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Abstract. The popular domain-specific approach to risk reduction created the illusion that 
efficient risk reduction can be delivered successfully solely by using methods offered by the 
specific domain. As a result, many industries have been deprived from efficient risk reducing 
strategy and solutions. 

This paper argues that risk reduction is underlined by domain-independent methods and 
principles which, combined with knowledge from the specific domain, help to generate 
effective risk reduction solutions. In this respect, the paper introduces a powerful method for 
reducing the likelihood of computational errors based on combining the domain-independent 
method of segmentation and local knowledge of the chain rule for differentiation. 

The paper also demonstrates that lack of knowledge of domain-independent principles for 
risk reduction misses opportunities to reduce the risk of failure even in such mature field like 
stress analysis.  

The domain-independent methods for risk reduction do not rely on reliability data or 
knowledge of physical mechanisms underlying possible failure modes and are particularly well 
suited for developing new designs, with unknown failure mechanisms and failure history. In 
many cases, the reliability improvement and risk reduction by using the domain-independent 
methods reduces risk at no extra cost or at a relatively small cost. 

The presented domain-independent methods work across totally unrelated domains and this 
is demonstrated by the supplied examples which range from various areas of engineering and 
technology, computer science, project management, health risk management, business and even 
mathematics. 

The domain-independent risk reduction methods presented in this paper promote building 
products and systems characterised by high-reliability and resilience. 
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1. Introduction 

 

For many decades, the focus of the reliability and risk literature (Barlow and Proshan, 

1965,1975; Bazovsky, 1961; Ang and Tang, 1975; Billinton and Alan, 1992; 

Ramakumar, 1993; Ebeling, 1997; Meeker and Escobar, 1998; Bedford & Cooke 2001; 

Booker et al, 2001; Vose 2002; Trivedi, 2002; Andrews and Moss, 2002; Aven 2003), 

has been covering exclusively identifying risks, reliability and risk assessment, 

reliability and risk modelling, decision making and reliability prediction. However, the 

strategic topic related to methods for improving reliability and reducing risk of failure 

has not been covered in sufficient depth. There is very little discussion related to general 
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principles for improving reliability and reducing technical risk even though these are 

key to a successful risk management. Despite that sophisticated tools for quantifying 

uncertainty are already available, they are relatively unused because risk managers 

rarely believe these will help their decision process (Goldstein, 2011). 

While a great deal of agreement exists about the necessary common steps of risk 

assessment (Aven, 2016), there is lack of understanding and insight about the general 

methods for reducing risk that can be used. The common approach to risk reduction is 

the domain-specific approach which relies heavily on root cause analysis and detailed 

knowledge in the specific domain.  To reduce the likelihood of failure or the 

consequences from failure, commonly, measures specific to a particular domain are 

selected and the risk reduction process is conducted exclusively by experts in the 

specific domain. This created the illusion that efficient risk reduction can be delivered 

successfully solely by using methods offered by the specific domain, without resorting 

to a unified methodology. As a result, the industry has been deprived of efficient risk 

reducing strategy and solutions. Without a unified methodological risk-reduction 

framework, the same mistakes in design are made again and again, resulting in inferior 

products, and processes associated with high risk of failure. At the same time, 

opportunities to improve reliability at no extra cost or at a small cost are constantly 

missed. A compilation and analysis of common mistakes in design of structures that led 

to catastrophic failures has been presented in (Petroski, 1994). 

The domain-specific approach led to a situation that for many domains, even the 

existence of a reliability and risk science has been forgotten. In textbooks on 

mechanical engineering and design of machine components for example, there is hardly 

any mention of general methods for improving reliability and reducing the risk of 

failure of the engineering products.  

For a long time, reliability improvement and risk reduction relied on the feedback 

provided from reliability testing or on feedback from customers. Once the feedback 

about a particular failure mode is available, the component is redesigned to be 

strengthened against that failure mode. The problem with this approach is that the 

feedback always comes late, after the product has been manufactured. Therefore, all 

changes consisting of redesign to avoid the discovered failure modes will be costly or 

impossible. In addition, conducting a reliability testing programme to precipitate failure 

modes is expensive and adds significant extra cost to the product. In some cases, such as 



environmental pollution with disposable plastic products, the delay associated with such 

approach can be catastrophic to the environment.  

For a long time, the risk science failed to appreciate that risk reduction is underlined 

and governed by general (domain-independent) methods and principles which work in 

many unrelated domains. 

With the exception of few simple and well-known domain-independent methods for 

risk reduction such as: implementing redundancy, strengthening weak links, creating 

deliberate weak links, upgrading with more reliable components, simplification of 

components, systems and operations and condition monitoring, the framework of the 

domain-independent methods for risk reduction is missing. 

Here it needs to be pointed out that the domain-independent risk reducing methods are 

not a substitute for domain-specific methods. Rather, they are a powerful enhancement 

of the domain-specific risk reduction approach. Combined with knowledge from the 

specific domain, the domain-independent methods help to obtain superior solutions. 

The ALARP approach to risk management (Cullen, 1990; HSE, 1992; Melchers 

2001), for example, advocates that risks should be reduced as low as reasonably 

practicable. This is commonly interpreted in the sense that risks have to be reduced to a 

level at which the cost associated with further risk reduction outweighs the benefits 

arising from further reduction (HSE, 1992; Melchers 2001). While a decision about the 

implementation of risk reducing measures can be taken by implementing cost-benefit 

analysis, the focus of the ALARP approach is whether risk reducing measures should be 

implemented or not. There is little clarity on the risk-reducing methods that can be used 

to achieve the risk reduction.  

Thompson (1999) stressed the importance of effective integration of maintainability 

and reliability considerations in the design process and the importance of FMEA in 

design. The popular Failure Mode and Effects analysis (FMEA) widely used in industry 

is useful for tracking how the malfunctioning of a component will manifest into a 

failure mode of the system but it does not provide any guidance on the principles 

underlying the design for reliability. Thompson (1999) correctly identified that 

knowledge of the principles of risk are important aids to achieving good reliability; 

however, no domain-independent principles for improving reliability and reducing risk 

have been formulated. 

French (1999) formulated a number of general principles to be followed in 

conceptual design, but they were not oriented towards improving reliability and 



reducing technical risk. General principles to be followed in engineering design have 

also been discussed in (Pahl, 2007). Most of the discussed principles, are not focused on 

improving the reliability and reducing risk or are too specific (e.g. the principle of 

thermal design), with no general validity. Collins (2003) discussed engineering design 

with failure prevention perspective. However, no risk reducing methods and principles 

with general validity were formulated.  

The development of the physics-of-failure approach to reliability improvement (Pecht 

et al, 1990) has been prompted by some deficiencies of the data-driven approach: (i) 

models based on data collected for particular environment (temperature, humidity, 

pressure, vibrations, corrosive agents, etc.) give sometimes poor predictions for the time 

to failure of products working in different environment; (ii) the data-driven approach is 

critically dependent on the availability of past failure rates. According to the physics-of-

failure approach, failures and decline in performance occur due to known underlying 

failure mechanisms. Failure mechanisms lead to accumulation of damage and failure is 

initiated when the amount of accumulated damage exceeds the endurance limit. As a 

result, the time to failure of products can be physically modeled. 

The physics-of-failure approach was very successful in addressing the underlying 

causes of failure and eliminating failure modes and contributed to a widespread view 

among reliability practitioners that only physics-of-failure models can deliver a real 

reliability improvement.  

However, it is necessary to point out that building accurate physics-of-failure models 

of the time to failure is not always possible because of the complexity of the physical 

mechanisms underlying the failure modes, the complex nature of the environment and 

the operational stresses. Physics-of-failure modelling certainly helps, for example, in 

increasing the strength of a component by conducting research on the link between 

microstructure and mechanical properties of the material. However, this approach 

requires arduous and time consuming research, special equipment and human resource. 

Despite their success and popularity, physics-of-failure models cannot transcend the 

initial narrow domain they serve and cannot normally be used to improve reliability and 

reduce risk in unrelated domains. 

 

 

 

 



2. Domain-independent  methods for improving reliability and reducing risk.  

 

There is plenty of evidence demonstrating the advantages of the domain-independent 

thinking in improving reliability and reducing risk across unrelated domains of human 

activity. Thus, implementing the domain-independent method of active and passive 

redundancy improved tremendously the safety of operations in chemical plants, air 

travel, nuclear plant operations, the reliability of electrical distribution networks and the 

reliability of computers. 

The domain-independent concept of condition monitoring has been successful in 

improving the safety and reliability in mechanical engineering, civil engineering, 

transportation, electrical distribution, chemical plants, nuclear plants and many other 

areas. Introducing deliberate weak links (such as electrical fuses, mechanical fuses or 

sacrificial anodes) prevents failure of expensive equipment in all areas of human 

activity.  

The need for increasing efficiency and the need for reducing the weight of 

components and systems while maintaining high reliability is a constant source of 

technical and physical contradictions. Hence, it is no surprise that several principles for 

resolving technical contradictions formulated by Altshuller in the development of TRIZ 

(translated from Russian as Theory of Inventive Problem Solving) methodology for 

inventive problem solving (Altshuller, 1984,1996, 1999) can also be used for reducing 

technical risk. Eliminating harmful factors and influences is the purpose of many 

inventions and Altshuller's TRIZ system captured a number of useful general principles 

which could be used to eliminate harm. The TRIZ methodology can certainly be 

considered as evidence of the power of the domain-independent thinking in reducing 

harm. 

Despite the power of the domain-independent thinking for creative problem solving 

demonstrated by TRIZ, a major weakness preventing the effective use of TRIZ for 

reliability improvement and risk reduction is that the TRIZ methodology is not backed 

by mathematical models or algorithms which, in a number of cases, are absolutely 

necessary to determine the level of risk and see clearly the reliability improvement 

resources.  

By providing a succinct description of the system, a mathematical model or 

algorithm could deliver significant risk-reduction benefits: 



- The system can be described by taking into consideration a very complex 

interaction of risk-critical factors which could not be intuitively contemplated by 

design-engineers. In many cases, the only way to extract risk reduction benefit is to 

build and analyse a mathematical model or algorithm.  

- A mathematical model or an algorithm provides a way of tracking the impact of the 

risk-critical factors on the level of risk and to determine the optimal balance between 

level of risk and cost of the risk reduction resources. 

In what follows, the basic underlying ideas are formulated for the following little-

known and very efficient domain-independent methods: i) method of segmentation; ii) 

method of separation; iii) method of inversion; iv)  method of self-reinforcement v) 

method of permutations and vi) method of substitution.  

These methods have been distilled from a large number of engineering solutions, each 

of which was analyzed to assess its effect on reliability and risk. The available solutions 

have also been analyzed for recurring reliability improvement patterns and invariants 

which were captured into categories and classes. Often, reliability improvement and risk 

reduction by these methods is achieved at no extra cost or at a very small extra cost. 

 

 

3. Improving reliability and reducing risk by segmentation and separation 

 

3.1 Method of segmentation  

Underlying idea: to prevent failure modes and reduce the vulnerability to a single 

failure, by dividing an entity into a number of distinct parts.  

Implementation 

To implement the method of segmentation, critical elements (e.g. forces, volumes, 

masses, areas, lengths, etc.) are identified and segmented and the effect of the 

segmentation on reliability and risk is investigated. The mechanisms through which this 

is achieved is (i) by limiting the spread of damage caused by the segmentation, (ii) by 

reducing the vulnerability to a single failure, (iii) by reducing the hazard potential of 

substances because of reducing the quantities handled, (iv) by reducing the likelihood of 

an error because of simplifying the problem due to the segmentation. 

Segmentation of a macro-level entity into a number of micro-level entities working in 

parallel also makes the entity resistant to a single failure at a micro-level. Segmentation 



effectively replaces a single failure occurring at a macro level with non-critical failures 

occurring at a micro level. 

Application examples: 

An example related to limiting the spread of damage can be given with a monolithic 

glass panel which is shattered totally if hit by an object because the initial crack from the 

projectile spreads through the entire panel. Dividing the glass panel into small glass 

segments limits the spread of damage thereby reducing the consequences of failure. 

Reducing the hazard potential is achieved by the segmentation of hazardous 

substances which limits the amount of energy locked in the substance and its potential to 

cause harm. Processing very small (segmented) volumes of toxic substances at a time, 

for example, significantly reduces the hazard potential of the handled substance and 

improves safety by eliminating the risk of poisoning in case of accidental spillage. 

Reducing the variation of returns by segmenting and diversifying an investment 

portfolio into any non-correlated stocks is a well-documented technique for reducing 

financial risk by segmentation. With increasing the segmentation, the variance 

(volatility) of the portfolio is reduced (Teall and Hasan, 2002). Segmentation works also 

very well in reducing the risk from opportunity risk-reward bets: bets whose expected 

profit is a positive value. Segmenting an opportunity bet into several bets with the same 

probability of success and failure but with a smaller amount of risked quantity, 

significantly reduces the probability of a net loss (Todinov, 2013).  

Segmentation is a universal domain-independent concept for risk reduction and applied 

with domain-specific knowledge can, for example, used to reduce the risk of 

computational errors. 

Consider the domain-specific chain rule for differentiation of a function of a 

function, which is a well-known concept from calculus (Ellis and Gulick, 1991).  

Suppose that a process is a complex continuous function ( )y y x  of the input 

parameter x. Finding the derivative dy
dx

 which describes the process rate is often very 

difficult because of the complex function ( )y y x . The direct differentiation, if at all 

practicable, often leads to enormous, very complex expressions, during whose 

derivation the likelihood of errors is very high. These difficulties disappear if the 

method of segmentation through the chain rule is applied. The complex continuous 

function ( )y y x  is segmented into several simpler functions. Suppose that y is 



expressed as a continuous and differentiable function 1( )y u  of the parameter 1u ; the 

parameter 1u  is expressed as a continuous and differentiable function 1 2( )u u  of the 

parameter 2u  and so on, until a parameter nu  is reached, which is expressed as a 

continuous and differentiable function ( )nu x  of x. As a result, ( )y y x  is effectively 

segmented into a nested composition of n continuous and differentiable functions: 

             1 2 3( ( ( (... ( ))))ny y u u u u x                                                         (1) 

Applying the chain rule for the derivative dxdy / , of the expression (1): 

             1 2

1 2 3
... ndudu dudy dy

dx du du du dx
                                                      (2) 

is obtained. Expression (2) is effectively a segmentation of the complex derivative 

/dy dx  into derivatives 1/dy du , 1 2/du du , /ndu dx  whose evaluation is relatively easy. 

Reducing the risk of errors comes from the circumstance that the evaluation of each of 

the separate derivatives 
1

i

i

du
du 

 is associated with a significantly smaller likelihood of 

errors than the evaluation of the original derivative dy
dx

. The complex task related to 

determining the rate dy
dx

 has effectively been reduced to a number of sub-tasks with 

easy solutions. The solution of the original problem is assembled simply by multiplying 

the solutions of the partial problems, which is a straightforward operation, not normally 

associated with high possibility of error. 

The method of chain-rule segmentation remains the same if any of the parameters 

depends not on a single parameter but on two or more parameters. In this case, partial 

derivatives are used.  

As a result, the domain-specific knowledge of the chain rule in calculus and the domain-

independent method of segmentation through the chain rule are combined to achieve a 

substantial decrease in the risk of computational errors. 

Consider now an application from structural engineering. It is not at all obvious that 

segmenting loading forces could achieve a significant reduction of the internal stresses 

in a loaded structure. One of the mechanisms by which segmentation achieves such a 

reduction is that segmenting loading forces reduces the magnitudes of the bending 

moments and reducing the magnitudes of bending moments reduces the magnitudes of 

the internal stresses. 



Consider the simply supported beam with length l and uniform cross section in 

Figure 1, loaded with a concentrated force P.  

 

 
Figure 1. Reducing the risk of overstress failure of a beam by segmenting the external concentrated load 

P. 

 

Segmenting the concentrated load P into two concentrated loads with magnitudes P/2, 

applied at distances l/6 from the supports, reduces the maximum bending moment 

which, in turn, reduces the internal tensile stresses from bending. Reducing the 

magnitudes of the internal tensile stresses increases the resistance to overstress failure 

and therefore reduces the risk of overstress failure. A similar reliability improvement 

effect is also present if external concentrated moments, instead of concentrated forces 

are segmented. 

As a result, the domain-specific knowledge in strength of materials combined with the 

domain-independent method of segmentation delivered a substantial decrease in the risk 

of overstress failure. 

Strength of components is a mature and well-developed field (Hearn 1985; Budynas, 

1999; Gere and Timoshenko, 1999; Shigley and Mischke, 1989; Thompson 1999; 

French 1999; Collins 2003; Hibbeler, 2004; Norton, 2006). Despite this, to the best of 

our knowledge, the ideas of segmenting external loads in order to reduce the risk of 

overstress failure have not been used. This rather surprising omission in mature domains 

shows that effective risk reduction cannot be achieved solely by knowledge from a 

specific domain without enhancing it with knowledge of domain-independent methods. 

 

3.2 Method of separation 

Underlying idea: eliminating failure modes by separating functions, properties and 

risk-critical factors.  

Implementation: To apply the method of separation, different functions are assigned to 

different parts, instead of having a single part carrying all the functions. This permits the 



separate parts to be optimised for carrying their function in the most efficient way, 

avoids overloading of the parts and improves their resistance to overstress failure. 

Different properties can also be assigned to different components or different parts of 

the same component, in proportion of the loads experienced during service. Separation 

of the properties is necessary in cases where the average property characterising a 

homogeneous state cannot provide the necessary resistance against the risk factors. 

Design engineers often select materials with uniform properties despite that the loading 

and the stresses in the components are clearly non-uniform. Homogeneous materials, 

with average value of the strength (resistance), are not optimised according to the local 

type of loading and cannot provide sufficient resistance in all zones where high 

resistance is needed.  

Separation of risk-critical factors is implemented to prevent a dangerous 

simultaneous occurrence of risk-critical actions at a given point in time or at a given 

space location. Logical separation of risk-critical factors is implemented to make it 

logically impossible for two or more objects/events to be in a dangerous proximity or 

two or more incompatible actions to occur simultaneously.  

Logical separation avoiding dangerous simultaneous occurrence of actions can be 

implemented relatively easily by using the mechanism of the shared unique key. The 

same unique key is required for activating each action in accomplishing a particular task. 

As a result, dangerous overlapping of actions cannot occur because the unique key 

cannot be simultaneously available to activate more than one action. 

Risk is sometimes the result of the simultaneous presence of risk-critical factors. Such 

are for example the random demands for a particular life-saving equipment from patients 

in a critical condition. 

Risk then depends on the time separation of risk-critical random demands. The 

underlying idea of stochastic separation is to reduce risk by making overlapping of risk-

critical demands less likely. This must be achieved by making a careful balance between 

health risk and cost of life-saving equipment and other resources. The method of 

stochastic separation requires determining the expected time fraction of overlapping of a 

particular order, for risk-critical random events on a time interval. This can be done by 

using the analytical methods presented in (Todinov, 2017). 

 

 

 



Application examples  

Separation of functions, found in software development (also known as 'separation of 

concerns') is a well-known concept in the design of computer programs (Reade 1989). 

To avoid costly bugs, the function related to developing the code is separated from the 

function related to testing the software. The method of division of tasks featured in Pahl 

et al. (2007) is effectively an application of the method of separation in mechanical 

design. 

Separation of functions in handling financial transactions (e.g. authorising the 

transaction, receiving the funds, depositing the funds, recording the transaction, 

reconciling the bank statement) reduces the possibility of fraud. By separating the 

functions, no single individual has the ability to both perpetrate and conceal fraud 

because this would require collusion between several people. 

Separation of properties is often applied to reduce the risk of failure. Stronger alloys are 

used in places where the stresses are high. Simultaneously, weight is reduced by using 

plastics in the parts where the stresses are low.  

Logical separation of risk-critical factors is present, for example, in the case where 

both hands of an operator are required to activate the blade of a metal cutting guillotine. 

This prevents the dangerous failure mode "operator's hand residing in the cutting area 

while the cutting blade is being activated". 

Separation distancing triggers from hazards and hazards from targets reduces the 

likelihood and the consequences of an accident and is the essence of the concept 'barrier' 

(Svenson 1991; Eder and Hosnedl 2008; Hollangel 2016).) 

Separation of methods reduces the risk of incorrect computational results. Thus, a 

computer programme based on Monte Carlo simulation and hand calculations based on 

probability theory can both be used to obtain a particular result. Obtaining the same 

result from the two distinct methods provides a very strong confirmation of the validity 

of both, the theoretical model and the simulation programme. 

An example of stochastic separation is given next. Consider, for example, n patients 

placing with probability   a demand of duration d for a particular life-saving equipment. 

The demand is randomly located over a time interval of length L. It has been shown 

(Todinov, 2017) that the expected time fraction of overlapping of random demands 

(simultaneous random demands) of order k = 0, 1, 2,...,n is given by the binomial 

expansion of the expression [(1 ) ]n   , where /d L  . The quantities 1a    and 



b   are treated as separate variables. Thus, the expected time fraction of no random 

demands is given by (0) (1 )nf   ; the expected time fraction of exactly one random 

demand is given by 1 1(1) (1 ) ( )nf n    ; the expected time fraction of two simultaneous 

random demands is given by 2 2(2) [ ( 1) / 2] (1 ) ( )nf n n       and so on. Clearly, 

(0) (1) ... ( ) [(1 ) ] 1nf f f n         . 

Suppose that there are m pieces of life-saving equipment servicing the random demands 

and each piece of equipment can service no more than a single random demand. If an 

overlapping of random demands of order k m  occurs, there will be unsatisfied random 

demand (with grave consequences). 

The expected time fraction of overlapping of random demands of order greater than  k = 

0, 1, 2,...,n-1  is obtained  from the equation: 

                           1 [(1 ) ] 0n                                                            (7) 

which is equivalent to 0 = 0. 

This is a “mathematically structured zero” that packs a significant amount of 

information. It measures the expected fraction of unsatisfied demand for any number m 

0 1m n    of sources servicing the random demands. Stochastic separation can be done 

by reducing the probability   with which the random demands are initiated, by 

reducing the number of random demands n and by increasing the number of units m 

servicing the random demands (Todinov, 2017). The optimal number of units m 

servicing the random demands can be determined, which provides the optimal balance 

between acceptable risk level and cost. 

 

 

4. Improving reliability and reducing risk by inversion and self-reinforcement 

 

4.1 Method of inversion 

Underlying idea:  to avoid failure modes by inverting relative position, orientation,  

functions, motion, features, properties, thinking or by introducing inverse states. 

Implementation 

Inverting the relative location of features, state, motion and properties usually preserves 

the required function but often, the inverted state is characterised by fewer failure 

modes compared to the original state.  



Thus, introducing inverse stress states (compressive stresses) creates a 

counterbalance against tensile loading stresses and increases the resistance against 

overloading. Inverse thinking, by changing the focus from how to improve the 

reliability of an entity to how to make the entity fail, provides a different perspective 

and helps identify difficult to discover failure modes. 

Application examples:   

An example related to improving reliability by inverting the relative position can be 

given with the cover on a container under pressure. Inverting the position of the cover 

from outside the container to inside, improves significantly the reliability of the seal and 

reduces the loading stresses on the screws fixing the cover. In addition, the reliability 

improvement is done at no extra cost. 

Often, inverting the direction of motion eliminates failure modes and results in 

improved reliability. This idea underlies the Cosworth® sand casting process (Campbel 

2015) where the molten metal is not poured down the sand mold as is the case in the 

classical sand casting process. In the Cosworth® sand casting process, the molten metal 

flows uphill into the mold, which avoids turbulence and trapping sand particles into the 

metal. This type of inversion of motion increases significantly the fatigue strength of the 

cast component. 

An example related to eliminating failure modes by inverting a function can be given 

with the fail-safe air breaks of trucks. Instead of air pressure energizing the breaks when 

these are needed, the function is inverted. The air pressure keeps the brakes released 

which permits the truck to move. In case of a low pressure in the air line due to a 

puncture or failure of the compressor, the brakes are applied securing the truck. In this 

way, a dangerous failure mode is avoided: loss of air pressure and inability to apply 

breaks when these are needed. Inverse states in the form of compressive residual stresses 

introduced to increase the fatigue life of aircraft structures have been recently reviewed 

in Fu et al (2015). 

An example related to risk reduction achieved by inverse thinking can be given with 

improving the defense against unauthorized access to a valuable service provided by a 

computer program (e.g. computer program controlling the access to a bank account). An 

important path to improving the defense against unauthorised access is to invert the 

problem from "how to improve the security of the computer programme" to „how to 

compromise the computer program controlling the access and make it fail‟. Invariably, 



the inversion of thinking reveals software vulnerabilities which could be exploited to 

gain unauthorized access.  

The subversion analysis technique and the anticipatory failure determination approach 

described in Kaplan et al. (1999) are largely an application of the method of inverse 

thinking. The focus of these approaches is on how to invent failures by using the 

available resources and these techniques are useful for identifying rare and unexpected 

failure modes.  

 

4.2 Reliability improvement and risk reduction through self-reinforcement 

Underlying idea: to improve reliability by creating a design where increasing the 

external/internal forces intensifies the system’s response against these forces. As a 

result, the driving net force towards precipitating failure is reduced. 

Implementation 

There are several ways of implementing self-reinforcement: self-reinforcement by 

capturing a proportional compensating factor, self-reinforcement by self-balancing and 

self-reinforcement by feedback loops. 

Self-reinforcement can be implemented by identifying and capturing the effect from a 

particular factor to diminish the negative effect created by an external force or the 

deviation of the system's response from a specified value. Thus, the negative effect from 

increased weight can be captured to provide extra stability and increased resistance to 

overturning. The negative effect from increased wind pressure on a panel can be 

captured to induce rotation of the panel and self-alignment, which reduces the negative 

effect of the excessive wind pressure. An important feature of self-reinforcement that 

distinguishes it from mere „reinforcement‟ is that increasing the magnitude of the 

external/internal forces always increases the resistance against these forces. 

Self-reinforcement by self-balancing can be implemented by identifying and 

capturing effects that compensate particular negative effects. Increasing the magnitude of 

the negative effect increases the self-balancing response. 

Self-reinforcement by negative feedback loops is based on stabilising the system or 

process. Self-reinforcement by positive feedback loops is based on discovering and 

eliminating positive feedback loops with negative impact or creating positive feedback 

loops with positive impact. Positive feedback loops with positive impact, for example, 

can be used for self-locking, self-energising or for a quick departure from unwanted 

equilibrium states. 



Application examples 

Self-locking devices, such as self-locking screws, grips, hooks and self-energizing 

breaks are effectively applications of the method of self-reinforcement. Costache at al 

(2016) for example, recently introduced self-locking grips for anchoring fiber-reinforced 

tendons. 

An example of self-reinforcement by capturing a proportional factor can be given 

with the crowd fence in Figure 2a. The crowd fence without a self-reinforcement in 

Figure 2a can be overturned relatively easily by the forces created by people pushing the 

fence. If the lower end of the fence on the crowd side is made wider, people will have to 

stand on the fence while they push against it (Figure 2b). The more people push on the 

fence, the more weight forces will be available for counteracting the overturning 

moment. Reliability has been improved at a relatively small extra cost. 

 

 
 

Figure 2. Reducing the risk of overturning of a crowd fence by self-reinforcement. 

 

An example of self-reinforcement by self-balancing can be given with twisting wires 

to cancel their magnetic interference. The flow of current through the wire results in an 

electromagnetic field around the wire which could generate noise in the neighbouring 

wires. Twisted wires carry equal and opposite currents whose electromagnetic fields 

cancel. Increasing the current, increases proportionally the self-balancing response. 

Self-reinforcement by self-balancing can be seen in the symmetrical design used to 

minimise the axial forces in turbine shafts (Matthews 1998). 



Positive feedback loop with a negative impact can for example be triggered by the 

withdrawal of investment from a country, triggered by a political crisis. This leads to 

poverty which in turn leads to a further withdrawal of investment. 

Positive feedback loop with negative impact can also be seen in human behaviour, 

created by the factors belief and choice. For example, belief in an incorrect model 

(Todinov, 2010) determines its choice to the extent of ignoring experimental evidence 

clearly contradicting the model. The belief leads to choosing the incorrect model by 

more researchers, which leads to strengthening the belief in the wrong model. This leads 

to a firmly entrenched false modelling paradigm. The positive feedback loop can only be 

broken by a strong experimental evidence, theoretical argument or simulations exposing 

the wrong model. The theory of ether in physics in the late 1800s is such a notable 

example. This theory that ether is the medium which light propagates through was 

widely believed and universally accepted until the famous Michelson-Morley experiment 

(Michelson and Morley, 1887) disproved the theory. 

 

 

5. Improving reliability by permutations and by substitution 

 

5.1 The method of permutations 

 

Underlying idea: to improve reliability of a system by interchanging components with 

the same type but with different reliability. 

Implementation and justification 

The method of permutations will be demonstrated on parallel-series arrangements 

which are very common (for example, the system in Figure 3). Indeed, almost any 

safety-critical system based on detectors working in parallel (detecting increased 

pressure, increased temperature, toxic gas release, etc.), is a parallel-series system. The 

system detects the critical event if at least one of the detectors working in parallel 

detects the critical event. The parts composing each detector are normally logically 

arranged in series (a detector fails if any of its parts fails). 

A well-ordered parallel–series arrangement, is obtained if the available components are 

used first to build the branch with the highest possible reliability; next, the remaining 

components are used to build the branch with the second-highest reliability, and so on, 

until the entire parallel–series arrangement is built. The well-ordered arrangement is 



characterised by the largest possible system reliability the proof of which can be found 

in (Todinov, 2014).  

 

Application 

Suppose that there are three types of components with different age (new, medium-age, 

and old), and the reliability of a new component is greater than the reliability of a 

medium-age components while the reliability of a medium-age components is greater 

than the reliability of an old component. 

According to the statement proved earlier, the minimum risk of failure is achieved if all 

new components are arranged in a single branch, the medium-age components in 

another branch, and all old components are grouped in a separate branch (Figure 3). 

Components of similar level of deterioration (reliability levels) should be placed in the 

same parallel branch. 

 
 

Figure 3. Minimising the risk of failure of a parallel–series system by permutation of interchangeable 
components. 

 

Unlike traditional approaches, a risk reduction by permutation of components with 

equivalent functions can be achieved at no extra cost. 

The principle of the well-ordered systems provides an opportunity to remove the 

maximum amount of system risk by concentrating the available budget on monitoring 

or renewing single parallel branches as opposed to randomly monitoring or replacing 

aged components in the system. 

This result also provides the valuable opportunity to improve the reliability of common 

systems with parallel-series logical arrangement of their components without the 

knowledge of their reliabilities and without extra investment. Unlike all traditional 

approaches, which invariably require resources to achieve reliability improvement and 

risk reduction, a system risk reduction can also be achieved by appropriate permutation 

of the available interchangeable components in the parallel branches. 



The risk reduction principle based on permutation of interchangeable components 

has wide applications reaching far beyond its initial engineering context. The principle 

of well-ordered systems also works in project management. Consider an example of 

three groups of people (teams 1,2, and 3), each of which includes three independently 

working team members (Fig.4).  

 

 
Figure 4. Three groups of people working towards achieving the same goal. 

 

The teams work in parallel towards achieving the same goal. The goal is achieved if 

at least one of the teams succeeds in achieving the goal. Within each team, the task of 

achieving the goal is divided into sub-tasks among the team members. Each person in a 

team must accomplish their sub-task successfully in order for the team to achieve the 

goal. Suppose that the level of training of each team member is from one of the 

following categories: S (strong), W (weak), and M (medium). A person with a strong 

level of training has a better chance of accomplishing a sub-task successfully compared 

with a person with medium training and a person with medium training has a better 

chance of accomplishing the sub-task successfully compared with a person with weak 

training. Separating the people in groups with a similar level of training ([S,S,S]; 

[M,M,M] and [W,W,W]), similar to the different age components in (Figure 3) yields the 

highest chance of achieving the goal.  

The risk reduction by permutation of components with equivalent functions is 

achieved at no extra cost. 

 

5.2 Improving reliability and reducing risk by substitution  

Underlying idea: to eliminate dangerous failure modes by a substitution with 

assemblies/systems delivering the same required functions but working on a different 

physical principle. 



Implementation 

A central point in the implementation is to identify whether the substitution of one 

type of assembly (e.g. mechanical assembly) with an assembly performing the same 

function but working on a different physical principle (e.g. electrical, optical, magnetic 

assembly, software) will eliminate particular failure modes or reduce the rate of damage 

accumulation. Thus, substituting a mechanical assembly with magnetic assembly often 

results in reliability improvement because, unlike the mechanical assembly, the magnetic 

assembly practically does not undergo wear. Eliminating the need for lubrication for the 

magnetic assembly, simplifies the system and eliminates the failure modes of the 

lubrication system. Substitution of a mechanical (electro-mechanical) assembly with an 

optical assemblies avoids the need for a direct contact, which decreases wear, increases 

precision, increases and makes the operation possible in hazardous surface conditions 

(high voltage, high temperature, etc.). 

Substituting a mechanical (electro-mechanical) assembly with an optical assembly 

avoids the need for a direct contact, which decreases wear, increases precision, increases 

and makes the operation possible in hazardous surface conditions (high voltage, high 

temperature, etc.). 

Substituting mechanical (electro-mechanical) systems with software systems 

eliminate deterioration and variability which are major contributing factors to 

unreliability. The substitution with software components also introduces sensing 

capabilities which make the system capable to adapt to changing environment. 

Application examples: 

An example of a substitution of a mechanical assembly with an electrical assembly 

with the same function is the mechanical push button switch. The mechanical contact 

promotes (i) mechanical deterioration caused by fatigue and wear; (ii) contact erosion 

caused by arcing and (iii) collection of dirt and corrosion products which prevent a good 

contact. Substituting the mechanical push button switch with a switch whose operation is 

based on the Hall effect (Ramsden, 2006), reduces dramatically the rate of damage 

accumulation and increases the durability of the switch from tens of thousands to tens of 

millions of actuations. 

Replacing a mechanical measuring system with magnetic or optical measuring system 

often eliminates the need for calibration which is necessary for conducting an accurate 

measurement.  



An example of replacing a mechanical assembly with a magnetic assembly is provided 

by the magnetic worm drive (featured in the US patent US3814962; Baermann 1971) 

whose worm gear is made of permanent magnet material. The teeth of the worm gear 

and the worm wheel are also magnetised so that the like poles on the wheel and on the 

worm gear face one another. Magnetic repulsion transmits force from the rotating worm 

gear to the worm wheel which causes the rotation of the worm wheel. 

The advantage of the magnetic worm drive compared with the conventional mechanical 

worm drive is the frictionless transfer of torque which eliminates contact stresses and 

wear. The need for lubrication is also eliminated, together with its failure modes.  

Furthermore, the clearance between the teeth of the worm gear and the worm wheel 

eliminates failure modes caused by misalignment which enhances the life of the 

bearings. The clearance also eliminates the spread of vibrations through the worm wheel 

which reduces wear and further enhances the reliability of the assembly.  

An example of improving reliability by eliminating mechanical contact could be 

given with the replacement of the contact measurement of the temperature of metal 

surfaces with optical (contactless) measurement by using infrared thermometers 

(pyrometers) (Childs, 2001).  
The presented domain-independent methods work across totally unrelated domains and this 

is demonstrated by the supplied examples which range from various areas of engineering and 

technology, computer science, project management, health risk management, business and even 

mathematics. 

 

 

Conclusions 

 
• Risk reduction is underlined by domain-independent methods and principles which 

combined with knowledge from the specific domain help to generate effective risk 
reduction solutions.  

 
• The domain-specific approach to risk reduction created the illusion that efficient 

risk reduction can be delivered successfully solely by using methods offered by the 
specific domain. As a consequence, many industries have been deprived from efficient 
risk reducing strategy and solutions which resulted in inferior products and processes, 
associated with high risk of failure. 

 
• The paper introduces a powerful method for reducing the likelihood of 

computational errors based on combining the domain-independent method of 
segmentation and local knowledge of the chain rule for differentiation. The method can 



be used for reducing the likelihood of computational errors in determining the rate of 
change of output parameters part of complex processes. 

 
• The paper demonstrated that lack of domain-independent knowledge even in such 

mature field like stress analysis, misses opportunities to reduce the risk of failure.  
 
• The domain-independent methods for risk reduction do not rely on reliability data 

or knowledge of physical mechanisms underlying possible failure modes. As a result, 
they are very well suited for developing new designs, with no failure history and 
unknown failure mechanisms. 

 
• Unlike some traditional reliability improvement methods like: 'introducing 

redundancy', 'selecting high-quality materials', 'strengthening weak links' and 'condition 
monitoring', the discussed domain-independent methods improve reliability at no extra 
cost or at a relatively small cost. 

 
•  Building accurate physics-of-failure models of the time to failure is not always 

possible because of the complexity of the physical mechanisms underlying the failure 
modes, the complex nature of the environment and because of cost limitations. Despite 
their success and popularity, physics-of-failure models cannot transcend the initial 
narrow domain they serve and cannot normally be used to improve reliability and reduce 
risk in unrelated domains. 

 
• The presented domain-independent methods work across totally unrelated domains and this 

is demonstrated by the supplied examples which range from various areas of engineering and 
technology, computer science, project management, health risk management, business and even 
mathematics. 
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