inference systems (ANFIS), multiple linear regression (MLR), andmul-
tiple non-linear regression (MNLR) in comparison with empirical equations. Four non-dimensional
geometry parameters of scour hole shape are predicted by these models including the maximum
scour depth (S), the distance of S from the weir (XS), the maximum height of downstream deposited
sediments (hd), and distance of hd from the weir (XD). The best results over train data derived for
XS/Z and hd/Z by the MLP model with R2 are 0.95 and 0.96 respectively; the best predictions for S/Z
and XD/Z are from the ANFIS model with R2 0.91 and 0.96 respectively. The results indicate that the
application of MLP and ANFIS results in the accurate prediction of scour geometry for the designing
of stable grade control structures in alluvial irrigation channels.
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1. Introduction

Grade control structures are commonly used in irrigation
channels for regulating water level, supplying required
head upstream of weirs, measuring flow rate, enhancing
water quality by reducing erosion, and preventing degra-
dation in a bed channel of alluvial materials (Najafzadeh,
2015). The performance of the irrigation channel will
increase by using these structures. Water flowing from
the top crest of the weir (as one of the grade control
structures) creates a vortex and increases flow veloc-
ity downstream of hydraulic structures that result in
local scour (Mohammadpour, 2017; Sarkar &Dey, 2004).
Local scour creates holes downstream of a weir and its
dimensions increase gradually and become unbalanced,
which causes the failure of the hydraulic structures or
weir (Goel & Pal, 2009). Therefore, it is necessary that
adequate effort and attention are given to the safe design
of the foundations of hydraulic structures (Sarkar & Dey,
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2004; Termini & Sammartano, 2012). There are various
hydraulic and geotechnical factors that have an effect
on the local scour downstream of water level adjust-
ing structures in erodible beds. Figure 1 shows a plan
view of local scour on an alluvial bed downstream of
a water level control structure at the equilibrium stage
(D’Agostino & Ferro, 2004). Local sediment transport
is actively done throughout the developing stage of the
local scour pit. With approaching the equilibrium state,
this phenomenon becomes a ‘purely hydraulic’ mecha-
nism, wheremass balance among removed and deposited
particles at the downstream creates the scour hole pro-
file (D’Agostino & Ferro, 2004). Generally, the scour
around the level control structures is essentially complex
progress because of the three-dimensional flow patterns
relating to alluvial bed materials and erodible beds. In
conjunctionwith Figure 1, it is clear that the four geomet-
ric parameters that define the local scour hole dimensions
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Figure 1. Schematic view of scour geometry downstream of
grade control structures.

and geometry are: maximum scour depth (S); distance of
S from the weir (XS); maximum height of downstream
deposited sediments (hd); and distance of hd from the
weir (XD). An accurate estimation of these four scour
hole dimensions around the water level adjusting struc-
tures is one of the most important stages in grade con-
trol structure design and is the main contribution of the
present study.

The scour mechanism for grade control structures
is complex and is usually studied by regression anal-
ysis or simple empirical equations. Various investiga-
tors have widely studied the local scour process around
the water level control structures based on experimental
and prototype observations (Guan, Melville, & Friedrich,
2016; Lenzi, Marion, Comiti, & Gaudio, 2002; Lu, Hong,
Chang, & Lu, 2013; Marion, Tregnaghi, & Tait, 2006;
Pagliara & Kurdistani, 2013; Scurlock, Thornton, & Abt,
2011). Mason and Arumugam (1985) and Hoffmans and
Verheij (1997) proposed many regression equations for
estimating the final scour depth. Gaudio, Marion, and
Bovolin (2000) presented an equation to predict the
depth and length of a scour pit by using sediment par-
ticle size and morphological length. Lenzi, Marion, and
Comiti (2003) investigated many water level adjustment
structures in mountain rivers to assess the effects of a
water flow jet on the progress of scouring. Pagliara (2007)
developed a regression equation to characterize the scour
pit shape. Kumar and Sreeja (2012) investigated the scour
depth prediction by several experimental equations pre-
sented in the literature by using experimental and field
data. In regard to these results, it is concluded that the
predictive equations for scour depth cannot be used gen-
erally for all ranges of total water head and flowdischarge.
Melville and Lim (2014) collected some laboratory data
and developed a formula to estimate the scour dimension
for a horizontal 2D jet. Rajaei, Esmaeili Varaki, and Shafei
Sabet (2019) studied the influences of various factors on

local scour downward of water level adjusting structures
in trapezoidal and rectangular labyrinth plan form.

Prediction of local scour hole geometry is a major and
critical subject in water resource engineering for prevent-
ing excessive channel bed degradation and protecting
the stability of water level adjustment structures (Lau-
celli & Giustolisi, 2011) in alluvial channels. The scour
process around the level adjustment structures can dam-
age these structures and downstream channel geometry
(Najafzadeh, 2015). Traditional and statistical methods
such as regression methods are limited to the studies
in the experimental and field conditions. Sometimes,
this concern dose not lead to providing the accurate
prediction for scour depth. Consequently, the equations
that are extended based on these methods cannot be
applicable in most cases (Hooshyaripor, Tahershamsi,
& Golian, 2014). Hence, developing new techniques for
modifying traditional physical-based analysis is crucial.
Recently, using artificial soft computing models such
as artificial neural network (ANN) simulation models
and a fuzzy based model, adaptive neuro fuzzy infer-
ence system (ANFIS) has been introduced as an accu-
rate learning scheme for modeling complex phenomena
in different aspects of hydraulic and water engineering
problems (Bateni & Jeng, 2007; Chau, 2017; Hameed
et al., 2017; Moazenzadeh, Mohammadi, Shamshirband,
& Chau, 2018; Taormina, Chau, & Sivakumar, 2015; Wan
Mohtar, Afan, El-Shafie, Bong, & Ab. Ghani, 2018; Wu
& Chau, 2011; Yaseen, El-Shafie, Afan, Hameed, Wan
Mohtar&Hussain, 2016; Yaseen, Sulaiman,Deo,&Chau,
2019; Zounemat-Kermani, Beheshti, Ataie-Ashtiani, &
Sabbagh-Yazdi, 2009). These artificial intelligence meth-
ods benefit from the simplicity, ability, and proper results
of modern and advanced computers (Nguyen, Ahn, &
Park, 2018; Salmasi, Yıldırım, Masoodi, & Parsamehr,
2013), knowledge based and data based nature, predic-
tions without need ofmodel form, and greater endurance
over the data errors (Azamathulla, 2005; Bateni & Jeng,
2007) than statistical models. For instance, Liriano and
Day (2001) reported higher performance of the ANN
method in estimating scour dimension near a culvert
in comparison to the existing empirical equations. Goel
and Pal (2009) compared the results of support vec-
tor machines (SVM) and ANN models with an empir-
ical equation for modeling scour. Based on the results,
the SVM model showed better performance than both
ANN and empirical equations for scour prediction. Aza-
mathulla (2012) studied a gene-expression programming
(GEP) model for estimating scour depth at the down-
stream of sills and the results compared to estimations
of existing equations in Chinnarasri and Kositgittiwong
(2008). The GEP model had better results. Najafzadeh
(2015) used a hybrid model of an ANFIS based-group
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model of data handling (NF-GMDH) combined with
the particle swarm optimization (PSO) to simulate the
scour depth after the weirs. Results showed the hybrid
NF-GMDH-PSO model produces higher accuracy for
estimating scour depth than the evolutionary polyno-
mial regression (EPR) andGEPmodels. Elnikhely (2018)
investigated the accuracy of ANFIS and SVM models
to simulate scour depth after the rectangular channels.
Based on the results, the ANFIS model showed more
accuracy than the SVM model. Karbasi and Azamath-
ulla (2017) applied several models including ANN, SVM,
ANFIS, GEP, and GMDH of ANN and ANFIS to esti-
mate scour hole depth after a channel gate. Compari-
son of results proved that the ANN model has higher
performance than the other models with RMSE = 0.869.

As mentioned above, different artificial intelligence
models were used to simulate scour around the water
level control structures. But other geometric parameters
such as XS, hd, and XD are not considered in the scour
hole modeling of these structures. Hence, the objectives
of this study are: (1) collecting previous observations on
local scour hole patterns in alluvial beds at the down-
stream of grade control structures from published litera-
ture; (2) using different models of multilayer perceptron
neural networks (MLP), radial basis functions (RBF) of
ANN, ANFIS, multi-linear, and non-linear regression
(MLR, MNLR) to predict geometric parameters of local
scour at the downstream of grade control structures; and
(3) predicting four geometric parameters of depth, width,
and length of scour hole anddeposited height of sediment
at the downstreamof grade control structures due to their
importance in the grade control design and stability of
the hydraulic structure. In other words, in this study the
authors use five models to predict a three-dimensional
pattern of scour hole geometry and dimensions around
the water level and control structures based on compara-
tive evaluations.

2. Material andmethods

The main contribution of the present study is to collect
previously published data on patterns of local scour at
alluvial beds downstream of water level control struc-
tures, and develop new techniques of artificial intelli-
gence with regard to providing better predictions. Not
only the depth of scour, but also the scour pit width
and length, as well as the deposited height of sediment
at downstream, were used for simulation in the present
paper in regard to their importance in the grade con-
trol design and stability of the structure. In other words,
in this study the authors used five models to predict
a three-dimensional pattern of scour hole dimensions.
In this section, the theoretical dimensional analysis of

scour concepts, study literature, and some previously
published regression equations of scour hole dimensions
are described. After that, MLP, RBF, ANFIS, MLR, and
NMLR models are considered. Also, the data set and
hydraulic parameters that are used in the model devel-
opments of the study and available ranges of the effective
variables are presented.

2.1. Theoretical and dimensional analysis

There are several hydraulic, morphologic, and geotech-
nical features leading to the scour pit formation around
the water level control structures. Referring to Figure (1)
these affective and independent parameters include dis-
charge per width q (Q/B), fall height z, weir width b, tail
water depth h, distance from the downstream edge of
the weir and the scour pit crest XD, acceleration due to
gravity g, upstream side angle of scour b, face angle of
downstream edge l, water depth above the weir y0, dif-
ferences in height (m) from upstream, and downstream
water level H. Moreover, d50 is diameter than which 50%
of deposited sediment particles are finer; and d90 is diam-
eter than which 90% of deposited sediments are finer.
Four major dependent scour variables are: maximum
scour depth S and its longitudinal location XS; and max-
imum height of downstream mound hd and its distance
from the weir XD.

Based on the above factors and Figure (1), the scour
process, because of the erosive force of flow, can be
explained mathematically by the next equation:

F(x, z, b,B,Q, h, ho, g, ρ, ρs, dm, d90,β , λ) = 0 (1)

Where F is the functional symbol and x scour variable.
S, XS, hd, XD, and the other parameters are defined
previously. By using a dimensional analysis technique
Equation (1) can be written in dimensionless form:

x
z

= φ

(
b
z
,
h
H
,
B
b
,Q/bz

√
gdm

(
ρs − ρ

ρ

)
,β , λ,

d90
dm

)

(2)
Referring to Equation (2), the input vector of all models
which are used in this study is:

b
z
,
h
H
,
B
b
,Q/bz

√
gdm(

ρs − ρ

ρ
), θ ,

d90
dm

and the only output variable is one of the scour vari-
ables: (S/z), (XS/z), (hd/z), (XD/z). In this paper for any
of these scour variables a separate model was developed
and these variables are estimated separately.

The over-fall jet splits into two roller jets that rotate
inversely. The upstream wave slaves through the falling
and the combining jet. The downstream jet moves
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upward and creates a region of sediment deposition as
water flows downward (Sui, Faruque, & Balachandar,
2008).

Based on the detailed literature review and data analy-
sis it is concluded that the idea of a final equilibrium scour
hole for all of the practical cases is valid and several inves-
tigators used the similar dimensional analysis in con-
junction with regression technique and hydraulic mod-
els to develop empirical equations for the estimation of
local scour downstream of weirs (Mason & Arumugam,
1985). In Table 1 some of the most important of these
equations have been presented. Recently, several stud-
ies used artificial intelligence for modeling complicated
hydraulic phenomenon in water resource management
and civil-environmental engineering (Chang, Azamath-
ulla, Zakaria, & Ab Ghani, 2012; Dehghani, Saghafian,
Nasiri Saleh, Farokhnia, & Noori, 2014; Dehghani et al.,
2019; Juahir, Zain, Aris, Yusoff, & Mokhtar, 2010; Khan,
Azamathulla, & Tufail, 2012; Najah, El-Shafie, Karim, &
El-Shafie, 2013; Najafzadeh, Saberi-Movahed, & Sarka-
maryan, 2018; Pandey, Zakwan, Sharma,&Ahmad, 2019;
Seifi & Riahi-Madvar, 2019). In this study the MATLAB
2014 environment is used for developing soft comput-
ing models and SPSS 8 is used for linear and non-linear
model developments.

2.2. Artificial neural networks

2.2.1. Multi-layer perceptron
Neural networks (NNs) are stimulated by biological neu-
rons to accomplish brain-like calculations by enormously

direct connective artificial neurons (Riahi-Madvar &
Seifi, 2018). A remarkable development in the impor-
tance of this computational framework has happened
since an accurately laborious theoretical background for
NNs, i.e. error back propagation was introduced (ASCE,
2000).Multi-layer perceptron (MLP) neural networks are
the usual and common kind of ANNs and have been
effectively used for adaptive simulation of non-linear
problems in real world mechanisms. In these models,
the linearly weighted input vector of a node is delivered
to the hidden layer and transformed by the activation
function of the hidden layer. The activation function pro-
vides the model non-linearity estimation capability. MLP
is possibly the greatest common type of all the ANNs
and is broadly used in relation estimation, future predic-
tion, and simulation of pattern grouping. The neurons are
organized in a layered structure with three major layers,
which contains input (containing input function), hid-
den, and final output layers. The layers are composed of
a number of neurons which are the essential structure of
the model. The input vector which includes independent
parameters of the phenomenon is entered to the input
layer. The hidden layer characterizes the nonlinear rela-
tions of the inputs. The final adjusted model includes
hidden layers subject to the phenomenon’s degree of
complexity. In the last layer of the model, the output
layer is made up of the dependent parameters of the phe-
nomenon. The learning procedure drives from the first
layer to the hidden layer, and progresses to the latest
layer. The unidirectional connection between the nodes
uses results of nodes in a previous layer as the input

Table 1. Available empirical equations for the hole scour dimensions prediction.

Ref. Eq. No. Equation Author (year)

[8] (3) XD
z = 3.55

3
√

q2
g

z + 0.34 D’Agostino (1994)

[36] (11)

S(
q2
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of the nodes in the next one. The MLP model uses the
supervised training algorithmwhich associates the simu-
lated results to the observed values and then readapts the
weights in the mode by backward propagation of error
(Ham & Kostanic, 2001; Riahi-Madvar & Seifi, 2018).

2.2.2. Error back-propagation procedure
In the training stage of the MLP model, the data pro-
vided to an ANN model is spread layer-by-layer starting
at the first layer (input) to the hidden layers and finally
to the last one (output). The procedure, in a repetitious
approach designed to apply repetitive improvements to
the weights, includes the steps of giving an input to the
model, creation estimates to the result zpk, and after that
evaluating the calculated result to the observed targets
tpk. The overall error (Equation 3), by considering the
squared error of estimated and observed values of the
pattern p, is calculated as:

Ep =
N∑
k=1

(tpk − zpk)2 =
N∑
k=1

v2pk (3)

in which vpk is the error of the result k of observation p.
The aim of learning procedure is to provide an adequate
number of matchless input–output jointed couples P, that
are joinedwith an appropriate procedure forweightmod-
ification, and creates a collection of adjusted weights
by minimizing the overall model error. As identified
mostly by previous researches, the neural networks offer
an arbitrary planning among the input set to the output
set by imitating the natural perception development of
human intelligence (Azamathulla, 2005). The Levenberg-
Marquardt (LM) is used for MLP training in this study
as themost accurate model (Choubin,Malekian, Samadi,
Khalighi-Sigaroodi, & Sajedi-Hosseini, 2017).

2.2.3. Radial basis functions
ANNs with radial basis functions (RBF) are one of the
usual function approximations. One of the most impor-
tant traits of RBF models is the one type having a high-
dimensional-space model with a nonlinear structure that
can be simply fragmented by using a collection of a
group of RBF models; moreover the RBF models are
the RBF models have the capability of rapidly learning
(Zounemat-Kermani et al., 2009). In an RBF model the
input layer is composed of input parameters. In spite of
the MLP model, in the RBF model there is only one hid-
den layer, which is composed of an arbitrary number
of units. Any unit in a hidden layer has its radial basis
function as an activation function (Khadangi, Madvar, &
Ebadzadeh, 2009). The output of the hidden layer Zj(x)
estimates the distance between input to the center of the
radial basis function and images this distance on to the

activation function as follows (Khadangi et al., 2009):

zj(x) = exp

(
−||x − μj||2

2σ 2
j

)
(4)

in which x is the input parameter, mj is the center of RBF
in jth neuron of hidden layer, ||x − μj|| is the Euclidean
distance from the center of the RBF to the input, and σj
is a factor for adjusting the softness features of the RBFs.
Themodel result is calculated as the sumof linearweights
zj(x):

yl =
J∑

j=0
wljzj(x) z0(x) = 1 (5)

in which yl is the lth element of the result layer, wij is the
weight of the jth node of hidden layer to the lth node of
result layer. Z(x) = 1 in Equation (5) shows the Constant
wlo in the model.

2.3. Adaptive neuro fuzzy inference systems

The ANFIS model is known as the acronym of the adap-
tive neuro fuzzy inference system. ANFIS is an adaptive
fuzzy based model that is developed by using the com-
putation ability of the ANNs (Jang & Gulley, 1995). The
ANFIS is a Sugeno type of fuzzy model that has a pro-
moting system configuration using two different clus-
tering methods: grid partition and subtractive clustering
(Sanikhani, Kisi, Kiafar, & Ghavidel, 2015). Figure 2 dis-
plays a Sugeno fuzzy system that has two input param-
eters, one output parameter as the result, and two rules.
The corresponding ANFIS structure of this system is also
presented in Figure 2 (Rafiei-Sardooi et al., 2018; Seifi &
Riahi, 2018). Its rules are:

Rule 1: If x is A1 and y is B1 Then f = p1x+ q1y+ r1
Rule 2: If x is A2 and y is B2 Then f = p2x+ q2y+ r2

The output of node i in j layer of ANFIS model is Oij
(Jang & Gulley, 1995). Moreover, its layers from input to
output are:
First layer, input variables: in this layer any input is
imagined to fuzzy set by corresponding to the member-
ship degree of bell shape membership function (Zadeh,
1965):

O1
i = 1

1 + [(x − ci)/ai]2bi
(6)

X is the input variable i, and ci, bi and ai are the con-
stants of fuzzy membership function and usually called
if (condition) parameters.
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Figure 2. The structure of the Sugeno fuzzy system, its membership function, and equivalent ANFIS structure.

Second layer, rule grids: the grade of activation of incor-
porated rules is evaluated:

O2
i = wi = μAi(x) × μBi(y), i = 1, 2

in which the mAi(x) is the membership degree of input
variable x in Ai, and mBi(x) is for y in Bi respectively.
Third layer, intermediate grids: this layer calculates rel-
ative activation degree:

O3
i = wn

i = wi

w1 + w2
, i = 1, 2 (7)

and the wi
n is the normalization of each rule i member-

ship degree.
Fourth layer, consequent grids: here the output of layers
is determined:

O4
i = wn

i fi = wn
i .(pi + qi + ri), i = 1, 2

The ri, qi, and pi are the regulatory constants that should
be calculated in the optimization procedure and known
as the result constants.

Fifth layer, final result layer: the overall result of the
system is evaluated

O5
i =

∑
wn
i fi =

∑
wifi∑
wi

(8)

in this study by comparing different structures. Finally,
the gbellmf: generalized bell-shaped membership func-
tion is used with a three membership function for each
rule and the hybrid learning algorithm is used for train-
ing the ANFIS model.

2.4. Multi-linear regression

Another model that is used in the present paper is lin-
ear regression. In the case that the output parameter
Y is related to the m input parameters X1, X2, . . . ,Xm
and a linear relation is supposed to show the depen-
dences of Y to Xi, the multiple linear equation of Y is
Y = a+ b1×1 + b2 × 2 + . . . + bmxm.

y in this model displays the estimated value of
the parameter Y in regard to the input parameters
of X1 = x1, X2 = x2, . . . ,Xm = xm. The multi-linear
regression constants a, b1, b2, . . . ,bm are determined by
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minimizing the sum of the eyi differences of measured
values from the model determined by the regression
model (Kisi & Cobaner, 2009):

N∑
i=1

e2yi =
N∑
i=1

(yi − a − b1x1i−b2x2i − bmxmi)
2 (15)

In the present study, the constants a, b1, b2, . . . ,bm
are derived by least squares procedure (Kisi & Cobaner,
2009). The multi-linear regression model of scour on an
alluvial bed downstream of water level control structures
is:

x
z

= a0 + a1
b
z

+ a2
h
H

+ a3
b
B

+ a4
(
Q/bz

√
gdm(

ρs − ρ

ρ
)

)
+ a5

d90
dm

(9)

2.5. Multi-non-linear regression

Because of the complexity of the scour process the non-
linear regressionmodels are used. Themultivariable non-
linear least square regression (MNLR) model is used
for the estimation of scour dimensions. If the output
parameter f is to be a function of input parameters xi
(i = 1, . . . n):

f = f (x1, x2, . . . , xn) (10)

by using the polynomials, the functional form of this
equation is (Ramamurthy, Qu, & Vo, 2006):

f = g1(x1).g2(x2) . . . gn(xn) =
n∏

i=1
gi(xi) (11)

in which gi(xi) = several degree polynomial equation.
If fk is to be the observed value related to xik, the sum

of the square errors minimization by least squaremethod
is used to derive nonlinear regression coefficients aij:

δ2 =
s∑

k=1

(f − fk)2 (12)

In this study after several preliminary trials the following
Multi-Non-Linear Regression equation was selected for

scour modeling:

x
z

= a(
b
z
)b(

h
H

)c(
b
B

)d(
Q

bz
√
gdm(

ρs−ρ
ρ

)
)e(

d90
dm

)f (13)

2.6. The data set and empirical equations

Estimation of scour hole dimensions on an alluvial bed
with hydraulic water level structures using the equations
of Table 1, MLR, MNLR, MLP, RBF, and ANFIS mod-
els needs hydraulic and geometry excremental data. A
data bank of published literature was prepared and mod-
els developed. The data is gathered such that it includes all
necessary variables in previous studies. Table 2 presents
the features of implemented data and variables. In all of
the collected data the b and l were constant (900) and
eliminated from the effective variables. A reliable data
set involving 226 documented tests of scour geometry
downstream of water adjusting and grade control struc-
ture is compiled from literature. The data set are used
from published literature such as (D’Agostino & Ferro,
2004). Seventy-five percent of the database is used for
the training stage of models; the remaining 25% is used
for the testing of models, which in all of the models,
training (calibration), and testing (prediction) data sets
were similar (except for RBF). Training and testing sub-
sets are divided randomly and the final best structure of
ANN and ANFIS models were found through a trial and
error process. Subsequently, different models with dif-
ferent layers and parameters were developed and finally
the optimum structure of ANN and ANFIS models was
determined and the results of optimummodel compared
with other models. All the data was dimensionless and
based on dimensionless parameters of Equation (2). Fur-
thermore, in ANN models based on the maximum and
minimum values, the dimensionless variables normal-
ized between (0.2 - 0.8). The dataset of the present study
is presented in‘’ Appendix 1.

The empirical equations are the equations that have
been developed by different authors in previous liter-
ature. Those used in the present study are presented
in Table 1. In Table 1 the available empirical equations
for the hole scouring dimensions predictions with their

Table 2. The statistical indices of the collected data set.

Author (year) Number of data Range of hd (m) Range of XD (m) Range of XS (m) Range of S (m)

Veronese (1937) 36 ***** ***** ***** .05–.22
Mossa (1998) 19 ***** ***** 0.17–.67 .035–.145
D’Agostino (1994) 114 0.045–0.255 0.43–1.75 .215–.705 .045–.85
D’Agostino and Ferro (2004) 113 ***** ***** ***** .15–.65
Falciai and Giacomin (1978) 29 ***** ***** ***** .4–3.5
Lenzi, Marion, Comiti, and Gaudio (2000) 13 ***** ***** ***** .016–.053
Scimemi (1939) 3 ***** ***** ***** 5–40
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Table 3. Empirical equation results in the estimation of scour hole dimensions.

Statistical parameter

NSE TS100% AARE (%) MAE RMSE R2 Scour parameter Author (year)

−14.95 1686.6 276.5 0.945 2.01 0.8 S Yen (1987)
−14.56 982.45 91.63 0.57 1.793 0.5145 S/Z D’Agostino and Ferro (2004)
0.47 434.6 33.20 0.144 0.326 0.688 S/Z D’Agostino and Ferro (2004)
0.69 56.63 17.93 0.329 0.724 0.734 XS/Z D’Agostino and Ferro (2004)
0.75 171.5 32.8 0.054 0.067 0.79 hd/Z D’Agostino and Ferro (2004)
−0.52 63.37 47.87 0.95 1.087 0.865 XD/Z D’Agostino (1994)
−12.59 44.99 12.82 0.192 0.239 0.9113 XD/Z D’Agostino and Ferro (2004)

corresponding references are provided. As these empir-
ical equations are not developed in the present study
and because of the limit of the size of the paper, they
are not described more here. However, readers can find
more details on the mentioned references. Instead, in
this study, new equations are developed by using MLR
and MNLR which are fully described in the previous
sections.

2.7. Statistical parameters

The results of the implemented six methods are eval-
uated by several statistical indices such as: correlation
coefficient (R2); root mean square error (RMSE); and
mean absolute error (MAE). These indices illustrate the
average performance of model prediction errors. They
are overall information and do not provide details about
the distribution of prediction error results. In order to
assess the error distribution of modes, two further sta-
tistical indices that can accurately evaluate the distri-
bution percent of model results are established: average
absolute relative error (AARE) and threshold statistics
index (TS). These not only illustrate the performance
of a model in the estimation of scour dimensions by a
single value, but also display the distribution of errors
over all of the predictions. The TSx value for x% of esti-
mations illustrates the error distribution of estimated
values of different models and is calculated for different
AARE values. The value of TS for x% of estimation is
calculated by

TSx = Yx

n
.100 (14)

in which Yx is the number of estimations (from total
number of n) for each AARE value which is less than
x%. Mathematical equations of RMSE, R2, NSE, MAE,
and AARE statistical parameters are (Sanikhani et al.,
2018):

RMSE =
[∑n

i=1 (Oi − Pi)2

n

]0.5
(15)

R2 =

⎡
⎢⎣

∑n
i=1 (Oi − O)(Pi − P)√∑n

i=1 (Oi − O)

√∑n
i=1 (Pi − P)

⎤
⎥⎦
2

,

NSE = 1 −
∑n

i=1 (Oi − Pi)2∑n
i=1 (Oi − O)

2 (16)

MAE = 1
n

n∑
i=1

|P − Oi| (17)

AARE% = 1
n

n∑
i=1

Oi − Pi
Oi

∗ 100 (18)

3. Results and discussions

This section provides the evaluation of the developed
methods in the prediction of scour hole geometry dimen-
sions and the statistical parameters for accuracy assess-
ment are provided. The final results of six methods of
empirical relations, MLP, RBF, ANFIS, MLR, and MNLR
are presented, analyzed, compared and discussed.

Table 4. Results of the MLR model in the prediction of scour hole dimensions.

Statistical parameter

NSE TS100% AARE (%) MAE RMSE R2 Scour parameter Stage

0.66 530.82 75.19 0.185 0.289 0.659 S/Z Calibration
0.76 4.434 13.932 0.261 0.635 0.761 XS/Z Calibration
0.96 42.95 7.98 0.13 0.174 0.961 XD/Z Calibration
0.94 81.54 12.74 0.0242 0.0334 0.944 hd/Z Calibration
0.43 287.01 65.84 0.141 0.192 0.462 S/Z Testing
0.61 119.71 18.54 0.38 0.803 0.68 XS/Z Testing
0.87 64.25 9.74 0.142 0.182 0.88 XD/Z Testing
0.87 136.91 22.166 0.0288 0.0452 0.873 hd/Z Testing
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Figure 3. Comparison of estimated and observed values of score hole geometry by MLR and MNLR.

3.1. Results of empirical equations

One of the usual approaches for the estimation of grade
control scour is the application of the published empir-
ical equations. There are several empirical equations
presented to calculate the depth and height of scour
depth/deposits. In this paper, to assess the accuracy of
the MLR, RBF, and ANFIS with observed values, com-
parisons are also done with some of the best-known
previously published equations (Table 1).

The results of empirical equations in Table 1 for the
estimation of score hole geometry are determined using
the entire data set. Table 3 presents the statistical indices
of the empirical equations of Table 1. As is clear from
results in Table 3, none of these empirical equations
provides acceptable estimations for scour geometry and

have substantial errors in contrast with the observa-
tions. The superlative empirical equation for XD/Z is the
D’Agostino and Ferro (2004) equationwith R2 = 0.9113,
RMSE = 0.239, MAE = 0.192, AARE = 44.9%, and
TS100% = 44.99. This shows that for 44.99% of estimated
values, the prediction error of model outputs are greater
than 100%. That is very high and indicates the poor per-
formance of available empirical equations. It is seen that
while the location of the maximum deposits (XD/Z) is
estimated with an acceptable accuracy, the S/Z, hd/Z,
and XS/Z are estimated with less accuracy. The perfor-
mance of empirical equations for other parameters of a
scour hole is very poor and could not be used as accurate
design methods; new methods are required. The values
of these statistical indices in four scour parameters show
the weak prediction of previous empirical equations for
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Table 5. Results of the MNLR model in the prediction of scour hole dimensions.

Statistical parameter

NSE TS100% AARE (%) MAE RMSE R2 Scour parameter Stage

0.66 435.949 45.02 0.161 0.288 0.665 S/Z Calibration
0.77 88.74 18.392 0.303 0.622 0.771 XS/Z Calibration
0.87 28.7 6.46 0.105 0.146 0.972 XD/Z Calibration
0.93 111.34 17.52 0.029 0.038 0.93 hd/Z Calibration
0.53 259.82 38.01 0.1085 0.175 0.576 S/Z Testing
0.69 84.05 20.993 0.394 0.713 0.7135 XS/Z Testing
0.97 28.163 8.116 0.131 0.181 0.88 XD/Z Testing
0.81 150.73 26.52 0.035 0.053 0.84 hd/Z Testing

scour depth around the grade control structures. It is
noticeable that the empirical equations of D’Agostino
and Ferro (2004) were established by using the dataset
which is used in present study, and that authors do not
recalibrate these equations.

3.2. Results of theMLRmodel

Based on the non-dimensional parameters of Equation
(2), four multi-linear regression equations are developed
and their coefficients derived, which are:

S
z

= −0.482 + 0.021
b
z
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d90
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The results of MLR equations in the calibration and
testing stages of the dataset are provided in Table 4.
With regard to these results, it is clear that although
the MLR models in the calibration stage have appro-
priate results, in the testing stage their results are
not excellent, because of the incapability of regres-
sion techniques to learn and extract the physical back-
ground of scour phenomenon from the numerical val-
ues of the data set. In this case the best prediction of
the MLR model in the testing of the data set is for
XD/Z with R2 = 0.88, RMSE = 0.182, MAE = 0.142,
AARE = 9.74%, and TS100% = 64.25, which shows that
the MLR model in a best situation in 64.25% of the
predictions has errors greater than 100%. Moreover, the
performance of the empirical equations is assessed by
evaluating the scatter plot and series plots of observed
and estimated values in Figure 3. It could be inferred
from Figure 3 and Table 4 where the scour depth (S/Z) is
used, that the MLR mode appears as the lowest accurate
estimations (R2 = 0.659 and 0.462; RMSE = 0.289 and
0.192; MAE = 0.185 and 0.141; AARE(%) = 75.19 and
65.84; and TS100% = 530.82 and 287.01 in training and
testing steps respectively). In the case of the MLRmodel,

Table 6. Statistical results of the MLP model in the prediction of scour hole dimensions.

Statistical parameter

NSE TS100% AARE (%) MAE RMSE R2 Scour parameter Stage

0.99 79.3 9.325 0.018 0.03 0.9964 S/Z Training
0.998 29.16 5.71 0.04 0.05 0.9985 XS/Z Training
0.997 17.81 1.94 0.029 0.045 0.9974 XD/Z Training
0.995 32.75 4.92 0.01 0.01 0.9952 Hd/Z Training
0.83 216.57 23.774 0.068 0.106 0.828 S/Z Testing
0.93 46.03 12.71 0.196 0.345 0.9514 XS/Z Testing
0.96 20.91 4.66 0.07 0.095 0.9689 XD/Z Testing
0.96 67.13 14.3 0.018 0.023 0.964 hd/Z Testing
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Figure 4. Comparison of the MLP model results for S/Z, XS/Z, XD/Z, and hd/Z in training and testing steps.

themost accurate estimations are derived for XD/Z as the
location of the maximum deposits.

3.3. Results of MNLRmodel

Using the collected data set, four multiple non-linear
regression equations, based on the partial least square
method for each scour variable established, are as follows:
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Table 7. Statistical results of the RBF model in the prediction of scour hole dimensions.

Statistical parameter

NSE TS100% AARE (%) MAE RMSE R2 Scour parameter Stage

0.89 530.54 27.63 0.0899 0.162 0.895 S/Z Training
−0.157 122.342 43.9 0.083 0.084 0.998 XS/Z Training
0.98 26.61 5.317 0.084 0.12 0.98 XD/Z Training
−5.68 1025.41 211.45 0.313 0.32 0.788 hd/Z Training
0.73 308.03 32.039 0.084 0.131 0.7608 S/Z Testing
−0.865 102.804 52.4 0.093 0.096 0.945 XS/Z Testing
0.94 38.87 8.97 0.096 0.13 0.945 XD/Z Testing
−23.18 1348.8 308.82 0.46 0.54 0.3353 hd/Z Testing

Figure 5. Comparison of the RBF model results for S/Z, XS/Z, XD/Z, and hd/Z in training and testing steps.
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Table 5 shows the results of the MNLR equations. In
same way as with the MLR model, the MNLR model at
the calibration stage has relatively proper results but at
the testing stage, the error values of predictions increased.
Similar with the MLR model, the best results are for

Table 8. Statistical results of the ANFIS model in the prediction of scour hole dimensions.

Statistical parameter

NSE TS100% AARE (%) MAE RMSE R2 Scour parameter Stage

0.94 219.842 25.4488 0.0753 0.125 0.9364 S/Z Training
0.9 104.8256 7.9958 0.1266 0.4103 0.9003 XS/Z Training
0.998 11.5458 2.2761 0.0333 0.0436 0.9975 XD/Z Training
0.998 11.8872 2.0178 0.0035 0.0055 0.9985 hd/Z Training
0.91 128.6585 18.7303 0.0505 0.078 0.9147 S/Z Testing
0.461 107.7542 17.5089 0.4136 0.9302 0.5669 XS/Z Testing
0.95 15.3488 5.0554 0.0805 0.1102 0.9558 XD/Z Testing
0.87 101.9133 20.6725 0.0286 0.0448 0.8790 hd/Z Testing

Figure 6. Comparison of the ANFIS model results for S/Z, XS/Z, XD/Z, and hd/Z in training and testing steps.
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Figure 7. Error Prediction Distribution of models in (A) S/Z, (B)
XS/Z, (C) XD.S, and (D) hd/z respectively.

XD/Z with R2 = 0.88, RMSE = 0.181, MAE = 0.131,
AARE = 8.116, and TS100% = 28.163, while for the
other scour hole parameters the MNLR model does not
provide accurate results. That the MNLR model in best
condition for XD/Z in 28.7% of the predictions have
error values greater than 100% is also relatively high,
but in comparison with the previous methods has bet-
ter results. The scatter plot and series graphs of MLR
and MNLR model results are compared in Figure 3. In
regard to the results in this figure, it is concluded that
the MNLR model has somewhat better predictions than
the MLR.

3.4. MLPmodel results

Using collected field and experimental data sets the MLP
model has been trained and its optimized parameters and
structures are obtained using a trial and error process.
The best accuracy of tested activation and transforma-
tion function in hidden layer was obtained by logsig,
and for the output layer, it was obtained by purelin.
The activation function in MLP model was logsig with
five nodes in input layer, five and three nodes in two
hidden layers respectively and one node in the output
layer. The results of the MLP model in the training
and testing and overall for the data set is presented in
Table 6 and Figure 4. From this table it is concluded
that the best results of the test data set come for XD/Z
variable with R2 = 0.97, RMSE = 0.095,MAE = 0.0.07,
AARE = 4.66, and TS100% = 20.91. Comparison of the
MLP models results in ‘’

Table 6 while Tables 3–5 somewhat shows the better
ability of MLP models in simulating scour dimensions
downstream of grade control structures. Also, the results
of the MLP model in Figure 4 declare that the MLP
model has accurate estimations for S/Z, XS/Z, XD/Z, and
hd/Z in training and testing steps. Regarding Figure 4
with Figure 3, the comparison between MLP, MNLR,
and MLR shows the better function in MLP estimations.
Relatively good estimations are derived from all MLP
models including the five input parameters of individual
data sets.

3.5. RBFmodel results

The results of the artificial neural network radial basis
function model are provided in Table 7. In this table, the
best results for the training of the data sets comes for
XD/Z with R2 = 0.945, RMSE = 0.13, MAE = 0.096,
AARE = 8.97, and TS100% = 38.87. So the RBFmodel in
38.87% of the predictions have error values greater than
100% which is greater than the MLP, MNLR, and MLR
models. Comparing the results in Table 7 with Table 6
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shows the superiority of the MLP model over the RB
model. Also, the comparison between observed and esti-
mated values of scour geometry by RBF in Figure 5 shows
that although it has acceptable predictions for S/Z, XS/Z,
and XD/Z, it has major overestimations for hd/Z. This
figure shows that the developed RBFmodel and observed
data of S/Z, XS/Z, and XS/S located near the 1:1 line with
a strong data correlation in training and testing stages.
These R2 values are higher than those resulting from
MLR and MNLR. However, when using the RBF model
for prediction of hd/Z, it demonstrates a high error, indi-
cating the limitations of the RBFmodel when it is used to
applied cases of scour deposition height estimations.

3.6. ANFISmodel results

The results of the ANFIS model for three variables
of scour hole geometry in several stages of model
development are presented in Table 8 and Figure 6.
In the training of the dataset the best predictions of
the ANFIS model comes for the XD/Z with R2 = 0.96,
RMSE = 0.1102, MAE = 0.0805, AARE = 5.05%, and
TS100% = 15.3488. The ANFIS model only in 15.3488%
of predictions have errors greater than 100% and shows
its ability in the prediction of scour hole length. Compar-
ing the results of RBF,MLP, and empirical equations with
the ANFIS model revealed that in all of four predictive
parameters, the developed ANFIS model provided better
results.

The worst results of ANFIS are for the location of the
maximum scour depth (XS/Z) in the testing stage, while
the best results of ANFIS are provided for the location of
deposited sediments (XD/Z). After that there is S/Z and
hd/Z in training and testing steps respectively (Figure 6).
Overall, based on the results of models, it can be con-
cluded that the ANFIS approach is a precise model in the
simulation of scour hole geometry dimensions and it can
be applied for stable design of grade control structure in
alluvial channels.

3.7. Comparing all models

Developing amodel with a higher scale of precision in the
estimation of grade control scour is of great significance
in confirming the reliability and safety of water supply
devices in irrigation networks and requires selecting the
best estimation model. The applicability and effective-
ness of the six developed models in estimating grade
control scour geometry were investigated comparatively.
To investigate the performance of developed models,
and figure out superior models, simultaneous assessment
of models are done. For this purpose the evaluation of

model results are done using error distribution of esti-
mations. Comparing the results of six methods based on
Tables 3–8 for four variables of S/Z, XS/Z, XD/Z, and
hd/z shows that: for S/Z parameter, the maximum scour
depth, the best predictions come from the ANFIS model;
forXS/Z the best results is from theMLPmodel; forXD/Z
the best prediction is from the ANFIS model; and in the
hd/z variable the MLP model has the best predictions.
Based on the error distribution of models in Figure 7, it
can be noted that the ANFIS and MLP models have esti-
mated the scour geometry with approximately the same
accuracy and their results are better than the others. This
indicates that for all four scour parameters the intelli-
gencemodels have superiority to the regression equations
and can be used as the accurate design techniques in
the design of grade control structures. Figure 7 shows
the error distribution of six models on all of the pre-
diction variables regarding all of the data set. All devel-
oped regression equations exhibit a large estimation error
while the artificial intelligencemodels performbetter due
to the valuable ability to estimate scour geometry from
numerical information.

The best results over training data derived for XS/Z,
and hd/Z by the MLP model with R2, 0.95, and 0.96
respectively; the best predictions for S/Z and XD/Z are
from ANFIS model with R2 0.91 and 0.96 respectively.
The results indicated that the application of MLP and
ANFIS results in the accurate prediction of scour geom-
etry for the designing of stable grade control structures
in alluvial irrigation channels. The MLP and ANFIS
models are information-based models that use inher-
ent knowledge of a phenomenon to infer the physical
process behind the scour formation. The MLP model
adopts its weights based on the Levenberg-Marquardt
training algorithm that finds the best vector of weights
of model structure; the ANFIS combines fuzzy logic as
a knowledge inference engine for MLP to take advan-
tage of training and uncertainties of fuzzy membership
functions.

4. Conclusions

The ability to accurately estimate the whole geometry
of scour holes downstream of grade control structures
is important for developing irrigation regulation struc-
tures. This study employed different methods and tools
to improve existing empirical scour equations for grade
control structures. In this paper the authors used six
methods for predicting local scour on alluvial beds down-
stream of grade control structures in irrigation canals.
The geometry of scour holes described by four param-
eters of: maximum scour depth (S); distance of S from
theweir (XS);maximumheight of downstreamdeposited
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sediments (hd); and distance of hd from the weir. The
models are: empirical equations; multi layer perceptron
(MLP) neural networks; radial basis functions (RBF)
neural networks; adaptive neuro fuzzy inference systems
(ANFIS); multiple linear regression (MLR); and multi-
ple non-linear regression (MNLR). Based on the results
of the study and statistical parameters and indexes it
is concluded that the intelligence methods of MLP and
ANFIS havemore accurate predictions than RBF,MNLR,
MLR, and previous equations and that the newly devel-
oped models in this comparative study can be used as
design methods for grade control structures. Existing
studies and models, which are studied in the literature,
were applicable for the estimation of only one dimension
of scour geometry, while in the present study the newly
developed models that are explored here were developed
to estimate different dimensions of scour geometry. This
led to the improvements of scour hole studies from a sin-
gle parameter to a geometry space. Nevertheless, further
investigations are required to improve the uncertainty
of the developed methods. With all the results of mod-
els considered, this paper concludes that soft computing
models are superior to the classical models, but they are
black box models and do not provide explicit equations
for scour hole prediction. Further studies are required
to derive explicit predictive equations based on ANFIS,
MLP, and RBF manipulation that can be used in applica-
tion design; uncertainty analysis of prediction results also
remains another improvement for future studies. Future
studies also could use comparative analysis between the
results from other soft computing models such as SVM,
GEP, and LEMmethods with the results of the developed
models in the present paper. as well as with a combi-
nation of ANFIS and ANN models with meta heuristic
optimization algorithms as the training algorithm could
be an another field for next studies.
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Appendix 1: The raw data set used in the present study.

Number Z(m) Ho(m) H(m) Q/B s(m) xs hd XD d50 B d90

1 0.71 0.044 0.083 0.0167 0.057 0.24 0.03 0.49 0.0041 0.5 0.007
2 0.71 0.044 0.086 0.0167 0.06 0.24 0.03 0.49 0.0041 0.5 0.007
3 0.71 0.044 0.191 0.0167 0.065 0.255 0.05 0.51 0.0041 0.5 0.007
4 0.71 0.044 0.239 0.0167 0.086 0.26 0.06 0.53 0.0041 0.5 0.007
5 0.71 0.044 0.244 0.0167 0.09 0.265 0.055 0.53 0.0041 0.5 0.007
6 0.71 0.044 0.326 0.0167 0.09 0.285 0.07 0.59 0.0041 0.5 0.007
7 0.71 0.071 0.103 0.0333 0.085 0.35 0.065 0.715 0.0041 0.5 0.007
8 0.71 0.071 0.119 0.0333 0.083 0.395 0.078 0.75 0.0041 0.5 0.007
9 0.71 0.071 0.211 0.0333 0.095 0.43 0.065 0.725 0.0041 0.5 0.007
10 0.71 0.071 0.349 0.0333 0.105 0.355 0.07 0.75 0.0041 0.5 0.007
11 0.71 0.071 0.385 0.0333 0.095 0.37 0.08 0.76 0.0041 0.5 0.007
12 0.71 0.093 0.228 0.05 0.116 0.47 0.085 0.91 0.0041 0.5 0.007
13 0.71 0.093 0.274 0.05 0.111 0.525 0.1 0.945 0.0041 0.5 0.007
14 0.71 0.093 0.365 0.05 0.125 0.52 0.08 0.895 0.0041 0.5 0.007
15 0.71 0.093 0.4 0.05 0.12 0.42 0.095 0.91 0.0041 0.5 0.007
16 0.71 0.113 0.208 0.0667 0.115 0.46 0.125 1.075 0.0041 0.5 0.007
17 0.71 0.113 0.241 0.0667 0.145 0.49 0.115 1.075 0.0041 0.5 0.007
18 0.71 0.113 0.325 0.0667 0.13 0.445 0.12 1.025 0.0041 0.5 0.007
19 0.71 0.113 0.38 0.0667 0.13 0.505 0.11 1.055 0.0041 0.5 0.007
20 0.71 0.131 0.255 0.0833 0.145 0.515 0.16 1.225 0.0041 0.5 0.007
21 0.71 0.131 0.276 0.0833 0.175 0.475 0.16 1.19 0.0041 0.5 0.007
22 0.71 0.131 0.307 0.0833 0.16 0.52 0.15 1.22 0.0041 0.5 0.007
23 0.71 0.131 0.36 0.0833 0.17 0.465 0.152 1.26 0.0041 0.5 0.007
24 0.71 0.131 0.4 0.0833 0.175 0.515 0.145 1.16 0.0041 0.5 0.007
25 0.71 0.146 0.319 0.1 0.156 0.575 0.165 1.32 0.0041 0.5 0.007
26 0.71 0.146 0.322 0.1 0.165 0.565 0.17 1.295 0.0041 0.5 0.007
27 0.71 0.146 0.354 0.1 0.155 0.54 0.135 1.26 0.0041 0.5 0.007
28 0.71 0.146 0.41 0.1 0.185 0.505 0.16 1.26 0.0041 0.5 0.007
29 0.71 0.162 0.33 0.1167 0.195 0.58 0.19 1.41 0.0041 0.5 0.007
30 0.71 0.162 0.37 0.1167 0.203 0.57 0.185 1.41 0.0041 0.5 0.007
31 0.71 0.162 0.425 0.1167 0.195 0.56 0.175 1.37 0.0041 0.5 0.007
32 0.71 0.176 0.337 0.1333 0.19 0.625 0.21 1.53 0.0041 0.5 0.007
33 0.71 0.176 0.38 0.1333 0.21 0.58 0.21 1.49 0.0041 0.5 0.007
34 0.71 0.176 0.38 0.1333 0.215 0.54 0.205 1.505 0.0041 0.5 0.007
35 0.71 0.176 0.435 0.1333 0.205 0.63 0.18 1.44 0.0041 0.5 0.007
36 0.71 0.19 0.4 0.15 0.255 0.635 0.24 1.65 0.0041 0.5 0.007
37 0.71 0.19 0.415 0.15 0.24 0.64 0.23 1.61 0.0041 0.5 0.007
38 0.71 0.205 0.42 0.1667 0.28 0.7 0.25 1.68 0.0041 0.5 0.007
39 0.71 0.205 0.435 0.1667 0.285 0.705 0.255 1.705 0.0041 0.5 0.007
40 0.41 0.043 0.105 0.0167 0.065 0.215 0.045 0.43 0.0041 0.5 0.007
41 0.41 0.043 0.332 0.0167 0.09 0.265 0.055 0.55 0.0041 0.5 0.007
42 0.41 0.07 0.104 0.0333 0.102 0.3 0.075 0.64 0.0041 0.5 0.007
43 0.41 0.07 0.123 0.0333 0.1 0.3 0.075 0.63 0.0041 0.5 0.007
44 0.41 0.07 0.159 0.0333 0.11 0.32 0.07 0.645 0.0041 0.5 0.007
45 0.41 0.07 0.353 0.0333 0.14 0.37 0.075 0.755 0.0041 0.5 0.007
46 0.41 0.091 0.174 0.05 0.13 0.35 0.1 0.82 0.0041 0.5 0.007
47 0.41 0.091 0.23 0.05 0.145 0.37 0.09 0.84 0.0041 0.5 0.007
48 0.41 0.091 0.284 0.05 0.15 0.345 0.095 0.85 0.0041 0.5 0.007
49 0.41 0.091 0.365 0.05 0.165 0.44 0.095 0.9 0.0041 0.5 0.007
50 0.41 0.091 0.37 0.05 0.155 0.42 0.11 0.895 0.0041 0.5 0.007
51 0.41 0.091 0.4 0.05 0.14 0.51 0.095 0.995 0.0041 0.5 0.007
52 0.41 0.11 0.244 0.0667 0.145 0.4 0.13 0.95 0.0041 0.5 0.007
53 0.41 0.11 0.378 0.0667 0.175 0.49 0.115 1.005 0.0041 0.5 0.007
54 0.41 0.128 0.255 0.0833 0.165 0.445 0.15 1.095 0.0041 0.5 0.007
55 0.41 0.128 0.286 0.0833 0.195 0.44 0.145 1.135 0.0041 0.5 0.007
56 0.41 0.128 0.39 0.0833 0.2 0.55 0.155 1.205 0.0041 0.5 0.007
57 0.41 0.145 0.288 0.1 0.185 0.485 0.18 1.21 0.0041 0.5 0.007
58 0.41 0.145 0.38 0.1 0.225 0.52 0.17 1.27 0.0041 0.5 0.007
59 0.41 0.16 0.33 0.1167 0.23 0.535 0.195 1.325 0.0041 0.5 0.007
60 0.41 0.16 0.365 0.1167 0.21 0.52 0.2 1.335 0.0041 0.5 0.007
61 0.41 0.16 0.415 0.1167 0.223 0.62 0.195 1.325 0.0041 0.5 0.007
62 0.41 0.174 0.349 0.1333 0.22 0.56 0.22 1.415 0.0041 0.5 0.007
63 0.41 0.174 0.405 0.1333 0.235 0.63 0.21 1.46 0.0041 0.5 0.007
64 0.41 0.188 0.395 0.15 0.25 0.625 0.235 1.525 0.0041 0.5 0.007
65 0.41 0.201 0.405 0.1667 0.265 0.62 0.235 1.57 0.0041 0.5 0.007
66 0.41 0.201 0.42 0.1667 0.26 0.65 0.225 1.58 0.0041 0.5 0.007
67 0.71 0.069 0.106 0.0333 0.06 0.305 0.03 0.515 0.0041 0.5 0.007
68 0.71 0.069 0.298 0.0333 0.11 0.33 0.045 0.59 0.0041 0.5 0.007

(continued)
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Appendix 1. Continued

Number Z(m) Ho(m) H(m) Q/B s(m) xs hd XD d50 B d90

69 0.71 0.11 0.179 0.0667 0.115 0.39 0.07 0.78 0.0041 0.5 0.007
70 0.71 0.11 0.317 0.0667 0.135 0.42 0.075 0.78 0.0041 0.5 0.007
71 0.71 0.146 0.195 0.1 0.14 0.41 0.115 0.95 0.0041 0.5 0.007
72 0.71 0.146 0.334 0.1 0.15 0.485 0.105 0.97 0.0041 0.5 0.007
73 0.71 0.175 0.242 0.1333 0.185 0.49 0.13 1.145 0.0041 0.5 0.007
74 0.71 0.175 0.35 0.1333 0.17 0.565 0.13 1.14 0.0041 0.5 0.007
75 0.71 0.203 0.375 0.1667 0.22 0.595 0.145 1.19 0.0041 0.5 0.007
76 0.71 0.071 0.086 0.0333 0.06 0.375 0.025 0.6 0.0041 0.5 0.007
77 0.71 0.071 0.138 0.0333 0.065 0.37 0.03 0.6 0.0041 0.5 0.007
78 0.71 0.071 0.192 0.0333 0.078 0.35 0.035 0.61 0.0041 0.5 0.007
79 0.71 0.071 0.244 0.0333 0.085 0.375 0.05 0.63 0.0041 0.5 0.007
80 0.71 0.071 0.33 0.0333 0.1 0.385 0.05 0.695 0.0041 0.5 0.007
81 0.71 0.071 0.412 0.0333 0.114 0.39 0.045 0.68 0.0041 0.5 0.007
82 0.71 0.112 0.158 0.0667 0.085 0.455 0.07 0.885 0.0041 0.5 0.007
83 0.71 0.112 0.35 0.0667 0.132 0.45 0.07 0.855 0.0041 0.5 0.007
84 0.71 0.148 0.228 0.1 0.15 0.515 0.11 1.11 0.0041 0.5 0.007
85 0.71 0.148 0.365 0.1 0.15 0.49 0.11 1.09 0.0041 0.5 0.007
86 0.71 0.179 0.244 0.13333 0.195 0.58 0.155 1.315 0.0041 0.5 0.007
87 0.71 0.179 0.385 0.1333 0.175 0.64 0.145 1.28 0.0041 0.5 0.007
88 0.71 0.206 0.307 0.1667 0.225 0.67 0.165 1.42 0.0041 0.5 0.0176
89 0.41 0.043 0.136 0.0167 0.045 0.215 0.04 0.34 0.0115 0.5 0.0176
90 0.41 0.043 0.331 0.0167 0.045 0.235 0.035 0.425 0.0115 0.5 0.0176
91 0.41 0.07 0.155 0.0333 0.06 0.265 0.055 0.495 0.0115 0.5 0.0176
92 0.41 0.07 0.355 0.0333 0.085 0.325 0.05 0.565 0.0115 0.5 0.0176
93 0.41 0.091 0.169 0.05 0.09 0.28 0.09 0.62 0.0115 0.5 0.0176
94 0.41 0.091 0.365 0.05 0.1 0.39 0.08 0.715 0.0115 0.5 0.0176
95 0.41 0.11 0.208 0.06667 0.105 0.34 0.11 0.755 0.0115 0.5 0.0176
96 0.41 0.11 0.351 0.06667 0.124 0.4 0.105 0.815 0.0115 0.5 0.0176
97 0.41 0.128 0.221 0.0833 0.15 0.385 0.125 0.91 0.0115 0.5 0.0176
98 0.41 0.128 0.36 0.0833 0.145 0.45 0.105 0.895 0.0115 0.5 0.0176
99 0.41 0.145 0.232 0.1 0.155 0.425 0.15 1 0.0115 0.5 0.0176
100 0.41 0.145 0.353 0.1 0.16 0.465 0.135 1 0.0115 0.5 0.0176
101 0.41 0.16 0.276 0.1167 0.172 0.48 0.165 1.08 0.0115 0.5 0.0176
102 0.41 0.16 0.36 0.1167 0.17 0.515 0.145 1.08 0.0115 0.5 0.0176
103 0.41 0.17 0.309 0.1333 0.18 0.51 0.175 1.17 0.0115 0.5 0.0176
104 0.41 0.17 0.38 0.1333 0.175 0.545 0.155 1.18 0.0115 0.5 0.0176
105 0.41 0.185 0.319 0.15 0.215 0.525 0.2 1.3 0.0115 0.5 0.0176
106 0.41 0.185 0.39 0.15 0.19 0.58 0.165 1.295 0.0115 0.5 0.0176
107 0.41 0.196 0.335 0.1667 0.22 0.565 0.215 1.35 0.0115 0.5 0.0176
108 0.41 0.196 0.375 0.1667 0.203 0.575 0.19 1.295 0.0115 0.5 0.0176
109 0.41 0.069 0.104 0.0333 0.055 0.285 0.03 0.42 0.0115 0.5 0.0176
110 0.41 0.069 0.301 0.0333 0.085 0.29 0.035 0.477 0.0115 0.5 0.0176
111 0.41 0.145 0.136 0.1 0.094 0.385 0.08 0.725 0.0115 0.5 0.0176
112 0.41 0.145 0.334 0.1 0.11 0.49 0.085 0.795 0.0115 0.5 0.0176
113 0.41 0.203 0.195 0.1667 0.165 0.475 0.15 1.02 0.0115 0.5 0.0176
114 0.41 0.203 0.36 0.1667 0.135 0.565 0.105 1.05 0.0115 0.5 0.0176
115 1.025 0.075 0.1 0.0374 0.065 NA NA NA 0.0362 0.5 0.0362
116 1.053 0.092 0.145 0.0516 0.06 NA NA NA 0.0362 0.5 0.0362
117 1.056 0.104 0.16 0.062 0.07 NA NA NA 0.0362 0.5 0.0362
118 1.072 0.118 0.19 0.0744 0.08 NA NA NA 0.0362 0.5 0.0362
119 1.134 0.081 0.215 0.042 0.06 NA NA NA 0.0362 0.5 0.0362
120 1.144 0.071 0.215 0.035 0.085 NA NA NA 0.0362 0.5 0.0362
121 1.118 0.107 0.225 0.0646 0.1 NA NA NA 0.0362 0.5 0.0362
122 1.118 0.117 0.235 0.074 0.11 NA NA NA 0.0362 0.5 0.0362
123 1.106 0.127 0.233 0.0828 0.12 NA NA NA 0.0362 0.5 0.0362
124 1.146 0.064 0.21 0.03 0.055 NA NA NA 0.021 0.5 0.021
125 1.133 0.087 0.22 0.0472 0.1 NA NA NA 0.021 0.5 0.021
126 1.138 0.102 0.24 0.0596 0.105 NA NA NA 0.021 0.5 0.021
127 1.141 0.109 0.25 0.0658 0.11 NA NA NA 0.021 0.5 0.021
128 1.136 0.114 0.25 0.0711 0.12 NA NA NA 0.021 0.5 0.021
129 1.04 0.052 0.092 0.0216 0.05 NA NA NA 0.021 0.5 0.021
130 1.057 0.073 0.13 0.0364 0.065 NA NA NA 0.021 0.5 0.021
131 1.048 0.087 0.135 0.0474 0.08 NA NA NA 0.021 0.5 0.021
132 1.061 0.099 0.16 0.057 0.09 NA NA NA 0.021 0.5 0.021
133 1.032 0.108 0.14 0.065 0.12 NA NA NA 0.021 0.5 0.021
134 1.022 0.118 0.14 0.0746 0.14 NA NA NA 0.021 0.5 0.021
135 1.112 0.053 0.165 0.0224 0.055 NA NA NA 0.0142 0.5 0.0142
136 1.11 0.075 0.185 0.0376 0.095 NA NA NA 0.0142 0.5 0.0142
137 1.108 0.092 0.2 0.0512 0.11 NA NA NA 0.0142 0.5 0.0142

(continued)
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Appendix 1. Continued

Number Z(m) Ho(m) H(m) Q/B s(m) xs hd XD d50 B d90

138 1.143 0.107 0.25 0.0646 0.11 NA NA NA 0.0142 0.5 0.0142
139 1.014 0.036 0.05 0.0123 0.08 NA NA NA 0.0142 0.5 0.0142
140 1.018 0.052 0.07 0.0221 0.1 NA NA NA 0.0142 0.5 0.0142
141 1.021 0.069 0.09 0.0331 0.12 NA NA NA 0.0142 0.5 0.0142
142 1.018 0.082 0.1 0.0428 0.13 NA NA NA 0.0142 0.5 0.0142
143 1.008 0.092 0.1 0.0512 0.17 NA NA NA 0.0142 0.5 0.0142
144 1 0.1 0.1 0.0578 0.18 NA NA NA 0.0142 0.5 0.0142
145 0.982 0.108 0.09 0.065 0.2 NA NA NA 0.0142 0.5 0.0091
146 1.046 0.054 0.1 0.0229 0.1 NA NA NA 0.0091 0.5 0.0091
147 1.037 0.063 0.1 0.029 0.12 NA NA NA 0.0091 0.5 0.0091
148 1.047 0.083 0.13 0.044 0.16 NA NA NA 0.0091 0.5 0.0091
149 1.025 0.095 0.12 0.0536 0.18 NA NA NA 0.0091 0.5 0.0091
150 0.987 0.103 0.09 0.0607 0.22 NA NA NA 0.0091 0.5 0.0091
151 0.09 0.035 0.03 0.0073 0.09 0.19 NA NA 0.002 0.3 0.002
152 0.09 0.038 0.065 0.0087 0.082 0.19 NA NA 0.002 0.3 0.002
153 0.09 0.047 0.08 0.0091 0.06 0.17 NA NA 0.002 0.3 0.002
154 0.09 0.039 0.057 0.0097 0.096 0.2 NA NA 0.002 0.3 0.002
155 0.09 0.043 0.073 0.0106 0.093 0.2 NA NA 0.002 0.3 0.002
156 0.09 0.046 0.034 0.0113 0.125 0.25 NA NA 0.002 0.3 0.002
157 0.09 0.053 0.072 0.0135 0.115 0.24 NA NA 0.002 0.3 0.002
158 0.09 0.056 0.085 0.0147 0.098 0.21 NA NA 0.002 0.3 0.002
159 0.09 0.056 0.067 0.0148 0.126 0.23 NA NA 0.002 0.3 0.002
160 0.09 0.056 0.077 0.0148 0.0109 0.21 NA NA 0.002 0.3 0.002
161 0.09 0.021 0.025 0.0045 0.035 0.38 NA NA 0.002 0.3 0.002
162 0.09 0.033 0.03 0.0087 0.088 0.54 NA NA 0.002 0.3 0.002
163 0.09 0.035 0.081 0.0098 0.05 0.43 NA NA 0.002 0.3 0.002
164 0.09 0.039 0.034 0.0109 0.105 0.56 NA NA 0.002 0.3 0.002
165 0.09 0.04 0.061 0.0117 0.075 0.47 NA NA 0.002 0.3 0.002
166 0.09 0.044 0.035 0.0129 0.137 0.67 NA NA 0.002 0.3 0.002
167 0.09 0.043 0.086 0.0136 0.062 0.46 NA NA 0.002 0.3 0.002
168 0.09 0.047 0.079 0.0141 0.086 0.47 NA NA 0.002 0.3 0.002
169 0.09 0.047 0.062 0.0144 0.145 0.59 NA NA 0.002 0.3 0.002
170 1 0.368 0.531 0.379 0.45 NA NA NA 0.06 10.5 0.06
171 0.82 0.368 0.511 0.379 0.65 NA NA NA 0.06 10.5 0.06
172 0.6 0.368 0.482 0.379 0.5 NA NA NA 0.06 10.5 0.06
173 1.3 0.46 0.669 0.531 0.55 NA NA NA 0.06 7.5 0.06
174 0.9 0.46 0.624 0.531 0.65 NA NA NA 0.06 7.5 0.06
175 0.6 0.46 0.578 0.531 0.65 NA NA NA 0.06 7.5 0.06
176 0.55 0.46 0.568 0.531 0.65 NA NA NA 0.06 7.5 0.06
177 1 0.372 0.536 0.386 0.35 NA NA NA 0.06 10.3 0.06
178 0.65 0.38 0.502 0.398 0.45 NA NA NA 0.06 10 0.06
179 1.2 0.405 0.594 0.437 0.35 NA NA NA 0.06 9.1 0.06
180 0.68 0.368 0.493 0.379 0.4 NA NA NA 0.06 10.5 0.06
181 1.35 0.365 0.559 0.375 0.25 NA NA NA 0.06 10.6 0.06
182 0.72 0.361 0.491 0.369 0.15 NA NA NA 0.06 10.8 0.06
183 6 1.493 2.32 3.1 1.3 NA NA NA 0.051 18.7 0.051
184 0.3 2.292 1.859 5.9 0.7 NA NA NA 0.032 9.3 0.032
185 1.6 2.025 2.311 4.9 1.4 NA NA NA 0.039 11.2 0.039
186 2.5 1.525 1.999 3.2 0.8 NA NA NA 0.029 12.5 0.029
187 0.9 2.445 2.413 6.5 1.2 NA NA NA 0.035 9.8 0.035
188 2.8 2.08 2.627 5.1 1.3 NA NA NA 0.046 14.6 0.046
189 5.5 2.08 2.986 5.1 1.7 NA NA NA 0.032 16.1 0.032
190 2.5 2.025 2.516 4.9 2 NA NA NA 0.025 16.5 0.025
191 1.8 1.679 2.031 3.7 0.5 NA NA NA 0.034 3.3 0.034
192 1.3 2.134 2.318 5.3 1.1 NA NA NA 0.05 18.2 0.05
193 2.8 2.053 2.599 5 1.5 NA NA NA 0.048 11.8 0.048
194 5.3 3.961 4.996 13.4 1.4 NA NA NA 0.031 5.4 0.031
195 2.3 1.258 1.684 2.4 0.4 NA NA NA 0.071 8 0.071
196 2.8 1.395 1.9 2.8 0.5 NA NA NA 0.057 7.5 0.057
197 1 1.361 1.532 2.7 0.9 NA NA NA 0.053 8 0.058
198 2.6 1.188 1.645 2.2 1.3 NA NA NA 0.066 9.8 0.066
199 2.5 1.395 1.86 2.8 1.4 NA NA NA 0.042 8 0.042
200 2.8 1.46 1.972 3 0.4 NA NA NA 0.051 7.4 0.051
201 5 2.42 3.315 6.4 1.9 NA NA NA 0.053 9 0.053
202 3.8 1.885 2.57 4.4 1.8 NA NA NA 0.093 13.8 0.093
203 3.8 1.293 1.894 2.5 1.3 NA NA NA 0.1 12.5 0.1
204 2 0.793 1.128 1.2 1.1 NA NA NA 0.058 5.5 0.058
205 6.2 2.369 3.395 6.2 1.3 NA NA NA 0.064 17.5 0.064
206 5.2 2.369 3.283 6.2 1.6 NA NA NA 0.019 17.6 0.019
207 4.8 2.24 3.09 5.7 2.5 NA NA NA 0.073 25 0.073
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Appendix 1. Continued

Number Z(m) Ho(m) H(m) Q/B s(m) xs hd XD d50 B d90

208 4 2.618 3.386 7.2 2 NA NA NA 0.075 20 0.075
209 2.8 2.947 3.483 8.6 2.4 NA NA NA 0.078 18.5 0.078
210 4 2.97 3.751 8.7 3.5 NA NA NA 0.067 21 0.067
211 0.018 0.05 0.048 0.0185 0.032 NA NA NA 0.0085 0.6 0.0085
212 0.024 0.05 0.055 0.0208 0.042 NA NA NA 0.0085 0.6 0.0085
213 0.037 0.06 0.064 0.0238 0.045 NA NA NA 0.0085 0.6 0.0085
214 0.049 0.06 0.073 0.0275 0.046 NA NA NA 0.0085 0.6 0.0085
215 0.056 0.07 0.077 0.0292 0.05 NA NA NA 0.0085 0.6 0.0085
216 0.019 0.03 0.03 0.0073 0.016 NA NA NA 0.0085 0.6 0.0085
217 0.028 0.04 0.043 0.0125 0.036 NA NA NA 0.0085 0.6 0.0085
218 0.04 0.05 0.053 0.163 0.035 NA NA NA 0.0085 0.6 0.0085
219 0.059 0.05 0.065 0.0208 0.047 NA NA NA 0.0085 0.6 0.0085
220 0.069 0.06 0.072 0.0238 0.053 NA NA NA 0.0085 0.6 0.0085
221 0.046 0.02 0.033 0.0067 0.025 NA NA NA 0.0085 0.6 0.0085
222 0.061 0.03 0.044 0.01 0.034 NA NA NA 0.0085 0.6 0.0085
223 0.083 0.04 0.058 0.15 0.05 NA NA NA 0.0085 0.6 0.0085
224 12.9 2 5 4.571 3 NA NA NA 0.1 25 0.0085
225 57 29.69 40 275 28 NA NA NA 2.1 58 0.0085
226 19.2 6.85 7 38.97 6.2 NA NA NA 0.75 11.6 0.0085
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