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Abstract Autophagy is required for the homeostasis of cellular material and is proposed to be

involved in many aspects of health. Defects in the autophagy pathway have been observed in

neurodegenerative disorders; however, no genetically-inherited pathogenic mutations in any of the

core autophagy-related (ATG) genes have been reported in human patients to date. We identified

a homozygous missense mutation, changing a conserved amino acid, in ATG5 in two siblings with

congenital ataxia, mental retardation, and developmental delay. The subjects’ cells display a

decrease in autophagy flux and defects in conjugation of ATG12 to ATG5. The homologous

mutation in yeast demonstrates a 30-50% reduction of induced autophagy. Flies in which Atg5 is

substituted with the mutant human ATG5 exhibit severe movement disorder, in contrast to flies

expressing the wild-type human protein. Our results demonstrate the critical role of autophagy in

preventing neurological diseases and maintaining neuronal health.

DOI: 10.7554/eLife.12245.001

Introduction
Macroautophagy, referred to hereafter as autophagy, is a cellular process by which proteins and

organelles are degraded and recycled through sequestration within autophagosomes and delivery

to lysosomes (Levine and Klionsky, 2004). The autophagy pathway is highly conserved and

required for organismal development and function. Defects in autophagy are associated with dis-

eases including cancer, metabolic disruption, and neurodegenerative disorder (Choi et al., 2013;
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Cuervo and Wong, 2014; Frake et al., 2015). Patients with mutations in any of the non-redundant

core autophagy-related (ATG) genes have not previously been reported.

Ataxia is a neurodegenerative disease caused by disruption of the cerebellum and Purkinje cells,

which results in the lack of coordinated muscle movements. Large phenotype diversity is present in

individuals with ataxia, including age of onset, rate of progression, and other accompanying neuro-

logical and non-neurological features (Jayadev and Bird, 2013), with corresponding genotypic het-

erogeneity (Sandford and Burmeister, 2014). Even within the more defined phenotype of

childhood ataxia with developmental delay, there are a large number of associated genes, such that

similar phenotypic features alone are often insufficient information for an accurate diagnosis

(Burns et al., 2014; De Michele and Filla, 2012; Jayadev and Bird, 2013). Identification of genetic

causes of childhood ataxia is important for understanding disease pathogenesis and for possible

future treatment development.

Whole exome sequencing has been successfully utilized to identify known and novel genetic

mutations responsible for ataxia (Burns et al., 2014; Fogel et al., 2014). Identification of candidate

genes can be further verified through additional molecular analysis and utilization of specific and

general animal models. Here we identified a novel mutation in a core autophagy gene, ATG5, in two

children with ataxia, and demonstrate a reduction in autophagic response, also reproducing the phe-

notype in yeast and fly models.

Results

E122D mutation in ATG5 is associated with familial ataxia
Two Turkish siblings presented with ataxia and developmental delay in childhood, as previously

described (Yapici and Eraksoy, 2005). We performed linkage analysis on both affected siblings,

their unaffected siblings, and their unaffected mother, using a model of remote parental consanguin-

ity and identified a single broad (>14 Mbp) peak with LOD score 3.16 on chromosome 6q21,

between 102 and 116 Mb (Figure 1). Whole exome sequencing identified a homozygous missense

mutation, hg19 chr6:106,727,648 T>A, corresponding to E122D in ATG5 (Figure 2A) as the only

damaging mutation within the genetically identified chromosomal linkage interval. The mutation was

Sanger verified and found absent from variant databases and from Turkish controls.

eLife digest Ataxia is a rare disease that affects balance and co-ordination, leading to

difficulties in walking and other movements. The disease mostly affects adults, but some children are

born with it and they often have additional cognitive and developmental problems. Mutations in at

least 60 genes are known to be able to cause ataxia, but it is thought that there are still more to be

found.

Kim, Sandford et al. studied two siblings with the childhood form of ataxia and found that they

both had a mutation in a gene called ATG5. The protein produced by the mutant ATG5 gene was

less able to interact with another protein called ATG12. Furthermore, the cells of both children had

defects in a process called autophagy – which destroys old and faulty proteins to prevent them

accumulating and causing damage to the cell.

Next, Kim, Sandford et al. examined the effect of this mutation in baker’s yeast cells. Cells with a

mutation in the yeast equivalent of human ATG5 had lower levels of autophagy than normal cells.

Further experiments used fruit flies that lacked fly Atg5, which were unable to fly or walk properly.

Inserting the normal form of human ATG5 into the flies restored normal movement, but the mutant

form of the gene had less of an effect.

These findings suggest that a mutation in ATG5 can be responsible for the symptoms of

childhood ataxia. Kim, Sandford et al. think that other people with severe ataxia may have mutations

in genes involved in autophagy. Therefore, the next step is to study autophagy in cells from many

other ataxia patients.

DOI: 10.7554/eLife.12245.002
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Figure 1. Linkage analysis in consanguineous family with two siblings with ataxia, mental retardation and developmental delay maps defect to

chromosomal interval containing ATG5. Remote consanguinity was detected between parents of two previously described siblings having ataxia

(Yapici and Eraksoy, 2005), illustrated here as third cousins. SNP and linkage results for chromosome 6 (B) are illustrated below the pedigree (A). The

shared homozygous region lies between rs4334996 and rs1204817, encompassing ATG5 at 106.6 Mb. Father (501)’s alleles were inferred, 0 denotes

unknown alleles. Affected siblings, 601 and 602, are denoted by black squares and unaffected family members by open symbols. The proximal

boundary is defined by a recombination event between rs1547384 and rs4334996 in affected individual 602, while the distal boundary is defined as an

ancestral recombination event (lack of homozygosity, dark green) between rs1204817 and rs648248. Orange arrows indicate the position of ATG5.

DOI: 10.7554/eLife.12245.003
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Figure 2. The primary sequence of ATG5, including the mutant E122 residue, as well as the protein structure is

highly conserved across eukaryotic species. (A) Amino acid sequence alignment between ATG5 orthologs from

human (HsaATG5), mouse (MmuAtg5), Drosophila melanogaster (DmeAtg5) and Saccharomyces cerevisiae

(SceAtg5) was constructed at GenomeNet (Kyoto University Bioinformatics Center) through CLUSTALW and

rendered in Genedoc v.2.7 using default settings. E122 in human ATG5 and E141 in yeast Atg5, which are

homologous residues, are indicated by red arrows. (B) Location of E122 residue is highlighted in yellow on the

crystal structure of a human ATG12 (residues 53–140)–ATG5 -ATG16L1 (residues 11–43) complex (PDB ID: 4NAW).

ATG5 is shown in cyan, ATG16L1 in magenta, and ATG12 in green (Otomo et al., 2013). (C) Location of the E141

residue in yeast Atg5, which corresponds to the E122 in human ATG5, is indicated in yellow on the crystal

structure of a yeast Atg12 (100–186)–Atg5 -Atg16 (1–46) complex, colored as for the human counterparts as in

panel B (PDB ID: 3W1S) (Noda et al., 2013). (D) Superimposition of crystal structure of ATG5E122D-ATG16L1 with

ATG5WT-ATG16L1 (PDB: 4TQ0) (Kim et al., 2015a). Close-up view of ATG5 structure around WT (E) and E122D (F)

mutation.

DOI: 10.7554/eLife.12245.004
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Cells from ATG5E122D/E122D patients exhibit reduced ATG12–ATG5
expression
ATG5 plays a role in elongation of the phagophore and its subsequent maturation into the com-

plete autophagosome. ATG12 is a ubiquitin-like protein that covalently binds ATG5

(Mizushima et al., 1998a), and this conjugate noncovalently binds ATG16L1. Crystal structure of

the resulting ATG12–ATG5-ATG16L1 complex indicated that E122 is located in the vicinity of the

ATG12–ATG5 interaction surface (Figure 2B); hence, we predicted that the mutation in ATG5

could affect the conjugation of ATG12. Comparison of protein isolated from control lymphoblas-

toid cell lines (LCL) and of affected subjects revealed a severe reduction of the ATG12–ATG5

conjugate in the mutant cells under basal conditions (Figure 3A), suggesting that the E122D

mutation may have impaired autophagy by inhibiting conjugation between ATG12 and ATG5.

Cells from ATG5E122D/E122D patients exhibit autophagic flux attenuation
The ATG12–ATG5-ATG16L1 complex functions in part as an E3 ligase to facilitate the conjugation of

LC3 to phosphatidylethanolamine, generating LC3-II (Fujita et al., 2008; Hanada et al., 2007).

Compared to control cells, LCLs from patients with the E122D mutation exposed to bafilomycin A1

showed a substantial reduction in LC3-II accumulation under basal conditions (Figure 3B), suggest-

ing a possible decrease in E3 activity and subsequent attenuation of basal autophagic flux. The

patient LCLs were also unable to upregulate their autophagic flux in response to Torin 1

(Figure 3C), which is a strong inducer of autophagy (Thoreen et al., 2009). ATG5E122D LCLs also

showed elevated levels of SQSTM1/p62, an autophagy receptor and substrate, further indicating

disruption of basal autophagy (Figure 3C).

E122D mutation of ATG5 impairs ATG12–ATG5 conjugation
To examine the effect of the ATG5E122D mutation on formation of the ATG12–ATG5-ATG16L1 com-

plex, we expressed the recombinant human proteins in insect Hi5 cells and analyzed the complexes

by affinity isolation. We could detect the ATG12–ATG5 complex when both wild-type proteins were

co-expressed, but we could only detect a minimal amount of the ATG12–ATG5E122D complex

(Figure 4A). Although overexpression of human ATG5WT in HEK293 cells or Drosophila tissues

resulted in efficient covalent conjugation with overexpressed human ATG12 (Figure 4B and C) or

endogenous Drosophila Atg12 (Figure 4D), mutant ATG5E122D was dramatically impaired in this pro-

cess (Figure 4B, C and D). Interestingly, expression levels of ATG5WT and ATG5E122D monomers

were comparable to each other, indicating that the mutation affects the conjugation process, rather

than the stability of proteins. This was consistent with the structural location of ATG5 E122 adjacent

to the surface that interacts with ATG12 (Figure 2B). To confirm that the mutation does not overtly

alter the structure of ATG5 or binding to ATG16L1, we analyzed formation of the noncovalent

ATG5-ATG16L1 complex using constructs containing a TEV protease site. Both wild-type and mutant

ATG5 protein were efficiently co-precipitated with ATG16L1 (Figure 4E). Indeed, the co-crystal

structure of a human ATG5E122D-ATG16L1 complex (Figure 2 and Table 1) superimposes well with

the previously determined structure of the WT proteins (Figure 2D), with the major obvious differ-

ence being replacement of the side-chain (Figure 2E and F). Thus, it appears that the E122D muta-

tion interferes with the ATG12–ATG5 conjugation process, but not with ATG5 folding or binding of

ATG16L1.

ATG5 mutation in yeast results in decreased autophagy
ATG5 is a highly conserved protein, and sequence alignment demonstrated that E122 corresponds

to yeast E141 (Figure 2A and C). We extended our analysis of the effect of the mutation on

autophagy activity, by taking advantage of the yeast system. To test whether autophagy was

affected by the Atg5 mutation in yeast, we initially relied on the GFP-Atg8 processing assay

(Shintani and Klionsky, 2004). During autophagy a population of Atg8 is continuously transported

to the vacuole inside of autophagosomes. Tagging the N terminus of Atg8 with GFP makes it

possible to monitor autophagy flux because Atg8 is rapidly degraded inside the vacuole whereas

GFP is relatively resistant to vacuolar hydrolases; the generation of free GFP is an indication of

autophagic activity. We observed a consistent decrease in autophagy activity with the Atg5E141D

mutant relative to Atg5WT following autophagy induction by starvation (Figure 5A). Atg8, or GFP-
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Atg8, does not measure autophagic cargo per se (Klionsky, 2016), and the amount of GFP-Atg8

processing only corresponds to the inner surface of the autophagosome. To corroborate the

effects observed through the GFP-Atg8 processing assay we examined autophagy using the quan-

titative Pho8D60 assay (Noda and Klionsky, 2008). Pho8D60 is an altered form of a phosphatase

Figure 3. Cells from ataxia patients with ATG5E122D/E122D mutation exhibit autophagy defects. (A) Decreased

expression of ATG12–ATG5 conjugates in cells from ataxia patients with ATG5E122D/E122D mutation. ATG5

immunoblotting (IB) of ATG12–ATG5 conjugates of LCLs from individuals whose ATG5 genotype corresponds to

wild type (A to I) or E122D (J and K). (B) Decreased autophagic flux in ATG5E122D/E122D LCL cells. A subset of LCLs

from (A) were treated with 0.1 mM bafilomycin A1 (Baf) for the indicated hours and analyzed by IB. LC3-II is an

autophagosome marker, and LC3-I is a precursor for LC3-II. Baf inhibits lysosomal degradation of LC3-II. Actin is

shown as a loading control. (C) Decreased autophagic flux and increased expression of SQSTM1, an autophagy

substrate, in ATG5E122D/E122D LCL cells. A subset of LCLs from (A) were treated with 250 nM Torin 1 or 0.1 mM Baf,

for 2 hr and analyzed by IB. Torin 1 is an autophagic flux activator.

DOI: 10.7554/eLife.12245.005
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Figure 4. E122D mutation interferes with formation of the ATG12–ATG5 conjugate. (A) Coomassie Blue-stained

SDS-PAGE gel following glutathione affinity purification from lysates of Hi5 cells infected with baculoviruses

expressing GST-ATG12 and either WT or E122D mutant ATG5. (B and C) HEK293 cells expressing the indicated

proteins were analyzed by IB. (D) Drosophila whole bodies expressing the indicated transgenes under the control

of Tub-Gal4 were analyzed by IB. (E) Lysates from Hi5 cells expressing the indicated proteins were subjected to

His/Ni-NTA purification and subsequent TEV protease treatment. Proteins were analyzed by Coomassie Blue

staining.

DOI: 10.7554/eLife.12245.006
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that is only delivered to the vacuole via

autophagy; subsequent proteolytic processing

generates an active form of the hydrolase. After

4 and 6 hr of starvation, yeast cells expressing

the plasmid-based Atg5E141D mutant showed a

significant decrease in autophagy levels com-

pared to cells expressing Atg5WT (Figure 5B),

and similar results were obtained when the WT

and mutant ATG5 genes were integrated back

into the chromosomal ATG5 locus (Figure 5C).

To determine the reason for reduced auto-

phagic activity we tested the effects of the

Atg5E141D mutant on Atg8 lipidation. As

shown by the ratio of Atg8–PE:total Atg8,

cells expressing Atg5E141D displayed a

decrease in Atg8–PE conjugation at 30 and

60 min of starvation compared to cells

expressing Atg5WT (Figure 5D). We extended

this analysis using the in vivo reconstitution of

Atg8–PE conjugation as described previously

(Cao et al., 2008). In brief, we examined Atg8

lipidation in a multiple-knockout (MKO) strain

in which 23 ATG genes are deleted, when

expressing only the E1, E2 and E3-like conju-

gation enzymes of the autophagy machinery.

Atg8DR that lacks the C-terminal arginine was

used in the assay to bypass the initial activa-

tion step initiated by Atg4; due to the

absence of Atg4, there is no cleavage of

Atg8–PE from the membrane, resulting in sta-

bilization of this form of the protein. We

found that the Atg5E141D mutant was signifi-

cantly defective in Atg8–PE conjugation com-

pared to the cells with Atg5WT when Atg16

was not present (Figure 5E). Atg16 is not required mechanistically for Atg8 conjugation, but its

presence increases the efficiency of this process and may dictate the site of conjugation

(Cao et al., 2008; Hanada et al., 2007). Thus, the presence of Atg16 may partially mask the

Atg8 lipidation defects of the Atg5E141D mutant, and this may explain why the E122D/E141D

mutation induces a hypomorphic rather than a complete null phenotype.

ATG5E122D fails to complement the ataxic phenotype of Atg5-null flies
To further characterize the effect of the E122D mutation on the development of ataxia, we gen-

erated Drosophila melanogaster knockouts for Atg5 (Figure 6A), and reconstituted the Atg5-null

mutant flies with transgenes expressing wild-type (WT) or E122D human ATG5 (Figure 6B-D).

Unlike mouse models, Atg5-null flies are viable, although they exhibit severe mobility defects

after adult eclosion as demonstrated by a negative geotaxis assay (Figure 6E and I, and

Video 1), similar to Atg7 null mutant flies (Juhasz et al., 2007). These mobility defects were sub-

stantially restored by expression of ATG5WT (Figure 6F and I, and Video 2), suggesting that the

molecular function of ATG5 is conserved between human and Drosophila. However, Atg5-null

mutant flies expressing ATG5E122D were still defective in mobility although slightly better than

Atg5-null controls (Figure 6G–I, and Videos 3 and 4), demonstrating again that ATG5 activity is

compromised but not eliminated by the E122D mutation. ATG5E122D was also inferior to ATG5WT

in suppressing Ref(2)P (fly p62/SQSTM1) accumulation (Figure 6J and K) and cell death

(Figure 6L and M) in the brain of Atg5-null mutant flies.

Table 1. Crystallography data collection and

refinement statistics.

Data collection

Beam line APS 24-ID-C

Space group C2

Unit cell parameters

a, b, c (Å) 217.1, 84.5, 151.9

a, b, g (˚) 90, 133.8, 90

Resolution (Å) (highest shell) 50–3.0 (3.12-3.0)

Wavelength (Å) 0.9792

Number of measured reflections 179,310

Number of unique refections 39,496

Overall Rsym 0.057 (0.645)

Completeness (%) 98.9 (99.3)

Overall I/sI 14.3 (2.3)

Multiplicity 4.5

Refinement

Resolution (Å) 50–3.0

Rwork/Rfree 0.198/0.244

rmsd bond lengths (Å) 0.008

rmsd bond angles (˚) 0.994

Number of protein atoms 9403

Ramachandran statistics

Preferred (%) 97.69

Allowed (%) 2.22

Disallowed (%) 0.09

DOI: 10.7554/eLife.12245.007
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Figure 5. E141D mutation of yeast Atg5 attenuates autophagy. (A-D) Yeast cells were grown in SMD to mid-log phase and nitrogen starved for the

indicated times. (A) WLY176 atg5D yeast cells expressed GFP-Atg8 through its endogenous promoter and plasmid-based Atg5WT-PA, Atg5E141D-PA or

an empty vector. Protein extracts were analyzed for GFP-Atg8 processing by western blot. The ratio of free GFP to Dpm1 (loading control) is presented

below the blots, and quantification is presented on the right (Student’s t test, n=4; *p < 0.05); the value for Atg5WT at 6 hr was set to 1.0 and other

values were normalized. (B) WLY176 atg5D yeast cells expressed either plasmid-based Atg5WT-PA, Atg5E141D-PA or an empty vector. Protein extracts

were used to measure autophagy through the Pho8D60 assay (Student’s t test, n=6; *p < 0.05). (C) WLY176 cells with genomic integrated Atg5WT or

Atg5E141D were used to generate protein extracts and autophagy was monitored through the Pho8D60 assay (Student’s t test, n=3; *p < 0.05). (D)

WLY176 atg5D yeast cells expressing plasmid-based Atg5WT-PA, Atg5E141D-PA or an empty vector were used to generate protein extracts. The ratio of

Atg8–PE to total Atg8 is presented below the blots based on western blot using antiserum to Atg8. Dpm1 was used as a loading control. (E) MKO

ATG3 (YCY137) cells were co-transformed with pATG8DR-ATG7-ATG10(414), and either pATG5WT-HA-ATG12(416), pATG5E141D-HA-ATG12(416),

pATG5WT-HA-ATG12-ATG16(416), or pATG5E141D-HA-ATG12-ATG16(416). Overnight cultures were diluted to OD=0.02 in SMD -Ura -Trp. The cells

were incubated at 30˚C for 18 hr to mid-log phase before they were shifted to SD-N for nitrogen starvation. Samples at the corresponding time points

were collected, TCA precipitated and subsequently analyzed by western blot. S.E., short exposure; L.E., long exposure.

DOI: 10.7554/eLife.12245.008
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Figure 6. Ataxic phenotype of Atg5-null flies is suppressed by human ATG5WT but not by ATG5E122D. (A) Genomic organization of the Atg5 locus and

the Atg5-null mutant (Atg55cc5). Atg55cc5 mutants have a CRISPR-Cas9-mediated deletion in approximately 1.5 kb residues that eliminate more than

85% of Atg5-coding sequences including the translation start site. Open boxes, untranslated exons; closed boxes, protein-coding exons. Scale bar,

relative length of 1 kb genomic span. (B) Schematic representation of how ATG5 transgenic flies were made. Plasmid which can express wild-type or

E122D-mutated human ATG5 was inserted into an identical genomic location (the attP site) through phiC31-mediated recombination (Bateman et al.,

2006; Bischof et al., 2007; Venken et al., 2006). The scheme was adapted from a previous publication (Kim and Lee, 2015). (C) Genetic scheme of

how ATG5 transgenes were placed into the Atg5-null mutant flies. Atg5, UAS-ATG5 and Tub-Gal4 loci are on the X-chromosome, second chromosome

and third chromosome, respectively. (D) Whole flies of indicated genotypes were analyzed by IB. (E to H) Photographs of the vials containing 2-week-

old adult male flies of indicated genotypes taken at 3 sec after negative geotaxis induction: (E) Atg5-null flies exhibit severely impaired mobility. (F)

Ataxic phenotype of Atg5-null flies is complemented by human ATG5WT expression. (G and H) Human ATG5E122D is less capable than human ATG5WT

in suppressing the fly ataxia phenotype. (I) Quantification of the climbing speeds of 2-week-old adult male flies (n�20) of the indicated genotype.

Climbing speed is presented as mean ± standard deviation (n=5). P values were calculated using the Student’s t test (***p<0.001). (J) Drosophila heads

from two-weeks-old flies of the indicated genotypes were analyzed by IB. (K) Ref(2)P [p62] is an autophagy substrate. Relative protein expression was

measured by densitometry and presented in a bar graph (mean ± standard error; n=4). (L) Terminal deoxynucleotidyl transferase dUTP nick end

labeling (TUNEL) of Drosophila brain (middle layer of the medial compartment). (M) TUNEL-positive cells per field were quantified and presented in a

bar graph (mean ± standard error; n�5). K and M: P values were calculated using the Student’s t test (*p<0.05, **p<0.01, ***p<0.001).

DOI: 10.7554/eLife.12245.009
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Discussion
In summary, we demonstrate that the homozygous E122D mutation of ATG5, a unique mutation

found in two human subjects with ataxia, results in reduced conjugation to ATG12 and in an overall

decrease in autophagy activity. The homologous mutation in yeast also interferes with autophagy,

and the ataxia phenotype was replicated in a fly model. Based on these results we propose that this

ATG5 mutation, and the consequent disruption in autophagy activity, is the cause of the ataxic phe-

notype and disturbance of the cerebellum in the affected siblings. This hypothesis is in agreement

with previously characterized mouse models, in which neuron-specific knockout of Atg5 results in

ataxia-like phenotypes (Hara et al., 2006; Nishiyama et al., 2007). By contrast, mice with complete

knockout of Atg5 die shortly after birth, demonstrating that autophagy is essential for mammalian

survival (Kuma et al., 2004). Our results indicate that E122D is a partial loss-of-function allele that

impairs but does not completely abolish ATG5 activity. Although the overall structure of the E122D

mutant ATG5 superimposes well with the wild-type protein, the mutation causes a striking decrease

in the level of ATG12–ATG5 conjugate that is formed when the C terminus of ATG12 is covalently

linked to Lys130 of ATG5. We speculate that the E122D mutation causes subtle changes in the con-

formational dynamics that propagate to Lys130, which is less than 10 Å away, resulting in less

ATG12–ATG5, which in turn leads to reduced LC3/Atg8 conjugation.

In neurons, which are among the cells most dependent on autophagy for tissue homeostasis

(Button et al., 2015), the residual function of the E122D allele is inadequate, resulting in predomi-

nantly neurological symptoms in the two patients. Since homozygous mutations with complete loss-

of-function have not been reported, we predict that individuals carrying such mutations, similar to

Atg5-null mice (Kuma et al., 2004), might not be viable.

Autophagy is quickly gaining importance for its roles in preventing neurodegeneration. WDR45 is

a redundant, non-core autophagy gene, one of four mammalian homologs to Atg18, and mutations

in WDR45 cause SENDA, static encephalopathy of childhood with neurodegeneration in adulthood

(Haack et al., 2012; Saitsu et al., 2013). Autophagy appears to be critical in ataxia, whether mutant

proteins evade autophagy processes or normal autophagy is disrupted. Several ataxias are attrib-

uted to intranuclear or cytoplasmic aggregation of mutant proteins within the cell (Matilla-

Duenas et al., 2014). These protein aggregates, in humans and in mouse models, not only evade

Video 1. Climbing assay in 2 weeks-old wild-type flies

(left) and Atg5-null flies (right).

DOI: 10.7554/eLife.12245.010

Video 2. Climbing assay in 2 weeks-old Atg5-null flies

(left) and Atg5-null flies expressing ATG5WT (right).

DOI: 10.7554/eLife.12245.011

Video 3. Climbing assay in 2 weeks-old Atg5-null flies

(left) and Atg5-null flies expressing ATG5E122D (right).

DOI: 10.7554/eLife.12245.012

Video 4. Climbing assay in 2 weeks-old Atg5-null flies

expressing ATG5WT (left) or ATG5E122D (right).

DOI: 10.7554/eLife.12245.013
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autophagic sequestration but may even inhibit autophagy (Alves et al., 2014), or lead to reduction

in autophagy available for other proteins due to saturation. Assessment of autophagy in patient cells

may be used to refine and identify the genetic cause of a patient’s ataxia.

Further discovery of the role of autophagy in neurodegenerative diseases should be used to

investigate therapies targeted at the autophagy process. Many drugs enhance autophagy and their

effects on a multitude of neurodegenerative diseases have been studied (Sarkar et al., 2009).

Recently more studies have been conducted assessing the value of autophagy enhancers in ataxia

models and patients. Induction of autophagy through administration of Temsirolimus, a rapamycin

ester, and lentiviral overexpression of BECN1 in SCA3 model mice increase autophagy and the

clearance of mutant protein aggregates, and reduce the ataxic phenotype (Menzies et al., 2010;

Nascimento-Ferreira et al., 2013). In a single patient trial, trehalose treatment of patient fibroblasts

increased autophagy and alleviated cellular pathogenic features by improving mitochondrial mor-

phology and reducing free radicals in the cell (Casarejos et al., 2014; Sarkar et al., 2007). Treha-

lose also showed success in trials involving models of SCA17 (Chen et al., 2015). Lithium, another

inducer of autophagy, improved symptoms in a SCA1 mouse model (Watase et al., 2007), but did

not slow or reduce symptoms in a treatment trial in SCA2 patients (Sacca et al., 2015). An

autophagy enhancer may be an appropriate treatment to test in the presented subjects, as

autophagic flux is attenuated, but not completely abrogated, by the ATG5E122D/E122D mutation.

This study’s finding of the pathogenic human E122D mutation in ATG5, a gene encoding part of

the autophagy-controlling core machinery, is important and novel, but consistent with reports of

neurodegenerative disorders in other autophagy-related genes (Frake et al., 2015). Our results sug-

gest that other mutations in this and other ATG genes, which impair but do not completely abolish

autophagy, may result in similar forms of ataxia, intellectual disability and developmental delay. This

study exemplifies the utility of exome sequencing in the identification of rare disease-causing var-

iants, and supports the role of impaired autophagy in neurodegenerative disease. In addition, we

demonstrate the utility of a combined genetic, biochemical and cell biological analysis in multiple

model systems to elucidate the underlying pathogenic mechanism of rare human diseases.

Materials and methods

Subjects
Study protocols including written informed consents have been approved by the University of Michi-

gan Institutional Review Board and the Boğaziçi University Institutional Review Board for Research

with Human Participants. Two Turkish brothers, ages 5 and 7 in 2004, presented with ataxia and

developmental delay, as previously described (Yapici and Eraksoy, 2005). Parents were initially

reported to be unrelated, but recently suggested they might be remotely related. Both patients

were delayed in walking, had truncal ataxia and dysmetria, nystagmus, and lower IQ (68 and 70).

MRI revealed cerebellar hypoplasia. Follow-up examinations showed no progression of symptoms.

Genetic analysis
DNA was isolated from peripheral whole blood using the Qiagen (Germantown, MD) Gentra Pure-

gene isolation kit. Linkage analysis was performed using the genotype data generated with Illumina

HumanOmniExpress-24 chip for the mother and the four sibs. The Allegro module

(Gudbjartsson et al., 2000) of easyLINKAGE software was used, assuming autosomal recessive

inheritance and parents as third cousins. No deletion or duplications common to just the two

affected brothers were detected using cnvPartition plug-in in Illumina Genome Studio v.1.02

software.

Exome sequencing was performed independently twice on one subject. Capture for whole exome

sequencing was performed with NimbleGen SeqCap EZ Exome Library v1.0 kit (Roche, Indianapolis,

IN). Captured regions were sequenced with Illumina HiSeq2000 instruments. Variants were filtered

to remove common variants based on 1000 Genomes, Exome Sequencing Project, and Exome

Aggregation Consortium databases, variants outside of identified linkage regions, variants not

expected to change protein coding, and variants not following a recessive model of inheritance

(Exome Aggregation Consortium (ExAC), 2015; Genomes Project Consortium et al., 2012;

NHLBI Go Exome Sequencing Project, 2015).
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PCR followed by Sanger sequencing was performed to validate the variant identified through

exome sequencing and test for segregation within the family. The variant of interest was further

examined in two separate collections of a total of 500 Turkish samples, and found absent.

Lymphoblast cell culture
Lymphoblastoid cell lines (LCL) of both subjects were generated from heparinized whole blood sam-

ples and cultured as described (Doyle, 1990). As they are made in house and cultured briefly, myco-

plasma contamination risk is minimized.

Protein co-expression and affinity purification from insect cells
We used a baculovirus/insect cell expression system to examine formation of the human ATG12–

ATG5 conjugate in a heterologous system described previously (Qiu et al., 2013). Hi5 insect cells

(Invitrogen, Carlsbad, CA) were infected with baculoviruses expressing human ATG7, ATG10, a GST-

tagged version of ATG12 (residues 53–140, corresponding to the ubiquitin-like domain) and a His-

tagged version of either ATG5WT or ATG5E122D. Three days post infection, lysates were subjected to

glutathione affinity chromatography, and the GST-ATG12–His-ATG5 conjugate was detected by

SDS-PAGE followed by Coomassie Blue staining. To confirm that the baculoviruses produce protein,

Hi5 cells were coinfected with baculoviruses expressing the His-tagged WT and mutant versions of

ATG5 and the N-terminal domain of ATG16L1 (residues 1–69, as an MBP fusion). At three days post

infection, lysates were subjected to nickel affinity purification. The ATG5-ATG16L1 complex forma-

tion was detected by SDS-PAGE and Coomassie Blue staining.

Crystallization and structure determination
The complex containing ATG5E122D and the N-terminal domain of ATG16L1 (residues 1–69) was

expressed in Hi5 insect cells, and purified by nickel affinity, ion exchange, and size exclusion chroma-

tography into a final buffer of 20 mM Tris, pH 8.5, 50 mM NaCl, 10 mM DTT. The complex was con-

centrated to 18.5 mg/ml, aliquoted, flash-frozen and stored at -80˚C until further use. Crystals were

grown by the hanging drop vapor diffusion method by mixing purified protein 1:1 with reservoir sol-

utions of 37.5 mM MES, pH 5.2–5.8, 0.2 M sodium tartrate, and 11–13% polyethylene glycol 3350.

Final crystals were obtained by micro-seeding with reservoir solution of 40 mM MES, pH 5.5, 0.2 M

sodium tartrate, 8.5% PEG3350, 10 mM DTT. Crystals were cryoprotected in reservoir solution sup-

plemented with 25% xylitol, and flash frozen in liquid nitrogen prior to data collection. Diffraction

data were processed with XDS. The structure was determined by molecular replacement using

Phaser (McCoy et al., 2007) with the structure of the WT ATG5-ATG16L1 (1–69) (PDB: 4TQ0) com-

plex as a search model (Kim et al., 2015a). Model construction and rebuilding were performed

using Coot (Emsley et al., 2010). The structure was refined using Phenix (Adams et al., 2010). Dif-

fraction data and refinement statistics are provided in Table 1.

Immunoblotting
Cells or tissues were lysed in cell lysis buffer (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1

mM EGTA, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na3VO4, 1% Triton

X-100) or RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% sodium deoxycholate, 1% NP-40,

0.1% SDS) containing protease inhibitor cocktail (Roche). After being clarified with centrifugation,

lysates were boiled in SDS sample buffer, separated by SDS-PAGE, transferred to polyvinylidene

difluoride membranes and probed with the indicated antibodies. ATG5 (12994), LC3 (3868) and

SQSTM1/p62 (5114) antibodies were purchased from Cell Signaling Technology. Hemagglutinin

(HA, 3F10) antibody was from Roche. Actin (JLA20) and tubulin (T5168) antibodies were from Devel-

opmental Studies Hybridoma Bank and Sigma, respectively. Ref(2)P antibody was previously

described (Pircs et al., 2012).

HEK293 cell culture
Wild-type human ATG5-coding sequence was from Addgene #24922 (deposited by Dr. Toren Finkel)

(Lee et al., 2008). The E122D mutation was introduced into ATG5 by PCR-based site-directed muta-

genesis. ATG5WT and ATG5E122D were cloned into the plasmid pLU-CMV-Flag. The HA-ATG12-

expressing plasmid was from Addgene #22950 (deposited by Dr. Noboru Mizushima)
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(Mizushima et al., 1998b). HEK293 cells (the 293 A substrain from Invitrogen, tested negative for

mycoplasma by PCR) were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen) con-

taining 10% fetal bovine serum (FBS) and penicillin/streptomycin at 37˚C in 5% CO2. For transient

expression of proteins, HEK293 cells were transfected with purified plasmid constructs and polyethy-

lenimine (PEI, Sigma) as previously described (Horbinski et al., 2001). Cells were harvested 24 hr

after transfection for immunoblot analyses.

Yeast model
Saccharomyces cerevisiae strain WLY176 was used to generate an ATG5 knockout strain (atg5D) as

previously described (Gueldener et al., 2002). The MKO strain YCY137 (SEY6210 atg1D, 2D, 4D, 5D,

6D, 7D, 8D, 9D, 10D, 11D, 12D, 13D, 14D, 16D, 17D, 18D, 19D, 20D, 21D, 23D, 24D, 27D, 29D)

(Cao et al., 2008), was used for in vivo reconstitution of Atg8 conjugation. Site-directed mutagene-

sis was performed to generate ATG5 amplicons with the E141D mutation as previously described

(Liu and Naismith, 2008). A pRS406 empty plasmid was digested with Spel and SalI, and then

ligated with a DNA fragment encoding either wild-type or mutant Atg5-PA. atg5D was transformed

with an empty pRS406 vector, or plasmids encoding Atg5-PA WT or Atg5-PA E141D. Wild-type

WLY176 colonies were transformed with empty pRS406 vector as a control. Colonies were grown on

SMD-URA medium and starved in nitrogen-deficient medium. Pho8D60 and western blot analyses

were performed as described previously (Noda and Klionsky, 2008; Shintani and Klionsky, 2004).

Quantification was performed using ImageJ software. The pATG8DR-ATG7-ATG10(414), pATG5

(WT)-HA-ATG12(416) and pATG5(WT)-HA-ATG12-ATG16(416) plasmids were described previously

(Cao et al., 2008). The pATG5(E141D)-HA-ATG12(416) and pATG5(E141D)-HA-ATG12-ATG16(416)

plasmids were made by site-directed mutagenesis based on the wild-type constructs.

Drosophila genetics
Atg5-null Drosophila flies (Atg55cc5) were generated by CRISPR-Cas9-mediated genome editing,

using a double gRNA approach, both targeting the same gene, as described (Kondo and Ueda,

2013). The Atg55cc5 mutant was recovered by screening viable candidate lines for accumulation of

the specific autophagy cargo Ref(2)P using western blots, followed by PCR and sequencing. Atg55cc5

mutants have a deletion in X:7,322,242–7,323,717 residues (Drosophila melanogaster R6.06), which

deletes five out of six exons of the Atg5 gene, eliminating more than 85% of protein-coding sequen-

ces including the translation start site (Figure 6A). The PhiC31 integrase-mediated site-specific

transformation method was used to express human ATG5WT and ATG5E122D from an identical geno-

mic locus (Bateman et al., 2006; Bischof et al., 2007; Venken et al., 2006). In brief, flag-tagged

ATG5WT and ATG5E122D were cloned into a pUAST-attB vector (Bischof et al., 2007) and fully

sequenced. pUAST-attB-ATG5WT and pUAST-attB-ATG5E122D were microinjected into y1 M{vas-int.

Dm}ZH-2A w*; M{3xP3-RFP.attP}ZH-51D flies and stable transformants were isolated by the pres-

ence of the mini-white+ marker (Figure 6B). The UAS-ATG5WT or UAS-ATG5E122D transgenes were

crossed with a double balancer strain (Bl/CyO; TM2/TM6B) and then with +/CyO; Tub-Gal4/TM2 to

be constructed as stable Tub>ATG5 lines (UAS-ATG5/UAS-ATG5; Tub-Gal4/TM6B). The Tub>ATG5

male flies were crossed with Atg55cc5/FM7 female flies to generate Atg5-null flies expressing human

ATG5 transgenes. Climbing assays and TUNEL staining were performed as previously described

(Kim et al., 2015b).
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