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a b s t r a c t

Magnetoelectric coupling has been a trending research topic in both organic and inorganic materials and
hybrids. The concept of controlling magnetism using an electric field is particularly appealing in energy
efficient applications. In this spirit, ferroelectricity has been introduced to organic spin valves to
manipulate the magneto transport, where the spin transport through the ferromagnet/organic spacer
interfaces (spinterface) are under intensive study. The ferroelectric materials in the organic spin valves
provide a knob to vary the interfacial energy alignment and the interfacial crystal structures, both are
critical for the spin transport. In this review, we introduce the recent efforts of controlling magnetore-
sistance of organic spin valves using ferroelectricity, where the ferroelectric material is either inserted as
an interfacial layer or used as a spacer material. The realization of the ferroelectric control of magneto
transport in organic spin valve, advances our understanding in the spin transport through the ferro-
magnet/organic interface, and suggests more functionality of organic spintronic devices.
© 2018 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Giant magnetoresistance has been a successful example of
nanotechnology in which transport of spin-polarized current
through interfaces is manipulated in nanoscale to vary the resis-
tance of the devices. Wide application of this effect, such as in the

read heads of the hard disks for much larger information density,
has been realized; the fundamental research was awarded Nobel
prizes in 2007. The concept of manipulating the spin degree of
freedom of electrons to control the electrical transport, has now
evolved into a large active field of research and technology, i.e.
spintronics, with emphasis more and more on spin transport and
application potentials in information storage and processing, sen-
sors, energy generation, etc. [1e5].

The effect of giant magnetoresistance can manifest in a trilayer
junction shown in Fig. 1(a). The junction contains a non-magnetic
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(NM) spacer layer sandwiched by two ferromagnetic (FM) elec-
trodes. Depending on the alignment of the magnetization of the
two FM electrodes, the resistance of the junction changes between
high and low values. The trilayer junction can then be regarded as a
spin valve, in the sense that the electrical current can be turned on
and off using the external magnetic field which controls the
alignment of the magnetization of the two FM electrodes.
Depending on the spacer materials and the thickness, three cate-
gories of spin valves are mostly studied.1) If the spacer material is a
metal, the magnetoresistance (MR) is expected to be small
compared with the volume resistance [6]. Superlattice-fashioned
structures were adopted to enhance MR by increasing the num-
ber of interfaces while keeping the thickness of the junction and
the volume resistance constant [7e11]. In this case, the thickness of
the spacer is often less than a few nanometers; the MR has to do
with the indirect exchange coupling between the magnetic layers
[12,13]. 2) If the spacer is a thick semiconductor, the two FM layers
are magnetically decoupled and the transport through the spacer
becomes diffusive. In this case, the MR hinges on spin injection,
which is actually difficult for a metal/semiconductor ohmic contact.
Tunneling through a barrier between the FM and the semi-
conductor provides a more efficient route for the spin injection
[14e17]. 3) If the spacer is a thin insulator, the electrical transport is
based on spin-conserved tunneling between the two electrodes.
Therefore, the MR is related to the alignment of spin polarization of
the initial and final states of the tunneling.

Organic spin valves are trilayer structures including organic
semiconductors (OSC) or insulators as the spacer materials. The
long spin life time of the organic materials [18,19] (due to the weak
spin-orbit coupling in the light elements such as carbon and
hydrogen), is appealing for spin transport. In addition, the flexi-
bility, environment friendliness, and the vast chemical diversity of
organic materials suggest great application potentials of organic
spintronic devices. Organic spin valves generally belong to the
latter two categories introduced above, where the two FM elec-
trodes are decoupled in terms of exchange interactions [6]. The
alignment of the magnetization of the two FM electrodes, can be
tuned by an external magnetic field, based on their difference in
magnetic coercivity. The MR has a butterfly-like shape, as illus-
trated in Fig. 1(b) and (c). If the resistance of the spin valve is high
(low) when themagnetization of the two FM layers are antiparallel,
it is called normal (inverse) or positive (negative) MR.

Encouraged by early promising results on organic spin valves
[20,21], efforts on understanding the fundamental mechanism
and on realizing organic spintronic devices, has been growing
rapidly. However, several key issues, such as spin injection and
spin polarization at the FM/organic interfaces, are still not fully
understood in organic spin valves. To tackle these key issues, be-
ing able to tune the crystal structure and electronic structure at
the FM/organic interfaces (spinterface [22]) appears to be critical,
because the sign and magnitude of the MR is determined by the
spin polarization at these interfaces, which are sensitive to the

Fig. 1. (a) Schematics of an FM/NM/FM trilayer spin valve. (b) and (c) are the magnetic-field dependence of resistance of the spin valve for positive (normal) and negative (inverse)
MR respectively. (d) Schematics of the electronic structure of the FM and NM materials, where n[ and nY are the number of states of the up spin and down spin respectively.
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electronic structure. The electronic structure at the FM/spacer
interface is a result of coupling between that of the two materials,
which is based on the crystal structure and the energy level
alignment of the two materials. Ferroelectric (FE) materials, either
as an interfacial material or as the spacer itself, offer tunabilities to
the electronic structures at the interface, by changing the energy
level alignment or the interfacial crystal structure. Besides the
important role in studying fundamental mechanism, the FE
controlled organic spin valves also have potential applications in
multi-state information storage devices and energy efficient in-
formation processing, because the changes caused by the FE ma-
terial, via switching the electrical polarization using an electric
field, are non-volatile.

Here we review the topic of FE control of MR in organic spin
valves as one of the frontiers of organic spintronics. Inspired by
similar work in inorganic spin valves and previous efforts in tuning
FM/organic interfaces [23e32], recently, a sequence of work has
studied themultistates in the organic spin valves using FEmaterials
as the spacer or as an interfacial layer [33e36]. The results confirm
the critical role of energy alignment and interfacial structure in the
spinterface.

The topic is reviewed as an integrated story based on the current
understanding: First, we organize the fundamental principles that
are necessary for understanding the topic, including the concepts
and fundamental processes in the diffusive and tunneling spin
valves and the specific problems in organic spin valves. The FE
control of MR in organic spin valves is then presented and analyzed
using these principles. The effects of FE materials on the interfaces
are sorted into two categories: the electrostatic change of energy
alignment and the interfacial structural change due to the polari-
zation reversal.

2. Diffusive spin valves

A spin valve can be realized in a junction where electrical cur-
rent flows diffusively, which means that the electrochemical po-
tential of the charge carriers changes when they travel through the
junction. To understand the MR of the diffusive spin valves, it is
better to discuss the boundary resistance at the FM/NM interface
first. In the two-current (spin up and spin down) model [37], the
fundamental difference between the FM and the NM, are in the
equilibrium spin polarization (a), defined as the proportion of the
spin-up branch of the current, which represents the proportion of
spin-up density of states at the Fermi level [Fig. 1(d)]. For the FM
and NM layers, one has aFs0:5 and aN ¼ 0:5 respectively. When
the spin polarized current flows from the FM layer into the NM
layer, it tends to depolarize toward the equilibrium state of the NM
layer. As shown in Fig. 2(a), the dynamics of the spin polarization
can be modelled using the difference of electrochemical potentials
of the spin-up and spin-down branch of the current, assuming no
interfacial spin scattering. If we assume aF >0:5 (spin up carriers
are the majority), near the FM/NM interface, the electrochemical
potential of the spin-up branch has to be higher than that of the
spin-down branch, to drive the population from the former to the
latter. This is true also on the NM side of the interface [Fig. 2(a)],
indicating that the charge carriers are also spin-polarized near the
interface on the NM side [Fig. 2(b)]. The spin polarization in the NM
layer is referred to as the spin accumulation. In this case, the spin
injection is realized by the transport of spin-aligned charge carriers
through the FM/NM interface [1,5], as opposed to the spin injection
by purely spin diffusion in lateral structures [38].

The mean electrochemical potential of the current is discon-
tinuous at the interface [Fig. 2(a)], which is the origin of the
boundary resistance (RB), given as

1
RB

¼ 1

ðaF � aNÞ2
�
aFð1� aFÞ

lF=sF
þ aNð1� aNÞ

lN=sN

�

where lF and lN are the spin diffusion length [39,40] of the FM and
NM layers respectively, sF and sN are the conductivity of the FM
and NM layers respectively. The boundary resistance can also be
understood in terms of the population change between the two
current branches, or virtual currents. In general, the virtual currents
run on both the FM side and the NM side of the interface in parallel
over the distance about the spin diffusion length, as shown in
Fig. 2(b). The additional resistance (RB) of the interface due to the
virtual current (change of spin polarization) is then the two re-
sistances RNB ¼ lN

sN

ðaF�aNÞ2
aNð1�aNÞ and RFB ¼ lF

sF

ðaF�aNÞ2
aF ð1�aF Þ in parallel. Notice

that if aF ¼ 1 (half metal FM), only RNB contributes to the boundary
resistance. Accordingly, the change of spin polarization of the
charge carriers occurs only in the NM layer and the spin injection is
100%.

In a FM/NM/FM trilayer structure, if the NM layer is thin enough
compared with lN , the spin polarization at the two FM/NM in-
terfaces, interferes [41]. If the spin polarizations of the two FM
layers are along the same direction [Fig. 2(c) and (d)], the current
may not have to totally depolarize at one interface before it is
polarized at the other interface. The difference between the elec-
trochemical potentials of the two current branches is then smaller;
the discontinuity of the mean electrochemical potential and the
boundary resistance, which both come from the change of spin
polarization, are reduced compared with those when the spin po-
larizations of the two FM layers are along the opposite directions
[Fig. 2(e) and (f)]. If the thickness of the NM layer d is much smaller
than lN ( d

LN
≪1) and the two FM materials are identical, one has

R[[B ¼ aF1ðaF1�aNÞ
2aNð1�aNÞ

lN
sN

d
LN

and R[YB ¼ ð2aF1�1Þ2
2aF1ð1�aF1Þ

lF1
sF1

for the parallel and
antiparallel alignment respectively; hence R[YB [R[[B This change
of boundary resistance due to the change of relative alignment of
the spin polarization of the two FM layers, is the mechanism of the
giant magnetoresistance in the classical two-current model.

Notice that it is alignment between the spin polarizations of the
charge carriers of the two FM layers instead of that between the
magnetization of the two FM layers, that determines the MR. The
MR sign of a spin valve can be analyzed in terms of quantum me-
chanical description of the spin polarization, defined as P ¼ nM�nm

nMþnm
,

where nM and nm are the number of states of the majority spin and
minority spin respectively of the states of certain energy. For typical
metallic ferromagnets like Co, at the Fermi level, most states have
the minority spin, corresponding to P <0 [42]. For the oxide
conductor La0.7Sr0.3MnO3 (LSMO), which is often used as an FM
electrode, the states at Fermi level corresponds to P >0 [43]. To
analyze the MR sign, one defines the interfacial spin polarization P*1
for the carrier injection as the P of the initial states. Similarly, the
interfacial spin polarization of the carrier collection P*2 is the P of
the final states. The MR sign can be predicted from P*1P

*
2, where

positive (negative) values of the product correspond to normal
(inverse) MR. If the spacer is a non-magnetic metal, interfacial spin
corresponds to the spin polarization at the Fermi level of the FM
materials. If the spacer is a semiconductor, the interfacial spin po-
larization depends on the detailed coupling between the electronic
structures of the FM and spacer material at the interfaces.

The MR of the trilayer diffusive spin valve comes from the
change of boundary resistance. The absolute value of the boundary
resistance is on the order of the resistance of the junction materials
(two FM layers and one NM layer) over the length scale of the spin
diffusion length, which may be small compared with the volume
resistance in the all-metal junctions. Hence, the MR is not expected
to be very large in the all-metal trilayer diffusive spin valves. Un-
fortunately, the MR cannot be enhanced simply by replacing the

X. Xu / J Materiomics 4 (2018) 1e12 3



spacer with materials of much larger resistivity. According to Eq.
(1), the total boundary resistance is the resistance of the FM and
NM channels in parallel. So, increasing only the NM resistance does
not change the total boundary resistance significantly. In fact, the
large NM resistance reduces the spin injection into the NM layer, i.e.
the depolarization of the spin current occurs mostly in the FM layer
because the FM channel has much smaller resistance. Hence, the
two FM/NM interfaces are decoupled, and little MR is expected.
This is the famous impedance-mismatch problem [44].

3. Tunneling spin valves

The impedance-mismatch problem is absent in the tunneling
spin valves. When the NM layer is insulating and thin enough, the
mechanism of electrical conduction becomes quantum tunneling,
inwhich the spin states of the carriers are conserved. The transition
from initial states in FM1 to final states in FM2, depends on the
relative spin polarization of these states. Therefore, one may
observe resistance change when the relative alignment of the
magnetization of the two FM electrodes is manipulated by the
external field.

Similar to that in the diffusive spin valve, it is the spin polari-
zation of the initial and final states that matters for the MR sign.
Since the tunneling resistance is much larger than the resistance of
the electrodes, the estimation of MR may ignore the volume-
resistance contribution from the electrodes. Hence, in the Jul-
liere's model [45], MR is predicted as 2P1P2

1�P1P2
, where P1 and P2 are the

spin polarization of the initial and final states of the tunneling in
the two FM electrodes. According to this model, much larger MR is
possible comparedwith that in the diffusive spin valves. Indeed, the
tunneling MR up to 600% has been reported by Ikeda et al., in
CoFeB/MgO/CoFeB spin valves at 300 K [46].

Under bias voltage, the initial and final states in FM1 and FM2
may shift with respect to the Fermi level. Since the spin polarization
of states at different energy levels may be different, the MR may
change with the bias voltage. De Teresa et al. studied LSMO/STO/Co
tunneling spin valve [42], where STO stands for SrTiO3. At low bias

voltage, the negative P in Co and the positive P in LSMO results in an
inverse MR. At higher bias, different part of the states of the Co
participate in the tunneling, significantly different MR, both in
magnitude and in sign, was observed. The bias-voltage dependence
of the MR reflects the spin density of states of Co.

The electronic structure of the tunneling barrier (spacer) also
plays an important role in the tunneling MR. In the case of Co, the
spin polarization P of the s and d states at the Fermi level are
positive and negative respectively [42,47], while in LSMO, the Fermi
level is only occupied by the d states, which has a positive spin
polarization P [43]. If the barrier is Al2O3, the tunneling of s elec-
trons from and to Co Fermi level is favored. If the barrier is STO, the
d carriers in Co is more involved in the tunneling [47].

4. Organic spin valves

In an organic spin valve, the spacer is an organic insulator or
semiconductor. One can construct organic tunneling spin valve
using a thin organic spacers [48e53]. For example, Barraud et al.
reported a 300% MR in LSMO/Alq3/Co tunneling spin valve at 2 K
[54], where Alq3 stands for tris-(8-hydroxyquinoline) aluminum;
Santos et al. reported an 8% tunneling MR in a similar junction at
room temperature [48], both in tunneling organic spin valves.

If the organic layer is too thick for the charge carriers to tunnel,
diffusive conduction through the junction is expected. Since the
organic insulator and semiconductors all have much larger resis-
tance than that of the electrodes, the impedance mismatch prob-
lem discussed above could minimize the MR. Surprisingly, a sizable
MR (~10%) have been repeatedly observed in the organic spin valves
using LSMO as one of the FM electrodes [20,55e62]. To resolve the
controversy, whether spin injection (spin polarized charge carriers
in the organic spacer) occurs, has been intensively tested.

Widely accepted demonstration of spin injection employs the
Hanle effect [38,63e67]. To show the Hanle effect in a trilayer spin
valve, a magnetic field perpendicular to the magnetization of the
FM electrodes is applied. The spin of the charge carriers is expected
to precess due to the magnetic field when they travel through the

Fig. 2. Calculated spatial dependence of the electrochemical potential and the normalized current in the two-current model. (a) and (b) are near a FM/NM interface. (c) and (d) are
for a trilayer spin valve when the spin polarization of the two FM layers are aligned (aFM1 >0:5;aFM2 >0:5). (e) and (f) are for a trilayer spin valve when the spin polarization of the
two FM layers are anti-aligned (aFM1 >0:5;aFM2 <0:5). The calculation assumes: lF1 ¼ lF2 ¼ l0, lN[l0, and d ¼ 2l0, where l0 is a length scale.

X. Xu / J Materiomics 4 (2018) 1e124



spacer. The period of the precession is inversely proportional to the
external magnetic field. Therefore, the spin polarization of the
charge carriers after going through the spacer can be tuned using
the magnetic field; the resistance of the junction oscillates with
respect to the transverse magnetic field [68e71]. Hanle effect has
been successfully employed to demonstrate spin injection into
inorganic semiconductors using the hot electron injection [68e74].
On the other hand, similar oscillatorymagnetic-field dependence of
resistance has not been observed in organic spin valves by flowing
charge carriers [75], despite that fact that the spin injection has
been demonstrated by muon spin resonance [76,77] and two-
photon photoemission [78]. Nevertheless, the spin injection into
OSCs, pumped by the ferromagnetic resonance and detected by the
inverse spin Hall effect, has been demonstrated, indicating spin
diffusion and precession in the OSCs, which is essential for the
Hanle effect [79].

Although the issue certainly has not been settled, several pos-
sibilities may reconcile the observed spin injection and apparent
impedance mismatch. One possibility is that, in the LSMO/Alq3/Co
junctions, the spin injection can be greatly enhanced due to the
high spin polarization of charge carriers in LSMO (half metal)
[20,21,43,55e60,80,81]. Indeed, the MR of the NiFe/Alq3/FeCo
junction is much smaller than that in the LSMO/Alq3/Co junctions
[76,82,83]. Another possibility is that the injection of spin polarized
current into the organic spacer comes from tunneling through a
barrier between the FM electrode and the spacer, before the current
transports diffusively in the spacer [14,15] [84].

Compared with inorganic spin valves, the spin transport
through organic spin valves mostly has a disordered nature with
small diffusion length [85e87], which may affect the measurement
of Hanle effect. Nevertheless, the Hanle effect has been observed in
non-local structure of inorganic junctions, where the spin transport
is totally by diffusion [38]. Therefore, it was speculated that the
absence of oscillatory magnetic-field dependence of resistance is
due to the significant discrepancy between the time scale of spin
transport and that of the charge transport[75]. Otherwise, if one
assumes that the spin and charge travel in the same speed, a un-
reasonable mobility for the charge transport is needed to explain
the experimental observation [75]. Therefore, model with decou-
pled charge and spin transport has been proposed, in which the
spin transport relies on exchange interactions [88,89]. Experi-
mental evidence of exchange-mediated spin transport was later
reported [90].

One practical concern for organic spin valves of vertical trans-
port is the sharpness of the interface between the organic layer and
the top electrode. Since most top electrodes are deposited on the
organic spacer using vapor deposition, inter-diffusion and reaction
between the spacer and the electrode, are likely to occur. Various
methods have been introduced to minimize the effect of the
imperfect interface, including the deposition of a buffer layer [91]
between the organic spacer and the electrode and the deposition
of the electrode in the form of nanoparticles instead of atomic va-
por [58].

To alleviate the problem of impedance mismatch and interfacial
diffusion and reaction, all-organic spin valves have been developed
using organic magnetic semiconductors as the electrodes [92].
Although clear magnetoresistance has been observed, the magni-
tude is small compared with other spin valves, suggesting the need
for better organic magnetic electrodes as well as optimization of
the interfaces.

5. Ferroelectric interfaces

Ferroelectric materials are crystalline materials that exhibit
spontaneous electrical polarizations switchable by an external

electric field [93]. The electric polarization originates from the
displacement of positive and negative charge centers, which is
allowed only when the crystal structure lacks inversion symmetry.
Therefore, the switching of polarizations of FE materials involves
both displacement of atoms and the corresponding shift of charges;
both can be employed in active control of interfacial properties.

The existence of an electric dipole, i.e. separated positive and
negative charges, generates uneven electric potential in space. As
illustrated in Fig. 3(a), in an FE film where polarization is pointing
perpendicular to the film plane, the electric potential undergoes a
rapid change across the film due to the electric field inside the
material. The surface potentials are fS± ¼ ± sP

2εε0
d, where sP is the

surface charge of the FE, ε0 and ε are the vacuum dielectric constant
and the relative dielectric constant of the FE respectively, and d is
the thickness of the FE layer [94]. Outside the FE film, the potential
decays with a length scale much larger than the film thickness.
When another material is in contact with an FE material, its charge
distribution and the electrochemical potentials at the interface will
be affected. For example, at an FE/metal interface, the charge in the
metal accumulates to screen the charge of the FE and cancel the
electric field. Fig. 4(b) illustrates the charge distribution of a metal/
FE/metal junction. Using the Thomas-Fermi model of screening and
assuming the two metals are electrically shorted, one obtains the
electric potentials on the two metal sides that decay exponentially:

Fig. 3. (a) Spatial dependence of the electric potential caused by a ferroelectric film
(indicated using the charge distribution). (b) and (c) are the charge distribution and the
vacuum electric potential of a metal/FE/metal junction. (d) Energy level bending and
shift at the metal/FE/metal junction. The lower curve represents the metal states that
are at the Fermi energy far away from the FE.

Fig. 4. The schematics of the charge transport across a metal/OSC/metal junction. (a)
When the Fermi energy of the metal is close to the LUMO of OSC, electron transport is
favored. (b) When the Fermi energy of the metal is close to the HOMO of OSC, hole
transport is favored.
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f1 ¼ ssd1
ε0

e
x
d1 and f2 ¼ �ssd2

ε0
e�

x�d
d2 , where d1 and d2 are the screening

lengths in the metal 1 (M1) andmetal 2 (M2) respectively, and ss ¼
dsP

εðd1þd2Þþd is the screening charge [25,94]. When the screening
length of the metal is much larger than the thickness of the FE, one
has ss≪sP and the potentials at the FE/metal interfaces are basi-
cally the same as that of the FE surface potential. When the
screening length is much smaller than that of the thickness of FE,
one has sszsP and the potential at the FE/metal is greatly reduces.
For “good”metallic materials like Co and Fe, the screening length is
less than an angstrom, which suggests a complete screening of
charge, or zero potential at the interface.

The screening at the two FM/metal interfaces can be different
and cause asymmetric electric potentials. As shown in Fig. 4(d), the
larger screening length results in smaller screening charge and
larger interfacial potential. The electric potential in Fig. 4(c) de-
termines the vacuum potential of electrons in the junction mate-
rials. The uneven vacuum potential causes the bending and shift of
energy bands in the materials in contact with the FE [Fig. 4(d)],
similar to that in the Schottky contact between a metal and a
semiconductor [95,96]. In the case of Schottky contact, the accu-
mulation of charge at the interface is the response to the chemical
potential (Fermi energy) difference [95,96], while it is the response
to the electrostatic potential difference that causes the charge
accumulation at the FE/metal interface. Although it is common for
the interface of two materials of different work functions to have
charge accumulation and interfacial dipoles [97,98], the FE mate-
rials enables the tunability of the electrochemical potentials at the
interface using an external electric field in a nonvolatile fashion.

When the two FM electrodes can both screen well, the effect of
the FE polarization on the vacuum potential and energy alignment
is minimized. In this case, the atomic displacement of the FE can
alter the crystal structure at the FE/FM interface, causing the subtle
changes of electronic structures at the interface. For example, an
orbital reconstruction has been reported on the BaTiO3/LSMO
interface when the polarization of BaTiO3 was switched [32]. A
change of interfacial magnetization was also observed on this FE/
FM interface by reversing the FE polarization [99].

6. Control of spin transport using ferroelectric interfaces

We have discussed two types of spin valves (diffusive and
tunneling) and two effects of polarization reversal on the FE/FM
interfaces (electrostatic and crystal structural). One can imagine
four different scenarios in controlling the spin transport using
ferroelectric interfaces. Not all the scenarios have been experi-
mentally observed, however.

For inorganic spin valves, tunneling MR modified by the change
of the FE/FM interfacial structure due to the FE polarization
reversal, has been the most studied mechanism of FE control of MR,
as seen from the growing interests in inorganic multiferroic tunnel
junctions [24,100,101]. As mentioned above, in the tunneling spin
valves, the coupling between the barrier and the FM electrode in
electronic structures may affect the interfacial spin polarization
significantly. If the two FM electrodes are different, the FE polari-
zation reversal and the corresponding atomic displacements, may
change the interfacial spin polarization and the MR, as has been
reported experimentally [24,100,101]. For example, in the Co/PZT/
LSMO tunnel junction (PZT stands for PbZr0.2Ti0.8O3), four resis-
tance states have been observed, depending on both the electric
polarization of PZT and the magnetic alignment between Co and
LSMO. This result can be explained using the change of electronic
structure at the Co/PZT interface caused by the interfacial structural
change after the polarization of PZT is reversed.

For organic spin valves, predictions of FE control of MR have
been made in tunneling spin valves [36,102]. The mechanisms
include both electrostatic shift of energy levels and the change of
interfacial crystal structure. For example, tunneling electro-
resistance (ER) and change of MR have been predicted in organic
spin valve Co/PVDF/O/Co [102], where PDVF stands for poly(-
vinylidene fluoride) [103]. The asymmetric screening length at the
two sides of the junction, small for the metal Co and high for the
cobalt oxide, enables substantial change of electronic structure in
terms of band shift and change of interfacial spin polarization.
Therefore, the junction resistance can be tuned by both the electric
and the magnetic fields. A four-state resistance has also been

Fig. 5. MR of the LSMO/PZT/Alq3/Co junction. (a)e(c) are the MR measured at 0.1, �0.2, and �1.0 V respectively when a 1.2 or a �1.2 V initial voltage is applied. (d) Is the MR as a
function of measurement voltage (VMR) when a 1.2 or a �1.2 V initial voltage is applied. (e) Is the schematic diagram indicating that the shift of vacuum level and the change of
effective voltage on the OSC caused by the FE dipole of PZT.
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predicted in organic spin valve Co/PVDF/Fe/Co, where the reversal
of polarization switches the interfacial structure between Fe:H-C-
F:Co and Fe:F-C-H:Co, which causes the change of spin polariza-
tions and the MR [36].

Experimentally, the predicted FE control of MR in tunneling
organic spin valves has been confirmed recently [33,34]. In addi-
tion, the FE control of MR has also been realized in diffusive organic
spin valves; the mechanism appears to be the electrostatic shift of
energy levels by the change of the FE polarizations. Next, we
analyze these results based on the fundamental principles dis-
cussed above.

6.1. Diffusive organic spin valves and interfacial energy alignment

In a diffusive spin valve using an OSC spacer, the energy align-
ment at the FM/NM interfaces plays an important role in the spin
transport, by affecting the interfacial spin polarization P*. First, the
alignment between the Fermi level of the metals and the molecular
energy levels of the OSC, determines the charge carrier type in the
electric transport through the junction. As shown in Fig. 5(a), if the
metal Fermi energy is closer to the lowest unoccupied molecular
orbital (LUMO), the main charge carriers are electrons. If the metal
Fermi energy is closer to the highest occupied molecular orbital
(HOMO), the main charge carriers are holes. Second, in the carrier

collection process, energy level of the final states in the metal is
determined by the energy level of carriers in the OSC. For an FM
material, because the spin polarization of states at different energy
levels may be different, the spin polarization of carrier collection P*

is likely different for different carrier types and different energy
alignment between the OSC and the FM.

The alignment between the metal Fermi energy and the HOMO/
LUMO of OSC can be adjusted by using metals of different work
functions as the electrodes. This effect has been studied by
comparing the magneto transport of the Co/Alq3/NiFe junction and
the Co/Ca/Alq3/Ca/NiFe junction [26]. For Fe, Co, and Ni, the work
functions are large (5.0 eV [104]) and the Fermi energy is closer to
the HOMO of Alq3. So, the hole transport is expected in the Co/Alq3/
NiFe junction. The work function Ca is much smaller (2.9 eV [104])
and the Fermi energy is closer to the LUMO of Alq3. So, the transport
of electrons through LUMO of Alq3 is expected. Experiments show
significantly smaller resistance in the Co/Ca/Alq3/Ca/NiFe junction.
In addition, a much larger MR with a reversed sign in Co/Ca/Alq3/
Ca/NiFe was observed, indicating a change of charge carrier type
between these two junctions.

The energy alignment between the metal and the OSC can also
be manipulated by inserting a dipolar layer between the metal
electrode and the OSC. Using LiF as the dipolar materials, Schultz
et al. studied the magneto transport in the NiFe/Alq3/FeCo and the

Fig. 6. (a) MR as a function of measurement voltage (VMR) when a 0.5 or a �0.5 V initial voltage is applied. (b) Schematics of the polarization-voltage hysteresis loop of PZT and the
minor loops. (c) MR as a function of measurement voltage (VMR) when a 0.8 or a �0.8 V initial voltage is applied. Before the measurement, the PZT was poled to negative saturation
polarization. (d) and (e) are the energy level alignment of the LSMO/PZT/Alq3 interface when PZT polarization is pointing toward Alq3 and toward LSMO respectively.
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NiFe/LiF/Alq3/FeCo junctions [76]. The spin polarization in the Alq3
was measured using muon spin resonance. It was found that, by
inserting the LiF layer (1 nm), the spin polarization of the carrier
collection from Alq3 to NiFe electrode changes from negative to
positive. Consequentially, the sign of the MR is also reversed: while
the NiFe/Alq3/FeCo junction shows a negative MR, the NiFe/LiF/
Alq3/FeCo shows a positive MR. These observations are consistent
with the existence of a large interfacial dipole due to the insertion
of LiF layer. Since Alq3 is a semiconductor with a screening length
much longer than the spacer thickness, the vacuum potential
generated by the LiF dipole is maintained and shifts the HOMO/
LUMO of Alq3 at the interface. In the NiFe/Alq3/FeCo junction, the
collected holes from Alq3 HOMO goes into an energy level with
mostly spin minority states (P*<0). In contrast, due to the shift of
HOMO downwards by the LiF layer, the collected holes from Alq3
HOMOmay go into an energy level with mostly spin majority states
(P*>0). This change of spin polarization of carrier collection leads to
the change of MR sign.

If the dipole inserted between the FM electrode and the OSC
comes from an FE material, the effect on the magneto transport is
tunable by an electric field, due to the switchability of the FE dipole.
This effect has been studied by Sun et al. in LSMO/PZT/Alq3/Co
junctions [35], where PZT is an oxide FE material with a large
electric polarization (~80 mC/cm�2) [105]. It was found that the MR
depends on the initial voltage applied on the junction. The bias
dependence of the MR, or theMRðVMRÞ function, was used to gauge
the effect of the initial voltage, where VMR is the measurement
voltage of the MR. The results show that by applying a positive
(negative) initial voltage VMAX that is larger than the measurement
voltage VMR, the MRðVMRÞ function of the LSMO/PZT/Alq3/Co junc-
tion with as-grown PZT, shifts toward the negative (positive)
voltage directions [Fig. 5 (a)-(d)]; the sign of MR is always negative.
The shift become larger when the initial voltage VMAX is larger.
More importantly, this shift of the MRðVMRÞ function could not be
observed in several control junctions, including LSMO/Alq3/Co,
LSMO/STO/Alq3/Co, and LSMO/PZT/Co. These observations are
consistent with the presence of an interfacial dipole due to the PZT
layer between LSMO and Alq3. Since Alq3 is a semiconductor with

poor screening ability, the dipole from PZT is maintained and
causes a shift of vacuum potential (D) of Alq3; the effective voltage
applied on Alq3 becomes Veff ¼ VMR þ D. The initial voltage VMAX
changes the dipole and shifts the vacuum potential. Positive
(negative) VMAX makes D more positive (negative), corresponding
to the shift of MRðVMRÞ function toward the negative (positive) VMR
direction. It is understandable that the shift of the MRðVMRÞ func-
tion is not observed in the LSMO/Alq3/Co and LSMO/STO/Alq3/Co
junctions, because there is no interfacial FE dipole. For the LSMO/
PZT/Co junction, the initial voltage does change the MR, but there is
still no shift of the MRðVMRÞ function, because the dipole of PZT is
expected to be screened by the metal electrodes. The change of MR
in the LSMO/PZT/Co junction is more likely caused by the change of
electronic structure at the interface due to the atomic displacement
of the FE rather than the shift of vacuum potentials [24].

Dramatic changes were observed in the magneto transport of
the LSMO/PZT/Alq3/Co junction, after a larger electric field that
switches the FE polarization of PZT was applied. First, the sign of
MRðVMRÞ function changes from all negative in the LSMO/PZT/Alq3/
Co junction with as grown PZT (polarization pointing up toward
Alq3) [Fig. 6(a)], to mostly positive after the FE polarization is
switched to pointing down toward LSMO [Fig. 6(c)]. Second, the
effect of VMAX is not a simple shift of theMRðVMRÞ function; instead,
it may change the sign of the MR. The dependence of the MR sign
on VMR and VMAX is in line with varying the polarization of PZT in
minor polarization-voltage loop. It appears that, when the polari-
zation is lower than a certain value, the MR becomes positive, as
illustrated in Fig. 6(b). This dependence of MR sign on the polari-
zation of PZT can be understood using the change of energy
alignment between LSMO and Alq3 due to the dipole moment of
PZT. As shown in Fig. 6(d), due to the poor screening ability of Alq3,
the electric dipole moment of PZT generates a shift of the vacuum
potential. When the PZT polarization is pointing up, the injection
and collection of holes at the LSMO/PZT/Alq3 interface is between
the spin majority band of LSMO and Alq3 HOMO. In contrast, when
the PZT polarization is pointing down, the HOMO of Alq3 is shifted
up. The higher energy states of LSMO with minority spin becomes
accessible for the injection and collection of holes at the LSMO/PZT/

Fig. 7. MR of the LSMO/PVDF/Co junction. (a) MR measured when the PVDF polarization is pointing toward Co and toward LSMO respectively. (b) Resistance of the LSMO/PVDF/Co
junction as a function of the poling voltage. (c) Tunneling MR as a function of the poling voltage. (d) Tunneling MR as a function of measurement voltage for 1.2 and �1.5 V poling
voltages respectively. (e) Tunneling MR as a function of temperature for 1.5 and �1.5 V poling voltages respectively. Reproduced with permission from Ref. [34]. Copyright 2016,
Wiely.
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Alq3 interface. Therefore, the shift of energy states in A1q3 by the
PZT dipole, may change the sign of interfacial spin polarization P*,
which changes the sign of the MR of the LSMO/PZT/Alq3 junction.

6.2. Tunneling organic spin valves and the interfacial crystal
structure

The effect of FE tunneling barrier in organic spin valves has been
investigated by Liang et al. in LSMO/PVDF/Co junctions [34] [103].
The ferroelectricity of PVDF originates from the long-range order of
the dipoles in the polymer and the switching corresponds to the
collective rotation of dipoles along the molecular chains. As shown
in Fig. 7(a), when the electric polarization of PVDF is switched to
pointing down toward LSMO, the MR is positive. In contrast, when
the polarization is pointing up toward Co, the MR is negative. In
addition to MR, the resistance of the junction also changes signif-
icantly due to the reversal of polarization of PVDF. As shown in

Fig. 7(b), the relation between the initial voltage and the resistance
measured at a low voltage (10 mV), is plotted. A clear hysteresis is
observed; the change of resistance due to the initial voltage is up to
75%. At the same time, the MR also shows a hysteretic behavior
with respect to the initial voltage [Fig. 7(c)]. It appears that the
direction of the electric polarization is correlated with the sign of
MR, although the magnitude of the MR is larger when the electric
polarization is pointing up toward Co. The asymmetry in the MR is
also observed in the bias voltage dependence [Fig. 7(d)] and tem-
perature dependence [Fig. 7(e)].

The dependence of MR on the initial voltage and the asymmetry
in magnitude is explained in terms of the change of electronic
structure at the PVDF/Co interface caused by the reversal of electric
polarization of PVDF. As mentioned above, the reversal of electric
polarization of PVDF corresponds to the rotation of the molecular
dipole along the polymer chain. When the electric polarization is
pointing toward Co, it is the hydrogen (H) atoms that are in direct
contact with the Co. Otherwise, when the electric polarization is
pointing toward LSMO, it is the fluorine (F) atoms that are at the Co/
PVDF interface. Therefore, the structure of the PVDF/Co interface can
be switched between H-C-F/Co and F-C-H/Co correspond to the FE
polarization pointing to LSMO and Co respectively [Fig. 8(a) and (b)].
The density of states of PVDF at the PVDF/Co interface has been
calculated. Since these states are gap states induced by the interface
with Co, whether F or H atom are in direct contact with Co makes a
significant difference. It was found that at the H-C-F/Co interface,
although the spin polarization of the gap states of the first layer of
PVDF is negative (the same sign as that in Co), the second layer gap
states show a positive spin polarization. For the F-C-H/Co interface,
both the first and second layer in PVDF show negative spin polari-
zation for the gap states. These results explain the reversal ofMR sign
when the electric polarization of PVDF is reversed. In addition, it was
found that the F-C-H/Co interface is more energetically stable than
the H-C-F/Co interface, which is consistent with the observation that
MR vanishes at lower temperature when the polarization is pointing
toward LSMO (H-C-F/Co interface) than that when the polarization is
pointing toward Co (F-C-H/Co interface) [Fig. 7(e)].

Fig. 8. Crystal structure at the Co/PVDF interface when the polarization is pointing
away (a) and toward (b) Co respectively. Reproduced with permission from Ref. [34].
Copyright 2016, Wiley.

Fig. 9. MR of the LSMO/P(VDF-TrFE)/Co junction. (a)e(c) MR for positively and negatively poled P(VDF-TrFE) using 60, 100, and 160 MV/m respectively. (d) Tunneling MR and
tunneling electroresistance (ER) as a function of poling fields. Reproduced with permission from Ref. [33]. Copyright 2017, the American Institute of Physics.
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The effect of FE polarization on tunneling FM/FE/FM junction
was also studied in LSMO/P(VDF-TrFE)/Co junctions at 200 K, where
P(VDF-TrFE) stands for FE copolymers poly(vinylindene fluoride-
trifluoroethylene) [33]. As shown in Fig. 9(a)-(c), the tunneling
resistance of the junction depends on both the magnetic field and
the initial pulsed electric field. The effect of the electric field in-
creases with the magnitude of the field, consistent with the
behavior of effect of electric field on the electric polarization. The
effect of the electric field on MR also increases with the field, as
shown in Fig. 9(d). Although theMR sign does not change when the
electric polarization of the FE reverses, the asymmetry agrees with
the previous results in the LSMO/PVDF/Co junctions [34]. Similar to
that in the LSMO/PVDF/Co junctions, when the electric polarization
is pointing up toward Co, a negative MR with larger magnitude is
observed. When the electric polarization is pointing down toward
LSMO, the sign of MR remains negative, but the magnitude de-
creases significantly. These results are consistent with the modifi-
cation of interfacial state and the different coupling between the FE
spacer and FM electrode when the electric polarization is switched.

7. Conclusion and outlook

The recent efforts of exploiting FE control of MR in organic spin
valves show encouraging indication of effects on the energy
alignment and on the interfacial crystal structures. However, since
the exact mechanism of spin transport through organic spin valves
is still not fully understood, more work on similar devices with
other FE materials [103,106,107] and more characterization on the
interfacial crystal structures and on the interfacial electronic
structures are needed to elucidate the FE effect as well as other
concomitant effects such as the change of magnetism of the elec-
trodes [99,108,109] and change of transport mechanism [110e112].
At the same time, as the field of organic spintronics keeps growing,
the spin polarization at the FM/organic interfaces (spinterface) will
remain a focus. More examples of tuning the spinterface by varying
the energy level alignment or by varying the interfacial crystal
structure are expected to be investigated. These investigations will
be not only important for organic spintronics; they will also be
useful for tuning other electronic devices (such as light emission
diode and photovoltaics) involving organic/inorganic interfaces.
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