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Resting-State Brain Connectivity After Surgical and
Behavioral Weight Loss
Rebecca J. Lepping1, Amanda S. Bruce2,3, Alex Francisco4, Hung-Wen Yeh5, Laura E. Martin1,6, Joshua N. Powell7,
Laura Hancock8, Trisha M. Patrician9, Florence J. Breslin7, Niazy Selim10, Joseph E. Donnelly11,12, William M. Brooks1,13,

Cary R. Savage7,14, W. Kyle Simmons15,16, and Jared M. Bruce4

Objective: Changes in food-cue neural reactivity associated with behavioral and surgical weight loss

interventions have been reported. Resting functional connectivity represents tonic neural activity that may

contribute to weight loss success. This study explores whether intervention type is associated with differ-

ences in functional connectivity after weight loss.

Methods: Fifteen participants with obesity were recruited prior to adjustable gastric banding surgery. Thir-

teen demographically matched participants with obesity were selected from a separate behavioral diet inter-

vention. Resting-state functional magnetic resonance imaging was collected 3 months after surgery/

behavioral intervention. ANOVA was used to examine post-weight loss differences between the two groups

in connectivity to seed regions previously identified as showing differential cue-reactivity after weight loss.

Results: Following weight loss, behavioral dieters exhibited increased connectivity between left precu-

neus/superior parietal lobule (SPL) and bilateral insula pre- to postmeal and bariatric patients exhibited

decreased connectivity between these regions pre- to postmeal (Pcorrected<0.05).

Conclusions: Behavioral dieters showed increased connectivity pre- to postmeal between a region asso-

ciated with processing of self-referent information (precuneus/SPL) and a region associated with intero-

ception (insula) whereas bariatric patients showed decreased connectivity between these regions. This

may reflect increased attention to hunger signals following surgical procedures and increased attention to

satiety signals following behavioral diet interventions.

Obesity (2015) 23, 1422–1428. doi:10.1002/oby.21119

Introduction
Functional neuroimaging has improved our understanding of the

hedonic brain systems associated with food motivation and obesity.

While reports of resting-state functional connectivity differences

based on obesity status are emerging (1-6), differential connectivity

associated with weight loss method has not been examined. Intrinsic

resting brain connectivity may elucidate tonic neural activity, which

may be critical in understanding the underlying neural mechanisms

that lead to successful weight loss.

In task-based functional magnetic resonance imaging (fMRI) studies,

bariatric surgery has been associated with decreased activation to

food cues in both cognitive control and reward regions (7,8).
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Reduction in activation to food cues after surgery is also associated

with decreased desire for calorically dense foods (9). We recently

showed (10) that behavioral weight loss is associated with increased

activation to food images in self-referential processing, valuation

[e.g., medial prefrontal cortex (MPFC)], and salience (e.g., precu-

neus/superior parietal) regions, whereas surgical weight loss is asso-

ciated with increased cue-reactivity in sensory processing regions

(e.g., middle, inferior temporal cortex). This suggests that different

methods of weight loss could affect brain responses to food-based

stimuli.

The purpose of the present study was to explore whether those brain

regions that show differential changes in food-cue reactivity after

behavioral and bariatric weight loss interventions (10) also exhibit

different resting-state functional connectivity after weight loss.

Based on our task results (10), we hypothesized that behavioral diet-

ers would show greater connectivity with valuation and salience

regions [i.e., MPFC and precuneus/superior parietal lobule (SPL)],

and that bariatric patients would show greater connectivity with sen-

sory processing regions (i.e., middle and inferior temporal cortex).

We also hypothesized that functional connectivity would be sensi-

tive to hunger state and would differ between intervention groups

following weight loss.

Methods
Participants/recruitment
Participants were not randomized to treatment condition. They were

selected from independent sources of candidates who had decided to

undergo bariatric weight loss surgery or enroll in a behavioral

weight loss intervention research study. All procedures performed in

studies involving human participants were in accordance with the

ethical standards of the institutional and/or national research com-

mittee and with the 1964 Helsinki declaration and its later amend-

ments or comparable ethical standards. Informed consent was

obtained from all individual participants included in the study.

Surgical participants. Obese (body mass index (BMI) 30-45 kg/

m2) participants (n 5 15; three males; age 5 41.40 6 9.80; educa-

tion 5 13.85 6 1.95 years) planning to undergo adjustable gastric

banding weight loss surgery (LapBandVR ) were recruited from two

surgical sites.

Diet participants. Thirteen obese diet participants [four males;

age 5 40.23 6 8.01; education 5 15.31 6 1.93 years (some college)]

were selected to match demographically with the bariatric group,

blind to imaging data, from a larger behavioral weight loss clinical

trial (N 5 120) [NIH DK080090; NCT02031848] recruited via

advertisements, and a university-based weight management center.

Participants underwent a 3-month weight loss intervention of behav-

ioral strategies, moderate calorie restriction with provided pre-

packaged meals, and physical activity.

Special diets (e.g., vegetarian and Atkins), appetite or metabolic medi-

cations (e.g., thyroid, beta blockers, and Meridia), smoking, and dia-

betes were exclusions for the diet participants. Because most patient

presenting for bariatric surgery have comorbid health conditions,

patients who had well-controlled diabetes (most recent hemoglobin

A1c<7) and were not taking insulin or other injectable medications

(i.e. GLP-1 agonists) were included in the bariatric group. Additional

exclusion criteria for both groups included current eating disorder,

current major depression, history of neurological disease, pregnancy

within the past 6 months, cancer, heart disease, and contraindications

for MRI (e.g., metal implants). Participants taking selective serotonin

reuptake inhibitors (SSRIs) were included in the bariatric group.

One bariatric participant was unable to complete the resting-state

scan and another participant’s data were unusable due to excess

movement (i.e., greater than 50% censored) during the scan (11).

Diet participants with unusable resting-state data were not selected

for this study. Therefore, 13 Bariatric participants and 13 Diet par-

ticipants were included in the final analyses. No significant differen-

ces between the final bariatric and diet groups were observed for

age [t(24) 5 0.49; P 5 0.63], education [X2(3) 5 3.93; P 5 0.27],

sex [X2(1) 5 0.87; P 5 .35], pre-intervention BMI [t(24) 5 1.68;

P 5 0.11], or percent weight lost [t(24) 5 0.99; P 5 0.33]. Additional

demographic and anthropometric data are included in Table 1.

Procedures
Resting-state data were collected 3 months before the intervention. To

investigate changes that accompany typical mealtime eating behavior,

participants were scanned while hungry (Premeal; following at least a

4-hour fast) and after eating a small, standardized (500 kcal) lunch

(Postmeal). As dietary restrictions on certain foods (i.e., bread prod-

ucts) are in place following bariatric surgery, the format of the meal

was slightly different between the two groups. Specifically, the bariat-

ric participants’ meal included a lean meat (turkey or ham) wrap,

while diet participants’ meal included an equivalent sandwich. Both

groups reported similar levels of satiation postmeal (0-100 visual ana-

log scale, “How full do you feel right now?”: Bariatric 5 67.92 6

32.29; Diet =74.92 6 22.63; t(24) 5 20.64, P 5 0.53). Order of scans

(Premeal, Postmeal) was counterbalanced across participants (Figure

1). The resting-state scan (6 min 36 s) followed a structural scan and

two functional scans while passively viewing food and animal pictures

(7,10). Participants were instructed to close their eyes during the

resting-state scan. The entire scanning session lasted �45 min.

fMRI data acquisition
Data were acquired with a 3-Tesla Siemens Allegra, head-only MRI

scanner. To minimize susceptibility artifact in ventromedial prefron-

tal regions, participants were positioned so that the angle of the

AC–PC plane was between 17� and 22� in scanner coordinate space

(12). T1-weighted anatomic images were acquired with a 3D

MPRAGE sequence (repetition time (TR)/echo time (TE) 5 23/4 ms,

flip angle 5 8�, field of view 5 192 mm, matrix 5 192 mm 3

192 mm, 208 slices, slice thickness 5 1 mm). Task-based and

resting-state gradient echo blood oxygenation level-dependent

(BOLD) scans were acquired in 43 contiguous axial slices at an

angle of 40� to the AC–PC line (TR/TE 3,000/30 ms, slice

thickness 5 3 mm (0.5 mm skip), in-plane resolution 5 3 mm 3

3mm, 130 volumes).

Data preprocessing
Data preprocessing and statistical analysis were conducted using

Analysis of Functional NeuroImages (AFNI) (13), and a modified

version of the ANATICOR method, developed by Jo et al., imple-

mented in afni_restproc.py (14). The first four volumes of the func-

tional scans were removed and a de-spiking interpolation algorithm

(i.e., 3dDespike) was used to remove any transient signal spikes
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from the data. The volumes were slice time corrected and co-

registered to the first volume (which was registered to the anatomi-

cal scan). Several nuisance variables were measured [i.e., six motion

parameters (three translations, three rotations), average ventricle sig-

nal, and average local white matter signal (15 mm spherical neigh-

borhood, 3dLocalstat)]. These nuisance variables’ predicted

timecourse was constructed and then subtracted from each resting-

state voxel time course using multiple regression, yielding a residual

timecourse for each voxel. The residual images were smoothed with

a 6 mm FWHM Gaussian kernel, resampled to a 2 mm 32 mm

32 mm grid, and spatially transformed to stereotaxic space con-

forming to the Talairach and Tournoux Atlas (15).

Further motion correction procedures (i.e., scrubbing) were utilized

to reduce false group differences due to uncontrolled subject motion

(16,17). The six motion parameters from the image registration pro-

cess were used to construct a time series reflecting the Euclidean

normalized derivative of the motion. This time series was thresh-

olded so that any time point where the derivative was greater than

0.3 (roughly 0.3 mm motion) was censored. We also censored any

time point where more than 5% of brain voxels were considered

outliers (3dToutcount). Time points censored by the union of both

methods were removed in the subsequent regression analysis. The

percentage of data removed in this manner did not differ between

the two groups [t(24) 5 1.21; P 5 0.24; Bariatric 5 11.9 6 9.2%;

Diet 5 8.0 6 7.4%], nor did it differ between imaging sessions

[Wilks’ k 5 0.96; F(3, 24) 5 1.12; P 5 0.30; g2 5 0.05].

Seed regions were defined as 5 mm radii spheres in regions identi-

fied in our previous food-cue reactivity study: MPFC (Talairach

(TAL)X,Y,Z 5 6,50,19), precuneus/SPL (230, 267,40), right middle

(48,255,7) and left inferior temporal gyrus (242,264,22) (10). At

the subject level, the four seed time series (MPFC, precuneus/SPL,

right middle, and left inferior temporal gyrus) were constructed by

calculating the average time series over the voxels within each of

the seed regions. Using multiple regression, we produced for each

seed a map of the correlations (r-values) between the seed time

series and each voxel in the brain. These r-values were transformed

to z-scores. While the motion scrubbing procedure described above

removes time points most affected by motion artifact, datasets with

more motion may still contain residual effects. These effects may

induce spurious correlations in an individual data set and increase

noise in the overall sample, reducing power. As an additional con-

servative approach to minimize effects of motion, z-score maps for

each dataset were weighted by multiplying the participant’s percent-

age of TRs remaining after censoring by the z-score at each voxel

(e.g., 100% TRs included, weighting factor 5 1; 65% included,

weighting factor 5 0.65). This additional step ensures that partici-

pants who moved least contribute more to the final group analyses,

while those who moved more contribute less (18).

We implemented two-way mixed effects ANOVA comparing

weighted z-scores for fixed-effects of Group (Diet, Bariatric) 3 Sati-

ety (Premeal, Postmeal) with Participants as random effects. To eluci-

date differences in functional connectivity to those regions that were

previously identified as showing cue-reactivity changes after weight

loss, these analyses focus on data collected after the 3-month weight

loss intervention (Post-intervention) that each group underwent (either

a diet/behavioral intervention, or bariatric surgery), as well as the

effect of satiety (Premeal vs. Postmeal). These F-statistic maps were

corrected for multiple comparisons at a<0.05 using a voxel-wise

threshold of P<.005, combined with Monte Carlo simulations of mini-

mum cluster size (616 mm3) determined for the whole brain (19).

Results
For the ANOVA seeded in the left precuneus/SPL (Table 2), there

was a significant main effect of intervention type (Bariatric vs. Diet)

in the middle temporal gyrus (Pcorrected<0.01). Collapsed across

intervention groups, there was no main effect of satiety (Premeal vs.

Postmeal) in resting-state correlations with the left precuneus/SPL.

Figure 1 Participants were randomized to receive one of two counterbalanced
scanning orders. Half of the participants were scanned premeal, then ate a 500
kcal meal and immediately were scanned postmeal. The other half ate the 500 kcal
meal upon arrival for their appointment and were immediately scanned post-meal,
then waited for 4 hours and were scanned premeal.

TABLE 1 Demographic and anthropometric characteristics for participants included in the analyses

Group Male/female

Age [years]

(mean 6 SD)

BMI–baseline

[kg/m2] (mean 6 SD)

BMI–post-intervention

(mean 6 SD)

BMI–percent

change (mean 6 SD)

Bariatric surgery
intervention

2/11 42.00 6 10.35 41.35 6 1.97 37.43 6 2.73 29.50% 6 4.32%

Behavioral diet
intervention

4/9 40.23 6 8.01 40.10 6 1.80 35.62 6 2.22 211.16% 6 4.19%

Body mass index (BMI) is calculated as body weight (in kilograms) divided by height (in meters) squared.

Obesity Weight Loss Brain Connectivity Lepping et al.
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However, there were significant interactions in functional connectiv-

ity between satiety (Pre- to Postmeal) and intervention type (Diet vs.

Bariatric) between the left precuneus/SPL and the following regions:

right precentral gyrus, spreading into insula (Pcorrected< 0.01), left

middle occipital gyrus (Pcorrected< 0.01), right superior temporal

gyrus (Pcorrected< 0.01), and left insula (Pcorrected< 0.02). Figure 2

illustrates the directionality of these interactions. After the interven-

tion, bariatric participants showed greater functional connectivity

between left precuneus/SPL and right precentral gyrus and insula,

left middle occipital gyrus, right superior temporal gyrus, and left

insula prior to eating compared to the diet participants. Additionally,

resting-state functional connectivity changed differentially between

the groups after going from a fasted state to a fed state, such that

correlations between left precuneus/SPL and each of these regions

increased from premeal to postmeal for those in the diet intervention

and decreased for those in the bariatric intervention.

No significant main effects or interactions were found for the

ANOVA seeded from the MPFC; however, some trends were

observed (Table 3). There was a subthreshold main effect of satiety

in the posterior cingulate (Pcorrected< 0.09). Subthreshold interactions

between satiety and intervention type were observed in the left dor-

solateral prefrontal cortex (Pcorrected< 0.08), and the left superior

frontal cortex (Pcorrected< 0.08; Figure 3). No significant effects

were found for the ANOVAs seeded from either temporal cortex

region (all P’scorrected> 0.10).

Discussion
The goal of the current study was to determine whether regions of the

brain that showed differential changes in food-cue reactivity after

weight loss dependent on weight loss method (i.e., surgical or behav-

ioral) also exhibited group differences after weight loss in functional

connectivity with the rest of the brain. Consistent with our hypotheses,

we found that the precuneus/SPL and bilateral insula connectivity

changed differentially pre- to postmeal depending on whether the par-

ticipants had completed a behavioral or surgical weight loss interven-

tion. We used the dorsal and lateral part of the precuneus/SPL as a

seed for these connectivity analyses, a subregion previously shown to

be differentially associated with reactivity to food cues in surgical ver-

sus behavioral weight loss (10). This region is also involved in mental

imagery involving motor planning and self-awareness (20-23). Differ-

ential connectivity was found between the precuneus/SPL and insular

regions associated with interoception (24,25). The groups not only

show differential connectivity between these two regions of the brain

when fasted, but also demonstrate oppositional change in connectivity

strength after a meal.

This pattern of connectivity could reflect differences in interoceptive

signaling and awareness that may have led to weight loss. Hunger

and satiety are components of interoceptive signaling that lead to

initiation and cessation of food intake. Though only speculative,

greater functional connectivity between the precuneus/SPL and

insula could indicate greater interoceptive self-awareness. If true,

those individuals who have lost weight through surgery may be

more aware of internal bodily signals of hunger, while signals of

satiety may be more automatic due to the physical restrictions

placed on the stomach through surgery. Alternatively, individuals

who have successfully lost weight through dieting may have greater

awareness of bodily signals monitoring feelings of fullness to know

when to stop eating. These differences in connectivity are not due to

differences in weight loss success between groups, as there were no

differences in the amount of weight lost between the two groups.

Contrary to expectations, this study found no significant differences in

connectivity to either medial prefrontal or temporal cortex. A mar-

ginal effect of satiety was found between MPFC and posterior cingu-

late, and a marginal interaction of satiety and intervention type was

found between MPFC and middle and superior frontal cortex. The

lack of significance may be due to our modest sample size. Accord-

ingly, our subthreshold results should be interpreted cautiously. One

of the strengths of this study is that the analysis was focused on func-

tional connectivity with a priori regions that showed differential

responsiveness to food cues in these same subjects (10). Due to lim-

ited sample size, we have avoided further exploratory analyses. Never-

theless, it is possible that intervention type may differentially impact

connectivity patterns with the default mode or salience networks, as

has been shown in other recent work in obesity (1-6).

This study is limited by the fact that the groups were not selected

via random assignment. Pre-existing factors could lead individuals

to consider surgical versus behavioral weight loss. Also, since the

bariatric surgery group all underwent laparoscopic gastric banding,

results cannot be extended directly to gastric sleeve or gastric bypass

patients. Additionally, the groups were not matched for comorbid

conditions, such as diabetes, however, in the bariatric surgery group,

only those participants with well-controlled diabetes were included.

TABLE 2 Resting-state functional connectivity with left precuneus/SPL 3 months post-intervention (behavioral or bariatric
surgery)

Region L/R BA X Y Z Pcorrected mm3

Intervention main effect
Middle temporal gyrus L 39 239 269 18 <0.01 944

Satiety main effect
None

Intervention 3 satiety interaction
Precentral gyrus/Insula R 4 53 29 24 <0.01 1,624

Middle occipital gyrus L 19 245 277 8 <0.01 1,384

Superior temporal gyrus R 22 55 237 20 <0.01 1,128

Insula L 13 241 1 12 <0.02 784
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That said, we carefully matched the groups on demographics, pre-

intervention BMI, as well as the total weight lost during the inter-

vention. Therefore, results are not simply due to differential treat-

ment effectiveness. Other factors that were not measured in this

study, such as menstrual cycle phase for female participants, could

also lead to differences in brain connectivity patterns (26-28). In this

study, the intervention groups were matched for gender and age, and

both men and women were included in the analysis. Therefore, it is

unlikely that the results were systematically biased by menstrual

cycle phase. It is also unknown whether possible physical activity

differences between the groups could influence functional connectiv-

ity (4). All surgical participants were under the care of a physician,

and physical activity recommendations were monitored on an indi-

vidual level. Those in the behavioral diet intervention were under

standardized physical activity guidelines according to the interven-

tion. As the two groups received different instructions for physical

Figure 2 Maps show the interaction between intervention type and satiety on voxel-wise correlations with the precuneus/SPL seed. At 3 months post-
intervention, correlations between left precuneus/SPL and right precentral gyrus, right insula, and left insula increased from premeal to postmeal for
those in the diet intervention and decreased for those in the bariatric intervention (Pcorrected<0.05). Error bars denote standard error. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE 3 Resting-state functional connectivity with right medial prefrontal cortex 3 months post-intervention (behavioral or
bariatric surgery)–subthreshold effects

Region L/R BA X Y Z Pcorrected mm3

Intervention main effect
None

Satiety main effect
Posterior cingulate R 7 11 249 32 <0.09 568

Intervention 3 satiety interaction
Middle frontal L 6 239 1 50 <0.08 576

Superior frontal L 6 213 15 58 <0.08 584

Obesity Weight Loss Brain Connectivity Lepping et al.
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activity, we cannot confidently conclude that physical activity levels

were the same for both groups. Care should be taken in future stud-

ies to control for these additional variables.

In conclusion, method of weight loss seems to be related to differen-

tial connectivity between regions of the brain involved in self-

imagery and interoception, as well as differences in whether that

connectivity emerges during states of hunger or satiety. Surgery may

lead individuals to increase attention to bodily signals of hunger,

whereas successful dieting may require more attention to signals of

fullness. While both methods are effective for initial weight loss,

patterns of functional connectivity in the brain suggest differences in

the underlying mechanisms associated with weight loss approaches.

Future research should examine whether these neurofunctional dif-

ferences are maintained over time in extended longitudinal studies,

and how they may be related to successful weight loss

maintenance.O

VC 2015 The Obesity Society
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