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Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the
Néel vector to control the topological electronic states and the associated spin-dependent transport
properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipulate Dirac
band crossings in antiferromagnets; however, a reliable AFMmaterial to realize these properties in practice
is missing. In this Letter, we predict that room-temperature AFM metal MnPd2 allows the electrical control
of the Dirac nodal line by the Néel spin-orbit torque. Based on first-principles density functional theory
calculations, we show that reorientation of the Néel vector leads to switching between the symmetry-
protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi
energy. The calculated spin Hall conductivity strongly depends on the Néel vector orientation and can be
used to experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results
indicate that AFM Dirac nodal line metal MnPd2 represents a promising material for topological AFM
spintronics.

DOI: 10.1103/PhysRevLett.122.077203

The discovery of novel quantum phenomena in solids,
resulting from the interplay between the electron, spin, and
orbital degrees of freedom, enriches a continuously evolv-
ing field of spintronics and opens opportunities to enhance
the efficiency of electronic devices [1]. Recently, antifer-
romagnetic (AFM) spintronics has emerged as a subfield of
spintronics, where an AFM order parameter also known as
the Néel vector is exploited to control spin-dependent
transport properties [2–4]. Because they are robust against
magnetic perturbations, producing no stray fields and
exhibiting ultrafast dynamics, antiferromagnets can serve
as promising functional materials for spintronic applica-
tions, which may expand to very diverse areas ranging
from terahertz information technologies to artificial neural
networks [5].
The interest in AFM spintronics has largely been

stimulated by the recent discovery of electrical switching
of a collinear antiferromagnet by spin-orbit torque [6]. It is
known that spin-orbit torques can originate from the inverse
spin-galvanic effect [7], which occurs in magnetic materials
with broken space-inversion symmetry due to spin-orbit
coupling (SOC) [8–11]. If an antiferromagnet is formed of
two antiparallel-aligned spin sublattices, whose atomic
structure has broken space-inversion symmetry but the
sublattices form space-inversion partners, the inverse spin-
galvanic effect produces a nonequilibrium local spin
polarization of opposite sign on the two spin sublattices.
The resulting staggered effective magnetic field generates
an alternating-in-sign spin-orbit torque, known as the Néel
spin-orbit torque, on the sublattice magnetizations, thus

acting with a torque on the Néel vector [12,13]. The control
of the Néel vector by electric current has been realized
using tetragonal CuMnAs [6] and Mn2Au [14] antiferro-
magnets, thus demonstrating a viable approach to the
AFM-based memories [15] and providing a route to ultra-
fast spintronic devices [4,5].
In parallel with these developments, there has been

increasing interest in materials and structures where quan-
tum effects are responsible for novel physical properties,
revealing the important roles of symmetry, topology, and
dimensionality [16]. Among such quantum materials are
graphene [17], topological insulators [18], Dirac and Weyl
semimetals [19], and beyond [20]. These materials are
characterized by nontrivial fermionic excitations resulting
from discrete band crossings as well as continuous degen-
erate states, such as the nodal lines [21,22] and their exotic
connections [23,24]. Using the unique properties of the
novel fermionic states has been envisioned for spintronics
applications [25,26]. A particular example is the demon-
stration of significantly enhanced spin-orbit torques in
ferromagnet/topological insulator heterostructures [27,28].
The discovery of the electrical control of the Néel vector

[6,14] opens a new direction in spintronics, involving the
interplay between the topological electronic states and
antiferromagnetism [29,30]. A notable example is the
proposed control of Dirac quasiparticles in an antiferromag-
net by reorientation of the Néel vector [31]. ON and OFF
switching of the symmetry protection of the Dirac band
crossing has been predicted in an AFM Dirac semimetal,
such as orthorhombic CuMnAs [32], resulting in the
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topological metal-insulator transition [Figs. 1(a) and 1(d)]
and topological anisotropic magnetoresistance [31].
To realize these properties in practice, however, the Dirac

quasiparticles are required to appear precisely at the Fermi
energy (EF), demanding a strict control of the stoichiom-
etry and structural quality of the sample, which is not easy
to achieve in real experimental conditions. On the other

hand, there exists a class of quantum materials exhibiting
Dirac nodal lines within a broad energy window including
those crossing the Fermi energy. In an AFM material with
such a nodal line, the Néel spin-orbit torque control of the
Dirac band crossings would be much easier to realize and
detect in transport measurements [Figs. 1(e) and1(f)].
In this Letter, we predict that the AFM metal MnPd2 has

the desired properties: It has the required symmetry to
support the Néel spin-orbit torque, and it holds a dispersive
Dirac nodal line across the Fermi energy. The reorientation
of the Néel vector leads to switching between the sym-
metry-protected degenerate state and the gapped state
associated with the Dirac nodal line. We show that the
spin Hall conductivity of MnPd2 strongly depends on the
Néel vector orientation and can be used to detect the effect.
MnPd2 has been synthesized in the laboratory, has Néel
temperature (TN) well above room temperature, and thus
represents a new promising material for topological anti-
ferromagnetic spintronics.
Figure 2(a) shows the crystal structure of orthorhombic

MnPd2 which belongs to nonsymmorphic space group
Pnma [33]. In the paramagnetic phase, MnPd2 has time-
reversal symmetry T, space-inversion symmetry P, three
glide planes, and three screw axes. Neutron diffraction
reveals a collinear AFM ordering up to TN ¼ 415� 10 K.
In the ground state, the Néel vector lies along the [010]
direction with the magnetic moments of the Mn atoms
being parallel in the (010) planes but antiparallel between
the successive (010) planes [33]. As seen from Fig. 2(a), the
inversion-partner sites are occupied by the Mn atoms with
oppositely oriented magnetic moments. Such an AFM
ordering breaks both the P and T symmetries, but the

FIG. 1. Controlling a Dirac point or a Dirac nodal line by the
Néel vector. (a), (b) Schematics of an antiferromagnet with two
magnetic sublattices (denoted as MnA and MnB) connected by the
PT symmetry for two orientations of the Néel vector, preserving
(a) and breaking (b) glide symmetry gz (indicated by the dotted
lines). Red arrows indicate the magnetic moments. (c)–(f)
Schematics of the band structure around the Fermi energy
(EF) for a Dirac point (c), (d) or a dispersive Dirac nodal line
(e), (f) for preserved (c), (e) or broken (d), (f) glide symmetry gz.

FIG. 2. Néel vector controlled Dirac nodal line in MnPd2. (a) Crystal structure of MnPd2. Two magnetic sublattices MnA and MnB are
connected by the PT symmetry. Red arrows indicate the Mn magnetic moments. (b) Schematic of the glide gz symmetry for n⃗k½001�,
which connects two Mn atoms in the same sublattice via mirror reflection Mz followed by translation ð½; 0;½Þ (indicated by the black
dashed lines). (c), (d) Band structure of MnPd2 in the kz ¼ ðπ=cÞ plane for n⃗k½001� (c) and n⃗k½010� (d). The two bands forming the Dirac
nodal line are indicated by dark red. Arrows in (c) indicate the symmetry-protected Dirac band crossings. (e), (f) Energy dispersions of
the two crossing bands in the kz ¼ ðπ=cÞ plane for n⃗k½001� (e) and n⃗k½010� (f). The Dirac nodal line and its projection to the kz ¼ ðπ=cÞ
plane are shown by the purple and red lines, respectively.
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combined PT symmetry is preserved. This condition is
sufficient to produce the Néel spin-orbit torque on the Néel
vector by passing an electric current [31]. Our calculation
of the total energy predicts the lower energy for the Néel
vector (n⃗) lying in the (100) plane with the magnetocrystal-
line anisotropy energy of E½001� − E½010� ¼ 0.14 meV=f:u:
This result is consistent with the experiment [33], showing
that the easy axis lies along the [010] direction (n⃗k½010�).
The calculated magnetic moment of 3.89 μB per Mn atom
is also in agreement with that (4.0 μB) found by this
experiment.
The AFM ordering determines the magnetic space group

symmetry of MnPd2, as shown in Table S1 in the
Supplemental Material [34]. It is evident that the non-
symmorphic symmetries can be turned on and off by
rotating the Néel vector. As we will see below, this leads
to the ability to close and open a gap at the Dirac nodal line
and thus to control spin-dependent transport properties
of MnPd2.
Our density functional theory calculations [34] predict

that around the Fermi energy, the electronic band structure
of MnPd2 is represented by the Mn and Pd d orbitals
(Fig. S1). Because of the preserved PT symmetry, every
band is doubly degenerate. As seen from Fig. S2, there are
three bands crossing EF. Below, we focus on the bands
around EF lying in the kz ¼ ðπ=cÞ plane, which form a
Dirac nodal line.
Figures 2(c) and 2(d) show the calculated band structure

along the high symmetry paths in the kz ¼ ðπ=cÞ plane
for n⃗k½001� and n⃗k½010�, respectively. For n⃗k½001�, there
are three fourfold degenerate crossing points: at E ¼
−0.071 eV along the Z-U line, at E ¼ 0.234 eV along
the T-Z line, and at E ¼ 0.192 eV along the Z-R line
[indicated by arrows in Fig. 2(c)]. These crossings are
protected by the glide symmetry gz ¼ fMzjð½; 0;½Þg [34],
leading to a looplike Dirac nodal line in the kz ¼ ðπ=cÞ
plane surrounding the Z point [Fig. 2(e)]. This Dirac nodal
line is dispersive, covering a wide energy window ranging
from E ≈ −0.07 eV to E ≈ 0.45 eV.
Reorientation of the Néel vector breaks the gz symmetry

(Table S1) and opens an energy gap along the Dirac nodal
line, as seen from Figs. 2(d) and 2(f) for n⃗k½010�. Although
the gaps at the crossing points along the Z-U and T-Z
directions are relatively small (a few meV), along the Z-R
direction the gap exceeds 30 meV [Fig. 2(d)]. We find that
along the Dirac nodal line shown in Fig. 2(f), the gap varies
from about 1 meV to 45 meV and is about 20 meV at the
Fermi energy. Thus, we conclude that MnPd2 exhibits the
sought material properties: It has the required symmetry to
support the Néel spin-orbit torque, and it holds a dispersive
Dirac nodal line across the Fermi energy, which is gapped
by the reorientation of the Néel vector.
Along with the electronic structure of MnPd2, the Néel

vector controls its spin-dependent transport properties, such
as the spin Hall effect [41]. Below, we calculate the spin

Hall conductivity of MnPd2 and show that it is strongly
affected by the orientation of the Néel vector.
The spin Hall conductivity is given by [41]

σkij ¼
e2

ℏ

Z
d3k⃗
ð2πÞ3

X
n

fnk⃗Ω
k
n;ijðk⃗Þ; ð1Þ

Ωk
n;ijðk⃗Þ ¼ −2ImX

n0≠n

D
nk⃗jJki jn0k⃗

ED
n0k⃗jvjjnk⃗

E

ðEnk⃗ − En0k⃗Þ2
; ð2Þ

where fnk⃗ is the Fermi-Dirac distribution function for band n
and wave vector k⃗,Ωk

n;ijðk⃗Þ is the spin Berry curvature, Jki ¼
1
2
fvi; skg is the spin-current operator, vi and sk are velocity

and spin operators, respectively, and i; j; k ¼ x; y; z.
The calculated spin Hall conductivities of MnPd2 for

n⃗k½001� and n⃗k½010� are given in Table I. Overall, we find
that the predicted magnitude of the spin Hall conductivity
in MnPd2 is comparable to that in Ta [42,43], a widely used
spin-current source in spin-orbit torque devices [44], but
somewhat smaller than that predicted for Pt [45]. Here, we
focus on σzxy as a representative component of the spin Hall
conductivity. The other components are discussed in the
Supplemental Material [34].
As follows from Eqs. (1) and (2), the spin Hall

conductivity is strongly affected by band anticrossings,
where the spin Berry curvature is significantly enhanced
when the energy separations between bands n and n0 at a
given k⃗ point are small. It is expected, therefore, that
switching between the degenerate and gapped states of the
Dirac band can lead to a notable change in the spin Hall
conductivity, even if such a switchable Dirac point or a
Dirac nodal line is buried behind trivial Fermi surfaces
[46,47].
In Figs. 3(a) and 3(b), we compare the calculated spin

Berry curvature Ωz
xy in the kz ¼ ðπ=cÞ plane at E ¼ EF for

n⃗k½001� and n⃗k½010�. We find that while Ωz
xy is small for

n⃗k½001� in the whole kz ¼ ðπ=cÞ plane [Fig. 3(a)], it
exhibits a notable peak for n⃗k½010� [Fig. 3(b)]. Such a
sharp peak appears at different energies and is associated
with the Dirac nodal line. As seen from Fig. 3(c), at the
points where the nodal line crosses an equi-energy plane,
the spin Berry curvature is strongly enhanced [as is
indicated by the color contrast in Fig. 3(c)]. Such a sizable
change in the spin Berry curvature affects the spin Hall

TABLE I. Calculated spin Hall conductivities σkij (in units
Ω−1 cm−1) for two different orientations of the Néel vector in
orthorhombic MnPd2: n⃗k½001� and n⃗k½010�.

n⃗ σzxy σzyx σyxz σyzx σxyz σxzy

[001] 155.9 −170.7 −104.4 175.2 120.6 −66.7
[010] 232.0 −176.0 −134.9 138.5 112.7 −66.0
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conductivity. As is evident from Fig. 3(d), within the
energy window corresponding to the Dirac nodal line,
σzxy is much larger for n⃗k½001� than for n⃗k½010�, which is
due to the gap opening along the dispersive Dirac nodal line
as a result of the Néel vector reorientation.

Rotation of the Néel vector in the (100) plane of MnPd2
changes the spin Hall conductivity σzxy in an oscillatory
fashion [Figs. 4(a) and 4(b)]. The predicted variation of σzxy,
reaching the maximum value of about 50%, can be used to
experimentally detect the effect of the Néel spin-orbit
torque on the Néel vector in MnPd2, as discussed below.
We note that using anisotropic magnetoresistance [6] to

detect the effect is problematic due to the uniaxial magneto-
crystalline anisotropy of MnPd2 causing the n⃗k½010� state
to have lower energy than the n⃗k½001� state. As a result,
affecting theNéel vector can only occur under conditions of a
large steady charge current (∼108–109 A=cm2) generating
the Néel spin-orbit torque. Switching off the charge current
leads to the relaxation of the Néel vector back to the
equilibrium n⃗k½010� direction. This is different from tetrago-
nal CuMnAs [12], which exhibits bi-axial anisotropy, and
thus theNéel vector remains stable after its 90º rotation by the
Néel spin-orbit torque and then turns off the charge current.
The spin Hall conductivity under the influence of the

Néel vector reorientation can be measured using the spin-
orbit torque device shown in Fig. 4(c). Here, a ferromag-
netic layer is deposited on top of the MnPd2 (100) surface,
forming a MnPd2=ferromagnet bilayer. Charge current Jc
along the [010] direction is driven by an external source to
reorient the Néel vector from the easy [010] axis towards
the [001] direction. At the same time, the charge current Jc
generates the spin Hall current Js flowing in the [100]
direction and carrying a spin polarization along the [001]
direction. This spin current has conductivity σzxy, which
depends of the orientation of the Néel vector, according to
Fig. 4(b). The spin current Js enters the ferromagnetic layer
and exerts spin Hall torque τ on magnetization M of the
ferromagnetic layer. When the charge-current density is
small, the spin Hall conductivity is constant, corresponding
to ϕ ¼ 0. When the current density becomes sufficiently
large, the Néel spin-orbit torque reorients the Néel vector
away from its equilibrium [010] direction and the spin Hall
conductivity σzxy decreases. Since the sizable change of σzxy
can be obtained even with a small tilting of the Néel vector
[Fig. 4(b)], a moderate charge current is sufficient to
confirm our prediction. This variation in the spin Hall
conductivity can be detected by various standard tech-
niques such as the spin-torque ferromagnetic resonance
(ST-FMR) [48], the magneto-optical Kerr effect (MOKE)
[49], and the second-harmonic Hall effect [50].
In a similar way, the Néel vector control of the other

components of the spin Hall conductivity listed in Table I
can be measured by using the appropriate design of the
spin-orbit torque device. The proposed approach represents
a new way to electrically control the spin Hall conductivity
in situ. It is different from the recent approaches to tune the
spin Hall effect by changing the scattering center density
[51,52], varying the chemical composition [53], or ionic
gating [54].

FIG. 3. Néel vector control of the spin Hall effect. (a), (b)
Calculated spin Berry curvature Ωz

xy in the kz ¼ ðπ=cÞ plane at
E ¼ EF for n⃗k½001� (a) and n⃗k½010� (b). (c) The color maps of
Ωz

xy in the kz ¼ ðπ=cÞ planes at two different energies E ¼ EF

and E ¼ EF þ 0.2 eV for n⃗k½010�. The solid purple line repre-
sents the nodal line. (d) Spin Hall conductivity σzxy as a function
of energy for n⃗k½001� (blue line) and n⃗k½010� (red line).

FIG. 4. Angular-dependent spin Hall effect and its detection.
(a) Reorientation of the Néel vector with angle ϕ in the (100)
plane relative to its equilibrium [010] direction. (b) Spin Hall
conductivity σzxy as a function of angle ϕ. The solid line is a guide
for the eye. (c) Schematic of the spin-orbit torque device
representing a ferromagnetic layer deposited on MnPd2. The
Néel vector in MnPd2 is controlled by charge current Jc
producing the Néel spin-orbit torque. Spin Hall current Js driven
by Jc generates torque τ on magnetization M of the ferromagnet,
which depends on the Néel vector orientation.
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The predicted strong dependence of the spin Hall
conductivity on the Néel vector is expected to have non-
trivial implications for the dynamics of topological tex-
tures, such as domain walls or skyrmions [55,56]. This
dependence can also be reflected in the dynamics of AFM
domain walls under moderate spin-orbit torques [57].
Reversible switching of the Néel vector may be realized
using ferroelastic strain from a piezoelectric substrate [58].
Overall, we have demonstrated that MnPd2 is a prom-

ising material candidate for topological antiferromagnetic
spintronics. On one hand, this material has the required
magnetic group symmetry to support the Néel spin-orbit
torque, which allows the reorientation of the Néel vector.
On the other hand, MnPd2 holds a dispersive Dirac nodal
line across the Fermi energy. Gap opening and closing
along the Dirac nodal line is controlled by the orientation of
the Néel vector, which changes the spin Hall conductivity.
The latter can be detected by standard techniques using the
proposed spin-orbit torque device. We hope that our
theoretical predictions will motivate experimentalists to
explore the unique properties of MnPd2.
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