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This dissertation investigates the properties of unbounded derivations on C∗-algebras, namely

the density of their analytic vectors and a property we refer to as “kernel stabilization.” We

focus on a weakly-defined derivation δD which formalizes commutators involving unbounded

self-adjoint operators on a Hilbert space. These commutators naturally arise in quantum

mechanics, as we briefly describe in the introduction.

A first application of kernel stabilization for δD shows that a large class of abstract deriva-

tions on unbounded C∗-algebras, defined by O. Bratteli and D. Robinson, also have kernel

stabilization. A second application of kernel stabilization provides a sufficient condition for

when a pair of self-adjoint operators which satisfy the Heisenberg Commutation Relation on

a Hilbert space must both be unbounded.

A directly related classification program is of pairs of unitary group representations which

satisfy the Weyl Commutation Relation on a Hilbert space. The famous Stone-von Neumann

Theorem classifies these pairs when the group is locally compact abelian. In collaboration

with L. Huang, we extend the Stone-von Neumann Theorem to a uniqueness statement for

representations of C∗-dynamical systems on Hilbert K(H)-modules.
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Chapter 1

Introduction

1.1 Quantum Mechanics and Operators on Hilbert Space

A quantum system can be represented by a Hilbert space H with time evolution of the

system modeled by a strongly continuous one-parameter group of unitaries {Ut}t∈R on H.

By time evolution, we mean that the state of the system at time t is given by ψt = U−tψo,

where ψo ∈ H is the system’s initial state. Stone’s Theorem provides a (possibly unbounded)

self-adjoint operator D whose functional calculus implements {Ut}t∈R; specifically, eitD = Ut

for each t ∈ R. The operator D is called the Hamiltonian of the system. If D is unbounded,

the domain of D is only a proper dense subspace of H. Consequently, domains of sums and

compositions involving D may not be dense. Nonetheless, quantum mechanics necessitates

taking such sums and compositions.

An observable of a quantum system modeled by H is a self-adjoint operator that rep-

resents a measurable quantity such as the position or momentum of a particle. Like the

Hamiltonian, a general observable x might also be unbounded, but we restrict our attention

to bounded observables. Ehrenfest’s Theorem (Eqn. 6.2 of [20]) states that the commutator

[iD, x] = i(Dx− xD) determines the time-dependence of the observable x. Without supple-

mental conditions on x, however, the density of the domain of [iD, x] is not guaranteed, so

Ehrenfest’s Theorem requires some formalization. To better understand the definedness and
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boundedness of [iD, x], let us investigate how the commutator arises in Ehrenfest’s Theorem

as the descriptor of time evolution.

The expected value of an observable x ∈ B(H) at time t is given by 〈xψt, ψt〉 . Notice how

〈xψt, ψt〉 =
〈
xe−itDψ0, e

−itDψ0

〉
=
〈
eitDxe−itDψ0, ψ0

〉
shifts the time dependence from the vector ψt to the operator eitDxe−itD. These two per-

spectives are known as the Schrödinger picture and the Heisenberg picture, respectively. For

t ∈ R, define

αt : B(H)→ B(H) by αt(x) := eitDxe−itD for all x ∈ B(H).

The family {αt}t∈R is a norm-continuous group of ∗-automorphisms of B(H). Informally,

d

dt
(αt(x)) =

d

dt

(
eitDxe−itD

)
= iD

(
eitDxe−itD

)
−
(
eitDxe−itD

)
iD = [iD, αt(x)].

We now interpret Ehrenfest’s Theorem to mean d
dt

(αt(x)) |t=0 = [iD, x], but the topology in

which the derivative is taken is really the heart of the matter. The work of E. Christensen

in [6] and [5] seeks to connect the topology in which this derivative is taken to the domain of

[iD, x] via a derivation on B(H). In section 3.1, we introduce this derivation and its desirable

properties.

1.2 Derivations on C∗-algebras

Given a complex ∗-algebra A, a derivation on A is a linear map δ : A → A which satisfies

the Leibniz rule: δ(bc) = δ(b)c + bδ(c) for all b, c ∈ A. We can easily construct a derivation
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on A by fixing an element a ∈ A such that a = a∗ and defining a map

δa : A → A

b 7→ [ia, b].

The map δa is a ∗-derivation, that is, δa(b
∗) = δa(b)

∗ for all b ∈ A. Conversely, for an

arbitrary ∗-derivation δ : A → A, certain conditions on the algebra and the derivation

imply δ = δa for some a ∈ A satisfying a = a∗. The correspondence between derivations on

algebras and their representation as commutators has a rich history and is deeply connected

to the mathematical formulation of quantum mechanics.

We wish to define a derivation δD : B(H) → B(H) which implements the derivative

informally taken in the previous section: δD(x) := [iD, x] for x ∈ B(H). However, as not

every x ∈ B(H) makes the commutator [iD, x] defined and bounded on a dense subspace of

H, the definition of the derivation “δD” is ambiguous. A plethora of literature is dedicated to

exploring the various definitions of δD and their corresponding domains. In each situation, if

D is unbounded then the domain of δD is a proper subspace of B(H). In turn, further research

has been dedicated to the more general study of unbounded derivations on an abstract C∗-

algebra. The unboundedness of such a derivation creates complexities that are not found

with bounded derivations, i.e., derivations defined on the entire C∗-algebra. In [10], Kadison

summarizes three of the many significant results pertaining to bounded derivations:

1. Every bounded derivation on a commutative C∗-algebra is 0. (This follows from the

Singer-Wermer Theorem from 1955 in [23].)

2. Sakai (1959) showed in [19] that any everywhere-defined derivation of a C∗-algebra is

automatically bounded, thus affirmatively settling a 1953 conjecture of Kaplansky.

3. In [12], Kaplansky showed every bounded derivation δ of a type I von Neumann algebra
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M is inner, i.e., there exists a ∈M such that δ = δa.

We turn our attention to densely-defined derivations on C∗-algebras. In section 3.1 we

give a formal definition of δD, its domain, domains of its higher powers, and state its desirable

properties. In particular, Christensen shows in [6] that the domain of δD is strong operator

topology (SOT)-dense in B(H).

In section 3.4 we generalize Christensen’s SOT-density result for Dom(δD) to include

SOT-density of Dom(δnD) for all n ∈ N, and we further strengthen this result by proving

SOT-density of the analytic vectors for δD. Both of these proofs utilize the norm-density of

Dom(Dn) and the analytic vectors for D in H, which displays a nice parallel between the

domain of a self-adjoint operator D on a Hilbert space and the domain of the derivation δD

that D implements.

Theorem 1.1. The set of analytic vectors for δD is SOT-dense in B(H).

On the other hand, our second main result pertaining to δD shows that δD has a property

which is not analogous to properties of self-adjoint operators.

Theorem 1.2. If H is a Hilbert space and D is a (possibly unbounded) self-adjoint operator

on H, then ker δnD = ker δD for all n ∈ N.

The oddity of this result is illustrated by a simple example from calculus: if f(z) = z,

then f ′′(z) = 0, but f ′(z) = 1 6= 0. In other words, the function f belongs to the kernel of

the second-derivative, but not to the first. Notice, however, that due to unboundedness of f

on C that an analogue of f inside of B(H) does not exist. Given x ∈ ker δnD, the operator x is

both bounded and analytic for δD. The implication of Theorem 1.2 is that x must belong to

ker δD, or that x is a “constant.” So, perhaps kernel stabilization is suggestive of a Liouville

Theorem for bounded operators on a Hilbert space.
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In chapter 4, we prove Theorem 1.2, and in section 4.3, we give two applications. The first

application extends the property of kernel stabilization to a class of unbounded ∗-derivations

on C∗-algebras described in the following theorem.

Theorem 1.3 (Bratteli-Robinson, [3]). Let δ be a derivation of a C∗-algebra A, and assume

there exists a state ω on A which generates a faithful cyclic representation (π,H, f) satisfying

ω(δ(a)) = 0 for all a ∈ Dom(δ).

Then δ is closable and there exists a symmetric operator S on H such that

Dom(S) = {h ∈ H : h = π(a)f for some a ∈ A}

and π(δ(a))h = [S, π(a)]h for all a ∈ Dom(δ) and all h ∈ Dom(S). Moreover, if the set A(δ)

of analytic vectors for δ is dense in A, then S is essentially self-adjoint. For x ∈ B(H) and

t ∈ R, define

αt(x) := eiStxe−iSt

where S denotes the self-adjoint closure of S. It follows that αt(π(A)) = π(A) for all t ∈ R,

and {αt}t∈R is a strongly continuous group of ∗-automorphisms with closed infinitesimal

generator δ̃ equaling the closure of π ◦ δ|A(δ).

Theorem 1.4. Let A be a C∗-algebra, δ a derivation on A, and ω a state on A which satisfy

the hypotheses of Theorem 1.3. For every n ∈ N, ker δn = ker δ.

As a second application of kernel stabilization, we provide a sufficient condition for when

a pair of self-adjoint operators which satisfy the Heisenberg Commutation Relation must

both be unbounded.
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Definition 1.5. Let A and B be two (possibly unbounded) self-adjoint operators on a

Hilbert space H. We say A and B satisfy the Heisenberg Commutation Relation (HCR) if

there is a dense subspace K of H such that

(i) K ⊆ Dom([A,B]) and

(ii) [A,B]k = ik for all k ∈ K.

We include the condition that the HCR be satisfied on a dense subspace of H because of

the possible unboundedness of A and B. In general,

Dom([A,B]) = {h ∈ Dom(A) ∩Dom(B) : Ah ∈ Dom(B), Bh ∈ Dom(A)}.

Even if Dom(A)∩Dom(B) were dense in H, Dom([A,B]) may fail to be dense. If, however,

K is a dense subspace of H such that K ⊆ Dom([A,B]), the equality [A,B]|K = iI|K

implies [A,B] continuously extends to the bounded and everywhere-defined operator iI.

The condition on K that we give in Theorem 1.6 is that K be a core for both A and B.

Theorem 1.6. If A and B satisfy the HCR on a common core for A and B, then both A

and B must be unbounded.

1.3 The Heisenberg and Weyl Commutation Relations

We adopt the following formal definition of a Heisenberg pair.

Definition 1.7. A pair of (possibly unbounded) self-adjoint operators (A,B) on a Hilbert

space H form a Heisenberg pair if A and B satisfy the HCR.

By Stone’s Theorem, A and B yield strongly-continuous one-parameter unitary groups

R and S, which are families are bounded operators. Thus, one common method in the
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classification of Heisenberg pairs is to find sufficient conditions on A and B for when R and

S form a Heisenberg representation of R.

Definition 1.8. Let G be a locally compact abelian group and Ĝ its Pontryagin dual. A

pair of strongly-continuous unitary groups R = {Rx}x∈G and S = {Sγ}γ∈Ĝ satisfy the Weyl

Commutation Relation (WCR) if

SγRx = γ(x)RxSγ for all x ∈ G, γ ∈ Ĝ.

The pair (R, S) is a Heisenberg representation of G (not to be confused with a Heisenberg

pair).

Definition 1.9. Let µ be a Haar measure for G, and denote L2(G, µ) by L2(G). Consider

the maps λ : G → U(L2(G)) and V : Ĝ → U(L2(G)), where for each x ∈ G, γ ∈ Ĝ, and

f ∈ Cc(G),

[λxf ](y) := f(x−1y) and [Vγf ](y) := γ(y)f(y) for all y ∈ G.

The pair (λ, V ) is a Heisenberg representation of G called the Schrödinger representation.

Theorem 1.10 (Stone-von Neumann Theorem). Every Heisenberg representation of G is

unitarily equivalent to a direct sum of copies of the Schrödinger representation.

Since Heisenberg representations of a locally compact group G are classified by the Stone-

von Neumann Theorem, classification of Heisenberg pairs whose generated unitary groups

form a Heisenberg representation of R are immediately classified.

Chapter 5 of this dissertation is joint work with Leonard Huang (University of Nevada,

Reno), in which we state and prove a “Covariant Stone-von Neumann Theorem.” Our result

generalizes the classical Stone-von Neumann Theorem in two ways. First, we consider rep-

resentations of C∗-dynamical systems involving locally compact abelian groups as opposed
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to just locally compact abelian groups. We also consider representations of these dynami-

cal systems on Hilbert K(H)-modules as opposed to representations only on Hilbert spaces.

Requisite background for C∗-dynamical systems and Hilbert C∗-modules is in Chapter 2.

Theorem 1.11. Every (G,K(H), α)-Heisenberg representation is unitarily equivalent to a

direct sum of copies of the (G,K(H), α)-Schrödinger representation.

In Chapter 5, we define a (G,A, α)-Heisenberg representation and the (G,A, α)-Schrödinger

representation for an arbitrary C∗-algebra, and we show that the (G,A, α)-Schrödinger rep-

resentation is a (G,A, α)-Heisenberg representation. We then provide and prove some results

about Hilbert K(H)-modules that are necessary to prove Theorem 1.11.

While interesting in a purely mathematical context, our generalization of the Stone-von

Neumann Theorem has a rich interpretation from the perspective of quantum mechanics.

Namely, representations of dynamical systems allow for the consideration of an inherit time-

dependence of the space of observables in addition to the time-dependence of the state

space. This occurs when the Hamiltonian of the system is time-dependent, i.e., the energies

influencing the system are not constant. Informally, we obtain a new description of the

time-evolution of x:

dx

dt

∣∣
t=0

= [iD, x] +
∂x

∂t

∣∣
t=0
, [Eqn. 3.22 [26]]

where the partial term ∂x
∂t
|t=0 is the addition of time-dependence for the observable x in the

presence of a time-dependent Hamiltonian. If the Hamiltonian is time-independent, this term

vanishes, and we recover the time-independent version of Ehrenfest’s Theorem. The time-

dependence of x indicated by a nonzero partial derivative term can be modeled by an action

of R on the C∗-algebra A of observables. More generally, we may consider a locally compact

abelian group G acting on A via a continuous group homomorphism α : G→ Aut(A), which
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we call a C∗-dynamical system (G,A, α).

The goal of representing these dynamical systems on Hilbert K(H)-modules is motivated

in large part by the flexibility of modeling quantum field theory (where relativity may be

in play) with representations on Hilbert C∗-modules. Tangent to this physical motivation

is the goal of generalizing major theorems for operators on Hilbert spaces, such as Stone’s

Theorem and Stinespring’s Theorem, to the setting of Hilbert C∗-modules. Works in this

realm include [1] and [24]. A drawback of our work is that our main result pertains only

to C∗-dynamical systems (G,K(H), α), where G is locally compact abelian, represented on

Hilbert K(H)-modules. Ideally our results hold in a more general context, but our current

techniques rely heavily on this choice of C∗-algebra. Nonetheless, our result is a nontrivial

extension of the classical Stone-von Neumann Theorem.
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Chapter 2

Background

2.1 B(H) and C∗-algebras

Throughout we take H to be a complex Hilbert space, and we denote the continuous linear

operators on H by B(H). Recall that B(H) is a C∗-algebra with respect to the adjoint

operation and the operator norm. In addition to the operator norm, there are two other

topologies we consider on B(H):

Definition 2.1. The strong operator topology (SOT) on B(H) is the topology induced by

the seminorms {x 7→ ‖xh‖ : h ∈ H}. Equivalently, a net (xλ)λ∈Λ ⊆ B(H) converges in the

strong operator topology to x ∈ B(H) if and only if lim
λ→∞
‖xλh− xh‖ = 0 for all h ∈ H.

Definition 2.2. The weak operator topology (WOT) on B(H) is the topology induced by

the seminorms {x 7→ |〈xh, k〉| : h, k ∈ H}. Equivalently, a net (xλ)λ∈Λ ⊆ B(H) converges in

the weak operator topology to x ∈ B(H) if and only if lim
λ→∞
|〈xλh, k〉 − 〈xh, k〉| = 0 for all

h, k ∈ H.

Remark 2.3. The norm topology on B(H) is finer than the strong operator topology, and

the strong operator topology is finer than the weak operator topology.

Definition 2.4. A von Neumann algebra is a SOT-closed unital ∗-subalgebra of B(H).
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2.2 Unbounded Symmetric Operators on Hilbert Space

Let H be a Hilbert space, K1 and K2 subspaces of H, and T : K1 → K2 a linear map. We

call K1 the domain of T , denoted Dom(T ).

Definition 2.5. A linear operator T is densely-defined if Dom(T ) is dense in H.

If Dom(T ) = H and T is continuous, then T is simply an element of B(H). If Dom(T ) is

only dense in H, but T is bounded on Dom(T ), we may extend T by continuity to a bounded

operator on all of H. Thus, the domain of a densely-defined bounded linear operator can

always be extended to all of H, but this is not the case for densely-defined linear operators

which are unbounded.

Example 2.6. For each f ∈ Cc(R), the continuous compactly supported functions on R,

define

[Qf ](x) := xf(x) for all x ∈ R.

Clearly, Qf ∈ Cc(R) and Q is linear, so Q defines a linear operator on the ‖·‖2-dense subspace

Cc(R) of the Hilbert space L2(R). However, Q is not extendable to an everywhere-defined

operator on L2(R) because Q is not bounded on Cc(R).

For each k ∈ N, choose fk ∈ Cc(R) with Supp(fk) ⊆ [k, k + 1]. Then

‖Qfk‖2 =

(∫
[k,k+1]

|xfk(x)|2 dm(x)

)1/2

≥ k

(∫
[k,k+1]

|fk(x)|2 dm(x)

)1/2

= k ‖fk‖2 .

Thus, ‖Q‖ ≥ k for all k ∈ N, which implies Q is unbounded. The largest subspace of L2(R)

on which Q is defined is

Dom(Q) :=

{
f ∈ L2(R) :

∫
R
|xf(x)|2 dm(x) <∞

}
.

While Q is not extendable to all of L2(R), Q is continuous in a certain sense.
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Definition 2.7. A linear operator T is closed if the graph of T , Γ(T ) := {(h, Th) : h ∈

Dom(T )}, is closed in H⊕H.

The operator Q in Example 2.6 is closed.

Definition 2.8. Given a closed linear operator T on a Hilbert space H, a core for T is a

subspace C ⊆ Dom(T ) such that

Γ(T |C )
H⊕H

= Γ(T ).

Example 2.9. For f ∈ C∞c (R), define Pf := −if ′. Then P with domain

Dom(P ) := {f ∈ L2(R) : f is absolutely continuous on every interval [a, b] and f ′ ∈ L2(R)}

is a closed operator.

In addition to being closed, the operators Q and P are self-adjoint.

Definition 2.10 (Conway, X.1.5 [7]). Let T be a densely-defined linear operator on H, and

let

Dom(T ∗) = {k ∈ H : h 7→ 〈Th, k〉 defines a bounded linear functional on Dom(T )}.

By density of Dom(T ) in H, for each k ∈ Dom(T ∗) the Riesz Representation Theorem

provides a unique f ∈ H such that 〈Th, k〉 = 〈h, f〉 for all h ∈ Dom(T ). Let T ∗k := f .

Then,

〈Th, k〉 = 〈h, T ∗k〉 for all h ∈ Dom(T ) and k ∈ Dom(T ∗).

Definition 2.11. A densely-defined linear operator D is self-adjoint if

(i) 〈Dh, k〉 = 〈h,Dk〉 for all h, k ∈ Dom(D) (i.e., D is symmetric)
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(ii) and Dom(D) = Dom(D∗).

Definition 2.12. A densely-defined linear operator S on H is essentially self-adjoint if the

closure of the graph Γ(S) in H⊕H defines the graph of a self-adjoint operator.

A symmetric operator automatically satisfies Dom(D) ⊆ Dom(D∗). In fact, when D

is bounded, symmetry implies condition (ii). When D is unbounded, however, condition

(ii) requires D to have an adequately large domain—as large as the domain of its adjoint.

The domains of higher powers of a self-adjoint operator is one of the properties that make

self-adjoint operators so desirable.

Notation 2.13. Let S be a linear operator on a Banach space X. For each n ∈ N,

Dom(Sn) := {x ∈ Dom
(
Sn−1

)
: Sn−1x ∈ Dom(S)}.

Definition 2.14. Let S be a linear operator on a Banach space X. A vector x ∈ X is an

analytic vector for S if

(i) x ∈ Dom(Sn) for all n ∈ N and

(ii)
∑∞

n=0
‖Snx‖
n!

tn <∞ for some t > 0.

Denote the set of analytic vectors for S by A(S).

Given a densely-defined operator T , domains of higher powers of T may fail to be dense

as

Dom(T ) ) Dom
(
T 2
)
) Dom

(
T 3
)
) ...

When T is self-adjoint, however, Dom(T n) is dense in H for all n ∈ N. In fact, the set of

analytic vectors for T is dense in H.
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Theorem 2.15 (Nelson, [16]). A densely-defined operator on a Hilbert space H is essentially

self-adjoint if and only if its set of analytic vectors is dense in H.

This remarkable fact is known as “Nelson’s Analytic Vector Theorem.” Additionally, self-

adjoint operators are the infinitesimal generators of a special type of one-parameter family.

Definition 2.16. A family {Ut}t∈R of operators on a Hilbert space H which satisfies

(i) Ut is unitary for each t ∈ R, that is, U∗t Ut = I = UtU
∗
t ,

(ii) Uo = I,

(iii) UsUt = Us+t for all s, t ∈ R, and

(iv) lim
t→0
‖Uth− h‖ = 0 for all h ∈ H

is a strongly-continuous one-parameter group of unitaries.

Theorem 2.17 (Stone’s Theorem). Given a self-adjoint operator D, the family {eitD}t∈R

is a strongly-continuous one-parameter group of unitaries. Conversely, given a strongly-

continuous one-parameter group of unitaries {Ut}t∈R, there exists a self-adjoint operator D

such that Ut = eitD for all t ∈ R.

The self-adjoint operator D is called the infinitesimal generator for the group {eitD}t∈R:

Dom(D) =

{
h ∈ H : lim

t→0

eitDh− h
t

exists

}
,

and for h ∈ Dom(D),

Dh := −i
(

lim
t→0

eitDh− h
t

)
.
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2.3 Unitary Group Representations

Let U(H) denote the unitary group of B(H), and let G be a locally compact group. Up

to a scalar, G has a unique nonzero left-invariant Radon measure, called a Haar measure,

which we denote by µ. We may then consider the Hilbert space L2(G, µ), which we denote

by L2(G). In the case when G is abelian, µ is also right-invariant, and its Pontryagin dual

is a locally compact abelian group Ĝ whose Haar measure we denote by µ̂.

Definition 2.18. A unitary group representation of G on a Hilbert space H is a group

homomorphism U : G→ U(H) such that for each h ∈ H, the map s 7→ Ush is continuous.

Example 2.19. Any strongly-continuous one-parameter group of unitaries {Ut}t∈R on H

defines a unitary group representation U : R→ U(H) by t 7→ Ut.

Example 2.20. Let G be a locally compact abelian group. The left regular representation

λ : G→ U(L2(G)) and representation V : Ĝ→ U(L2(G)) in the Schrödinger representation

(λ, V ) of G (recall Definition 1.9) are examples of unitary group representations.

2.4 C∗-Dynamical Systems and Crossed Products

The reader is referred to [25] for a detailed treatment of foundational material on C∗-

dynamical systems and crossed product C∗-algebras. Some definitions and facts are included

here for convenience. Throughout, G is a locally compact abelian group with Haar measure

µ and A is a C∗-algebra.

Definition 2.21. A C∗-dynamical system is a triple (G,A, α) where α : G → Aut(A) is a

continuous homomorphism.

Example 2.22. Let Co(G) be the C∗-algebra of continuous functions f : G→ C such that

for each ε > 0, there is a compact subset K ⊆ G where
∥∥f |G\K∥∥∞ < ε. Consider an action
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of G on Co(G) via left translation:

lt : G → Aut(Co(G))

x 7→ ltx,

where for each f ∈ Co(G),

[ltxf ](y) := f(x−1y) for all y ∈ G.

Then (G,Co(G), lt) is a C∗-dynamical system.

Definition 2.23. A covariant representation of a C∗-dynamical system (G,A, α) is a pair

(π, U) consisting of a representation π : A → B(H) and a unitary group representation

U : G→ U(H) such that

π(αx(a)) = Uxπ(a)U∗x for all x ∈ G, a ∈ A.

Example 2.24 (Williams, 2.12 [25]). Let M : Co(G)→ B(L2(G)) denoted f 7→Mf be given

by pointwise multiplication, that is, for each f ∈ Co(G) and h ∈ Cc(G),

[Mfh](x) := f(x)h(x) for all x ∈ G.

By density of Cc(G) in L2(G) and boundedness of Mf |Cc(G), we may extend Mf to a bounded

linear operator on all of L2(G). If λ denotes the left regular representation of G, then the

pair (M,λ) is a covariant representation of (G,Co(G), lt).

Given a C∗-dynamical system (G,A, α), one can construct the crossed product C∗-algebra

A oα G which is universal with respect to the covariant representations of (G,A, α). Let

Cc(G,A) denote the set of continuous functions f : G→ A such that for each f ∈ Cc(G,A),
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there exists a compact subset K ⊆ G where Supp(f) ⊆ K. The crossed product corre-

sponding to a C∗-dynamical system (G,A, α) is constructed by considering representations

of Cc(G,A) which are induced by covariant representations of (G,A, α).

Definition 2.25. Given a covariant representation (π, U) for (G,A, α) on H, define the

integrated form of (π, U) to be the ∗-representation π o U : Cc(G,A)→ B(H) given by

[π o U ](f) :=

∫
G

π(f(x))Ux dµ(x) for all f ∈ Cc(G,A).

The above integral is B(H)-valued and converges in the WOT, i.e.,

〈[π o U ](f)h, k〉 =

∫
G

〈π(f(x))Uxh, k〉 dµ(x) for all h, k ∈ H.

Lemma 2.26 (Williams, 2.27 [25]). For each f ∈ Cc(G,A), define the universal norm on

Cc(G,A) by

‖f‖ := sup{‖[π o U ](f)‖ : (π, U) is a covariant representation of (G,A, α)}.

The universal norm is dominated by the L1(G,A)-norm and the completion of Cc(G,A) with

respect to ‖·‖ is a C∗-algebra which we denote by Aoα G.

2.5 Hilbert C∗-modules

Let G be a locally compact abelian group with Haar measure µ and A a C∗-algebra.

Definition 2.27. An inner product A-module is a linear space X which is a right A-module

via an action • : X×A → X denoted (ξ, a) 7→ ξ • a which satisfies

λ(ξ • a) = (λξ) • a = ξ • (λa) for all ξ ∈ X, a ∈ A, λ ∈ C,
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together with a map 〈· | ·〉 : X× X→ A such that for all ξ, η, ν ∈ X, α, β ∈ C, and a ∈ A,

(i) 〈ξ |αη + βν〉 = α 〈ξ | η〉+ β 〈ξ | ν〉,

(ii) 〈ξ | η • a〉 = 〈ξ | η〉 a,

(iii) 〈η | ξ〉 = 〈ξ | η〉∗, and

(iv) 〈ξ | ξ〉 ≥ 0 as an element of A, and if 〈ξ | ξ〉 = 0, then ξ = 0.

We sometimes subscript 〈· | ·〉 to avoid ambiguity when multiple algebras or modules are

present.

Definition 2.28. Let X be an inner product A-module, and define a norm on X by

‖ξ‖ := ‖〈ξ | ξ〉‖1/2
A for all ξ ∈ X.

Then X is a (right) Hilbert A-module if X is complete with respect to ‖·‖ .

Note that when A = C, a Hilbert A-module is simply a Hilbert space. Left Hilbert

A-modules are defined similarly.

Example 2.29. For φ ∈ Cc(G,A) and a ∈ A, define

[φ • a](x) := φ(x)a for all x ∈ G.

Then Cc(G,A) along with the action • by A is a right A-module. For φ, ψ ∈ Cc(G,A),

define

〈ψ |φ〉 :=

∫
G

ψ(x)∗φ(x) dµ(x),

where this A-valued integral is characterized by

ζ (〈ψ |φ〉) =

∫
G

ζ(ψ(x)∗φ(x)) dµ(x) for all ζ ∈ A∗.



19

One easily checks that 〈· | ·〉 satisfies the axioms in Definition 2.27, so Cc(G,A) with 〈· | ·〉 is

an inner product A-module. Denote the completion of Cc(G,A) with respect to the induced

norm ‖·‖ := ‖〈· | ·〉‖1/2
A by L2(G,A).

Example 2.30. Let (G,A, α) be a dynamical system. For each φ ∈ Cc(G,A) and a ∈ A,

define

[φ • a](x) := φ(x)αx(a) for all x ∈ G.

Then • makes Cc(G,A) into a right A-module. For φ, ψ ∈ Cc(G,A), define

〈ψ |φ〉α :=

∫
G

αx−1 (ψ(x)∗φ(x)) dµ(x).

Then Cc(G,A) along with 〈· | ·〉α defines an inner product A-module. Denote the completion

of Cc(G,A) with respect to the induced norm ‖·‖α := ‖〈· | ·〉α‖
1/2
A by L2(G,A, α).

Remark 2.31. When completing Cc(G,A) with respect to ‖·‖α, an isomorphic copy of

Cc(G,A) exists in L2(G,A, α) via an embedding q : Cc(G,A)→ L2(G,A, α). When consid-

ering the dense subalgebra q(Cc(G,A)) inside L2(G,A, α), we will suppress the “copy” and

simply identify Cc(G,A) inside L2(G,A, α).

Proposition 2.32. Let (G,A, α) be a C∗-dynamical system. A norm ‖·‖2 can be defined on

Cc(G,A) by

‖φ‖2 :=

(∫
G

‖φ(x)‖2
A dµ(x)

)1/2

for each φ ∈ Cc(G,A).

This norm has the property that ‖φ‖α ≤ ‖φ‖2 for all φ ∈ Cc(G,A).

Proof. Checking that ‖·‖2 is a norm on Cc(G,A) is a simple exercise. For φ ∈ Cc(G,A),
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observe

‖φ‖2
α =

∥∥∥∥∫
G

αx−1(φ(x)∗φ(x)) dµ(x)

∥∥∥∥
A

≤
∫
G

‖αx−1(φ(x)∗φ(x))‖A dµ(x)

=

∫
G

‖φ(x)∗φ(x)‖A dµ(x)

=

∫
G

‖φ(x)‖2
A dµ(x)

= ‖φ‖2
2.

Corollary 2.33. Suppose {ψλ}λ∈Λ ⊆ Cc(G,A) converges uniformly to ψ ∈ Cc(G,A), i.e.,

‖ψλ − ψ‖Cc(G,A) → 0 as λ→∞. Then ‖ψλ − ψ‖α → 0 as λ→∞.

Proof. By Proposition 2.32, it suffices to prove that ‖ψλ − ψ‖2 → 0 as λ → ∞. Let ε > 0,

and choose λ1 ∈ Λ such that ‖ψλ − ψ‖Cc(G,A) <
ε√

2·µ(Supp(ψ))+1
for all λ ≥ λ1. Also, since

‖ψλ − ψ‖Cc(G,A) → 0 as λ → ∞, there exists λ2 ∈ Λ such that µ(Supp(ψλ) \ Supp(ψ)) <

µ(Supp(ψ)) for all λ ≥ λ2. Choose λo := max{λ1, λ2}. Then for all λ ≥ λo,

‖ψλ − ψ‖2
2 =

∫
G

‖ψλ(y)− ψ(y)‖2
A dµ(y)

=

∫
Supp(ψ)

‖ψλ(y)− ψ(y)‖2
A dµ(y) +

∫
Supp(ψλ)\Supp(ψ)

‖ψλ(y)− ψ(y)‖2
A dµ(y)

≤
∫

Supp(ψ)

‖ψλ − ψ‖2
Cc(G,A) dµ(y) +

∫
Supp(ψλ)\Supp(ψ)

‖ψλ − ψ‖2
Cc(G,A) dµ(y)

<
ε2

2 · µ(Supp(ψ)) + 1
· µ(Supp(ψ)) +

ε2

2 · µ(Supp(ψ)) + 1
· µ(Supp(ψλ) \ Supp(ψ))

<
ε2

2
+

ε2

2 · µ(Supp(ψ)) + 1
· µ(Supp(ψ))

< ε2.
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By Proposition 2.32, ‖ψλ − ψ‖α ≤ ‖ψλ − ψ‖2 → 0 as λ→∞.

Notation 2.34. Let X be a Hilbert A-module, and let Xo be a closed A-submodule of X.

Denote Span{ξ • a : ξ ∈ Xo, a ∈ A} by Xo • A.

Notation 2.35. Given a Hilbert A-submodule Xo of X, define

〈Xo |Xo〉 := Span{〈ξ | η〉 : ξ, η ∈ Xo}.

Definition 2.36. A Hilbert A-module X is full if 〈X |X〉 is dense in A.

Proposition 2.37. The Hilbert A-module L2(G,A, α) is full.

Fullness of L2(G,A, α) follows from Green’s Imprimitivity Theorem stated in Theorem

4.21 of [25]. We will need Green’s Imprimitivity Theorem again later, so we will wait until

Chapter 5 to give its statement.

Definition 2.38. Given a family {Xj}j∈J of Hilbert A-modules, define

⊕jXj :=

{
(ξj)j∈J : ξj ∈ Xj for each j ∈ J and

∑
j∈J

〈ξj | ξj〉 converges in the norm on A

}
.

For ξ = (ξj)j∈J and η = (ηj)j∈J in ⊕jXj, define

〈ξ | η〉 :=
∑
j∈J

〈ξj | ηj〉Xj .

It is an exercise in [13] to show that ⊕jXj with this inner product forms a Hilbert A-module.

Proposition 2.39. Given a family of Hilbert A-modules {Xj}j∈J , let Y := ⊕jXj. Then

Yo := {(ξj)j∈J ∈ Y : ξj = 0 for all but finitely many j ∈ J}
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is dense in Y.

Proof. Let ξ = (ξj)j∈J ∈ Y. Then
∑

j∈J 〈ξj | ξj〉 converges in A, so in particular, given ε > 0,

there exists a finite set F ⊆ J such that

∥∥∥∥∥∥
∑
j∈J\F

〈ξj | ξj〉Xj

∥∥∥∥∥∥
A

=

∥∥∥∥∥∑
j∈J

〈ξj | ξj〉Xj −
∑
j∈F

〈ξj | ξj〉Xj

∥∥∥∥∥
A

< ε2.

Define (ηj)j∈J ∈ Yo by ηj = ξj whenever j ∈ F and ηj = 0 otherwise. Then

‖ξ − η‖2
Y = ‖〈ξ − η | ξ − η〉Y‖A

=

∥∥∥∥∥∑
j∈J

〈ξj − ηj | ξj − ηj〉Xj

∥∥∥∥∥
A

=

∥∥∥∥∥∥
∑
j∈F

〈ξj − ηj | ξj − ηj〉Xj +
∑
j∈J\F

〈ξj − ηj | ξj − ηj〉Xj

∥∥∥∥∥∥
A

=

∥∥∥∥∥∥
∑
j∈F

〈ξj − ξj | ξj − ξj〉Xj +
∑
j∈J\F

〈ξj | ξj〉Xj

∥∥∥∥∥∥
A

=

∥∥∥∥∥∥
∑
j∈J\F

〈ξj | ξj〉Xj

∥∥∥∥∥∥
A

< ε2.

Therefore, Yo is dense in Y.

2.6 Adjointable Operators on Hilbert C∗-modules

Throughout, X and Y are (right) Hilbert A-modules. A map T : X → Y which satisfies

T (ξ • a) = (Tξ) • a for all ξ ∈ X and a ∈ A is referred to as A-linear.
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Definition 2.40. A map T : X→ Y is adjointable if there exists a map S : Y → X such that

〈Tξ | η〉Y = 〈ξ |Sη〉X for all ξ ∈ X, η ∈ Y.

If T is adjointable, its adjoint is unique and denoted by T ∗. Denote the set of all adjointable

maps from X to Y by L(X,Y), and denote L(X,X) by L(X).

It is well-known that any adjointable operator is both bounded and A-linear. A short

proof of this fact is given on page 8 of [13]. Thus, the algebra L(X) is then closed under the

adjoint operation and is complete with respect to the operator norm, so L(X) is in fact a

C∗-algebra.

Definition 2.41. The strict topology on L(X) is the topology induced by the seminorms

{T 7→ ‖Tξ‖ : ξ ∈ X} and {T 7→ ‖T ∗η‖ : η ∈ X}.

Notation 2.42. Given ξ ∈ Y and η ∈ X, define θξ,η : X→ Y by

θξ,η(ν) := ξ • 〈η | ν〉X for all ν ∈ X.

Then θξ,η ∈ L(X,Y). Let K(X,Y) denote the closed span of {θξ,η : ξ ∈ X, η ∈ Y} in L(X,Y).

Definition 2.43. Let {Xj}j∈J be a collection of Hilbert A-modules, and let Y := ⊕jXj be

the Hilbert A-module formed in Definition 2.38. Given Tj ∈ L(Xj) for each j ∈ J such that

the family {Tj}j∈J satisfies supj∈J ‖Tj‖ <∞, define ⊕jTj : ⊕jXj → ⊕jXj by

[⊕jTj](ξj)j∈J := (Tjξj)j∈J for all (ξj)j∈J ∈ ⊕jXj.

Then ⊕jTj is a well-defined adjointable operator on ⊕jXj with adjoint ⊕jT ∗j .
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2.7 Representations on Hilbert C∗-modules

Definition 2.44. An operator u ∈ L(X) is unitary if u∗u = IX = uu∗.

Let U(X) denote the unitary group of L(X).

Definition 2.45. A unitary group representation of G on a Hilbert A-module X is a strictly

continuous group homomorphism u : G→ U(X), which we henceforth denote by x 7→ ux.

Note that the requirement u : G→ U(X) be strictly continuous is equivalent to requiring

that the maps x 7→ uxξ be continuous for each fixed ξ ∈ X.

Definition 2.46. Let u : G → U(X) be a unitary group representation, and given an

arbitrary index set J , let ⊕jX = ⊕jXj where Xj = X for all j ∈ J . Define

⊕ju : G→ U(⊕jX) by x 7→ [⊕ju]x := ⊕jux for each x ∈ G,

where ⊕jux is as in Definition 2.43. Then ⊕ju defines a unitary group representation of G.

Definition 2.47. Let A and B be C∗-algebras, and let X be a Hilbert B-module. A repre-

sentation π : A → L(X) is nondegenerate if π(A)X is dense in X.

Definition 2.48. Let X be a Hilbert B-module and suppose π : A → L(X) is a nondegenerate

∗-representation. Let Y = ⊕jX, and define

⊕jπ : A → L(Y)

by [⊕jπ](a) := ⊕jπ(a) for each a ∈ A, as in Definition 2.43. If Yo denotes the dense B-

submodule of Y defined in Proposition 2.39, nondegeneracy of ⊕jπ is easily established by

showing Span{[⊕jπ(a)]ξ : a ∈ A, ξ ∈ Yo} approximates elements of Yo.
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Definition 2.49. Let (G,A, α) be a C∗-dynamical system, let B be a C∗-algebra, and let

X be a Hilbert B-module. A covariant homomorphism of (G,A, α) into L(X) is a pair

(π, u) consisting of homomorphisms π : A → L(X) and a unitary group representation

u : G→ U(X) such that

π(αx(a)) = uxπ(a)u∗x for all x ∈ G, a ∈ A.

We say (π, u) is nondegenerate if π is nondegenerate.

Proposition 2.50 (Williams, 2.39 [25]). Let X be a Hilbert B-module and let (π, u) be

a covariant homomorphism of (G,A, α) into L(X). Consider the integrated form π o u :

Cc(G,A)→ L(X) defined by

[π o u](f) :=

∫
G

π(f(x))ux dµ(x) for all f ∈ Cc(G,A),

where this integral is the image of the function x 7→ π(f(x))ux under the linear map described

in Lemma 1.91 of [25]. Each [πou](f) is a well-defined operator in L(X), and πou extends

to a homomorphism of A oα G which is nondegenerate whenever π is nondegenerate. We

denote this extension by π o u.

Conversely, if L : A oα G → L(X) is a nondegenerate homomorphism, then there is

a unique nondegenerate covariant homomorphism (π, u) of (G,A, α) into L(X) such that

L = π o u.

We can further characterize integrals involving continuous compactly supported functions

from a locally compact group G into a C∗-algebra A by the following lemma.

Lemma 2.51 (Raeburn-Williams, C.12 [18]). Let X be a Hilbert A-module and F a compactly

supported function of G into L(X) which is continuous for the strict topology. Then for each
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ξ, η ∈ X, the map x 7→ 〈ξ |F (x)η〉 belongs to Cc(G,A) and

〈
ξ

∣∣∣∣ (∫
G

F (x) dµ(x)

)
η

〉
=

∫
G

〈ξ |F (x)η〉 dµ(x).

Proposition 2.52. Suppose (π, u) is a covariant homomorphism for (G,A, α) into L(X) for

some Hilbert B-module X. Then (⊕jπ,⊕ju) is a covariant homomorphism for (G,A, α) into

L(⊕jX), and

(⊕jπ) o (⊕ju) = ⊕j(π o u).

Proof. Covariance of (⊕jπ,⊕ju) is straightforward to check. Let Y := ⊕jX, and recall from

Proposition 2.39 that

Yo := {(ξj)j∈J ∈ Y : ξj = 0 for all but finitely many j ∈ J}

is dense in Y. We claim

[(⊕jπ) o (⊕ju)](f)|Yo = [⊕j(π o u)](f)|Yo for all f ∈ Cc(G,A).

Fix f ∈ Cc(G,A), and observe that

[(⊕jπ) o (⊕ju)] (f) =

∫
G

[⊕jπ](f(x))[⊕ju]x dµ(x)

=

∫
G

[⊕jπ(f(x))] [⊕jux] dµ(x)

=

∫
G

[⊕jπ(f(x))ux] dµ(x).

For each x ∈ G, define F (x) := ⊕j [π(f(x))ux]. The maps x 7→ [⊕jπ(f(x))]|Yo and

x 7→ [⊕jux]|Yo from G into L(Y) are strictly continuous, and density of Yo in Y establishes

strict continuity of x 7→ [⊕jπ(f(x))]◦ [⊕jux]. Therefore, F : G→ L(Y) is strictly continuous



27

Let η ∈ Yo, and let Supp(η) ⊆ J be the finite subset such that ηj = 0 for all j 6∈ Supp(η).

Then, for any ξ ∈ Y,

〈
ξ

∣∣∣∣ (∫
G

[⊕jπ(f(x))ux] dµ(x)

)
η

〉
Y

=

〈
ξ

∣∣∣∣ (∫
G

F (x) dµ(x)

)
η

〉
Y

=

∫
G

〈ξ |F (x)η〉Y dµ(x) [ Lemma 2.51 ]

=

∫
G

(∑
j∈J

〈ξj | [π(f(x))ux]ηj〉X

)
dµ(x)

=

∫
G

 ∑
j∈Supp(η)

〈ξj | [π(f(x))ux]ηj〉X

 dµ(x)

=
∑

j∈Supp(η)

∫
G

〈ξj | [π(f(x))ux]ηj〉X dµ(x)

=
∑

j∈Supp(η)

〈
ξj

∣∣∣∣ (∫
G

π(f(x))ux dµ(x)

)
ηj

〉
X

[ Lemma 2.51 ]

=
∑
j∈J

〈ξj | [π o u](f) ηj〉X

= 〈ξ | [⊕j(π o u)(f)]η〉Y .

As ξ ∈ Y was arbitrary, we have that [(⊕jπ) o (⊕ju)](f)η = [⊕j(π o u)(f)]η for all η ∈ Yo.

By density of Yo in Y and continuity of both [(⊕jπ) o (⊕ju)](f) and ⊕j[π o u](f), we have

[(⊕jπ) o (⊕ju)](f) = ⊕j[π o u](f) as adjointable operators on L(Y). As f ∈ Cc(G,A) was

arbitrary and Cc(G,A) is dense in Aoα G, we conclude ⊕j[π o u] = (⊕jπ) o (⊕ju).

2.8 Hilbert K(H)-modules

A substantial portion of the collaboration with L. Huang is in the setting of A = K(H),

the ∗-subalgebra of B(H) obtained by closing the finite-rank operators on H in the norm

topology. The following results are used later in the paper and provide some evidence of why
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K(H) was desirable to work with. As a first attractive property, recall that K(H) is simple,

so every nonzero Hilbert K(H)-module X is full since 〈X |X〉 forms a nontrivial two-sided

ideal in K(H).

Lemma 2.53 (Arveson, 1.4.1 [2]). Let p be a nonzero projection in K(H). Then p is rank-one

if and only if pK(H)p = Cp.

Corollary 2.54. If p ∈ K(H) is a rank-one projection, there is a linear functional fp :

K(H)→ C such that pap = fp(a)p for all a ∈ K(H).

Corollary 2.55. Let X be a nonzero Hilbert K(H)-module, and let p be a rank-one projection

in K(H). Then there exists ψ ∈ X such that 〈ψ |ψ〉 = p.

Proof. Let p ∈ K(H) be a rank-one projection. Then there exists ψo ∈ X such that ψo•p 6= 0

(since X • p is a full Hilbert K(H)-module). Thus,

0 6= 〈ψo • p |ψo • p〉 = p 〈ψo |ψo〉 p = fp (〈ψo |ψo〉) p,

where fp is the linear functional corresponding to p obtained in Corollary 2.54. Let λ :=

fp (〈ψo |ψo〉) , and define ψ := λ−1/2(ψo • p). Then 〈ψ |ψ〉 = p.

Lemma 2.56. Let X be a nonzero Hilbert K(H)-module and p a rank-one projection on H.

Then X • p is a nontrivial closed subspace of X that is also a Hilbert space with inner product

〈ξ • p | η • p〉X•p = fp(〈ξ | η〉X) for every ξ, η ∈ X,

where fp is the linear functional related to p in Corollary 2.54. Furthermore, the norm on

X • p induced by 〈· | ·〉X•p coincides with the restriction of ‖·‖X to X • p.

Proof. (Huang) It is obvious that X • p is a subspace of X. To see that it is closed in X, let

(ζn)n∈N be a sequence in X•p such that (ζn)n∈N converges to some η ∈ X. Because ζn •p = ζn
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for all n ∈ N, we have

η = lim
n→∞

ζn = lim
n→∞

ζn • p =
[

lim
n→∞

ζn

]
• p = η • p.

Hence, η ∈ X • p, which proves that X • p is a closed subspace of X.

Clearly, 〈· | ·〉X•p is a sesquilinear form on X • p, so it remains to prove that it is positive

definite and complete. Let ζ ∈ X • p. Then 〈ζ | ζ〉X is positive in K(H), which means that

fp (〈ζ | ζ〉X) p = p 〈ζ | ζ〉X p = p 〈ζ | ζ〉X p
∗

is positive in K(H) as well. As p(I − p) = 0, we deduce that I − p is not invertible in K(H),

so 1 ∈ σK(H)(p). Hence, fp (〈ζ | ζ〉X) ∈ σK(H) (fp (〈ζ | ζ〉X) p) ⊆ R≥0, which shows that 〈· | ·〉X•p

is at least positive semidefinite. Next, observe that

∣∣∣〈ζ | η〉X•p∣∣∣ = |fp (〈ζ | η〉X)|

= ‖fp (〈ζ | η〉X) p‖K(H)

= ‖p 〈ζ | η〉X p‖K(H)

= ‖〈ζ • p | η • p〉X‖K(H)

= ‖〈ζ | η〉X‖K(H) . [As ζ • p = ζ and η • p = η.]

Consequently, if 〈ζ | ζ〉X•p = 0 for some ζ ∈ X • p, then 〈ζ | ζ〉X = 0, which yields ζ = 0. This

proves that 〈· | ·〉X•p is positive definite. Incidentally, this also proves that ‖ζ‖X•p = ‖ζ‖X for

all ζ ∈ X • p. As X • p is a closed subspace of X, it is a Banach space with respect to the

restriction of ‖·‖X to X • p, and is thus a Banach space with respect to ‖·‖X•p. Therefore,

X • p is a Hilbert space whose inner product is given by 〈· | ·〉X•p, and the induced norm on

X • p is the restriction of ‖·‖X to X • p.
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Theorem 2.57 (Bakić-Guljaš, 5 & 6 [8]). Given a rank-one projection p ∈ K(H), the maps

Ψ : L(X)→ B(X • p) and Ψ|K(X) : K(X)→ K(X • p)

given by T 7→ T |X•p are C∗-isomorphisms.

Theorem 2.58 (Magajna, 1 [14]). Every Hilbert K(H)-module X is complementable, that is,

every closed K(H)-submodule Y ⊆ X has an orthogonal complement Y⊥ such that X = Y⊕Y⊥.

Proposition 2.59. Let X be a nonzero Hilbert K(H)-module, let Y be a nonzero K(H)-

submodule of X that is not necessarily closed, and let p be a rank-one projection on H. Then

(Y • p) • K(H) = Y.

Proof. As Y is a K(H)-submodule of X, we have that Y • p ⊆ Y, and thus, (Y • p) • K(H)

is contained in Y. Hence, (Y • p) • K(H) is contained in Y. It thus remains to establish the

reverse containment.

Note that {pa : a ∈ K(H) \ {0}} is the set of all rank-one projections on H. Let ζ ∈ Y

and let (eλ)λ∈Λ be an approximate unit for K(H). Then ‖ζ • eλ − ζ‖ → 0 as λ → ∞.

Moreover, Span{pa : a ∈ K(H)} contains all finite-rank operators on H, so (Y • p) • K(H)

can approximate ζ • eλ for any choice of λ ∈ Λ. An ε
2
-argument shows that the closure of

(Y • p) • K(H) in X equals the closure of Y.
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Chapter 3

Analytic Vectors for δD

3.1 Definition of Weak D-Differentiability

Throughout, H is a Hilbert space and D is a (possibly unbounded) self-adjoint operator

on H. For each t ∈ R, both Stone’s Theorem and the Spectral Theorem for Self-Adjoint

Operators yields a strongly-continuous one-parameter group of unitaries {eitD}t∈R. For each

t ∈ R, define a map αt : B(H)→ B(H) by

αt(x) := eitDxe−itD for all x ∈ B(H).

Then {αt}t∈R defines a flow on B(H) and forms group of ∗-automorphisms on B(H).

Definition 3.1. An operator x ∈ B(H) is weakly D-differentiable if there exists y ∈ B(H)

such that

lim
t→0

∣∣∣∣〈(αt(x)− x
t

− y
)
h, k

〉∣∣∣∣ = 0 for all h, k ∈ H. (∗)

Denote the set of all weakly D-differentiable operators by Dom(δD), and for x ∈ Dom(δD),

let δD(x) := y, where y satisfies condition (∗).

Theorem 3.2 (Christensen, 3.8 [6]). Let x ∈ B(H). The following are equivalent:

(i) x is weakly D-differentiable.
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(ii) There exists y ∈ B(H) such that for every h ∈ H,

lim
t→0

∥∥∥∥(αt(x)− x
t

− y
)
h

∥∥∥∥ = 0.

(iii) There exists c > 0 such that ‖αt(x)− x‖ ≤ c |t| for all t ∈ R.

(iv) The commutator [iD, x] is defined and bounded on the domain of D.

(v) The commutator [iD, x] is defined and bounded on a core for D.

If any of the above conditions hold, then x(Dom(D)) ⊆ Dom(D) and δD(x)|Dom(D) =

[iD, x].

Theorem 3.3 (Christensen, 3.9 [6]). The domain of definition Dom(δD) is a SOT-dense

∗-subalgebra of B(H) and δD is a ∗-derivation into B(H). The graph of δD is WOT-closed.

Theorem 3.3 supports Christensen’s argument in [6] for considering differentiability of

x ∈ B(H) in the weak operator topology as opposed to the norm topology on B(H). In a

subsequent paper, [5], Christensen defines higher weak D-differentiability via higher powers

of δD.

Definition 3.4. An operator x ∈ B(H) is n-times weakly D-differentiable if x ∈ Dom(δnD).

Proposition 3.5 (Christensen, 2.6 [5]). An operator x ∈ B(H) is n-times weakly D-

differentiable if and only if for each pair h, k ∈ H, the function t 7→ 〈αt(x)h, k〉 is n-times

continuously differentiable. Moreover, if x is n-times weakly D-differentiable, then

dn

dtn
〈αt(x)h, k〉 = 〈αt[δnD(x)]h, k〉 .



33

Analogous to Theorem 3.2, the following proposition and theorem connect higher-order

weak D-differentiability of x ∈ B(H) to definedness and boundedness of iterated commuta-

tors [iD, ..., [iD, x]].

Proposition 3.6 (Christensen, 3.3 [5]). Let x ∈ Dom(δnD). Then for k = 1, ..., n,

(i) δk−1
D (x)(Dom(D)) ⊆ Dom(D)

(ii) x(Dom
(
Dk
)
) ⊆ Dom

(
Dk
)

(iii) Dom

[iD, ..., [iD, x]]︸ ︷︷ ︸
k times

 = Dom
(
Dk
)

(iv) δkD(x)|Dom(Dk) = [iD, ..., [iD, x]]︸ ︷︷ ︸
k times

(v) δkD(x) is the bounded extension of [iD, ..., [iD, x]]︸ ︷︷ ︸
k times

from Dom
(
Dk
)

to all of H.

Theorem 3.7 (Christensen, 4.1 [5]). Let x ∈ B(H). The following are equivalent:

(i) x is n times weakly D-differentiable.

(ii) For all k = 1, ..., n, x(Dom
(
Dk
)
) ⊆ Dom

(
Dk
)

and [iD, ..., [iD, x]]︸ ︷︷ ︸
k times

is defined and

bounded on Dom
(
Dk
)

with bounded extension δkD(x).

(iii) There exists a core C for D such that for any k = 1, ..., n, the operator [iD, ..., [iD, x]]︸ ︷︷ ︸
k times

is defined and bounded on C .

Notation 3.8. For notational convenience, for each k ∈ N we define

dk(x) := [iD, ..., [iD, x]]︸ ︷︷ ︸
k times

.
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3.2 Weakly −i ddθ-Differentiable Multiplication Operators on L2(T)

Consider the operator D = −i d
dθ

on L2(T) with domain

Dom(D) =
{
f ∈ L2(T) : f is absolutely continuous, f ′ ∈ L2(T)

}
.

Notation 3.9. Given a σ-finite measure space (X,µ), define

diag : L∞(X,µ) → B(L2(X,µ))

f 7→ Mf

where Mfg = fg for each g ∈ L2(X,µ).

Proposition 3.11 characterizes the n-times weakly D-differentiable multiplication opera-

tors Mf ∈ diag(L∞(T)), and Proposition 3.10 provides as the case when n = 1.

Proposition 3.10. Let f ∈ L∞(T). The following statements are equivalent:

(i) Mf is weakly D-differentiable.

(ii) f ∈ Dom(D) and Df ∈ L∞(T).

When either condition is satisfied, δDw (Mf ) = Mf ′ .

Proof. (⇒) If Mf ∈ Dom(δD), then Mf (Dom(D)) ⊆ Dom(D) by Theorem 3.2. Let 1

denote the function which takes the value 1 for all z ∈ T. Then 1 is in Dom(D), and so

f = Mf1 ∈ Dom(D). In [6], Christensen remarks that in this particular setting, condition

(iii) of Theorem 3.2 holds if and only if there exists c > 0 such that for all z ∈ T and t ∈ R,

∣∣f(zeit)− f(z)
∣∣ ≤ c |t| .
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As f ∈ Dom(D), f is absolutely continuous and thus differentiable a.e. Hence, for a.e. z ∈ T,

|f ′(z)| = lim
t→0

∣∣∣∣f(zeit)− f(z)

t

∣∣∣∣ ≤ c.

Therefore, ‖f ′‖∞ ≤ c, so f ′ ∈ L∞(T). Hence, Df = −if ′ ∈ L∞(T).

(⇐): Suppose f ∈ Dom(D) and Df ∈ L∞(T). We show Mf (Dom(D)) ⊆ Dom(D)

and [iD,Mf ] agrees with the bounded operator Mf ′ on Dom(D). Fix g ∈ Dom(D). Then

g′ ∈ L2(T), so

‖(fg)′‖2 = ‖fg′ + f ′g‖2 ≤ ‖fg
′‖2 + ‖f ′g‖2 ≤ ‖f‖∞ ‖g

′‖2 + ‖f ′‖∞ ‖g‖2 <∞.

Also, the product of two absolutely continuous functions is absolutely continuous. Therefore,

fg ∈ Dom(D). As g ∈ Dom(D) was arbitrary, we have Mf (Dom(D)) ⊆ Dom(D). Observe

[iD,Mf ]g = (fg)′ − fg′ = f ′g + fg′ − fg′ = f ′g = Mf ′g for all g ∈ Dom(D).

As f ′ ∈ L∞(T) and [iD,Mf ]|Dom(D) = Mf ′ ∈ B(L2(T)), we have that [iD,Mf ] is defined

and bounded on Dom(D). By (i)⇐⇒ (iv) of Theorem 3.2, we conclude Mf ∈ Dom(δD) and

δD(Mf ) = Mf ′ .

Proposition 3.11. Let f ∈ L∞(T). The following statements are equivalent:

(i) Mf is n-times weakly D-differentiable.

(ii) f ∈ Dom(Dn) and Dnf ∈ L∞(T).

When either condition is satisfied, δnD(Mf ) = Mf (n) .

Proof. Fix n ∈ N. We proceed by induction. The base case was established in Proposi-

tion 3.10.
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(⇒) : Suppose for all k ≤ n−1, if Mf ∈ Dom
(
δkD
)

then f ∈ Dom
(
Dk
)

and Dkf ∈ L∞(T).

Let Mf ∈ Dom(δnD), so Mf ∈ Dom
(
δkD
)

for each k ≤ n. The inductive hypothesis implies

f ∈ Dom
(
Dk
)

and Dkf ∈ L∞(T) for each k ≤ n− 1.

As in the proof of Proposition 3.10, let 1 the function which takes the value 1 for all

z ∈ T. By Proposition 3.6 (ii), Mf (Dom(Dn)) ⊆ Dom(Dn), and so f = Mf1 ∈ Dom(Dn).

To see that Dnf ∈ L∞(T), note Mf ∈ Dom(δnD) implies δn−1
D (Mf ) ∈ Dom(δD). By the

inductive hypothesis,

δn−1
D (Mf ) = Mf (n−1) .

By (i) ⇐⇒ (iii) of Theorem 3.2, Mf (n−1) ∈ Dom(δD) if and only if there exists c > 0 such

that for all z ∈ T and t ∈ R,

∣∣f (n−1)(zeit)− f (n−1)(z)
∣∣ ≤ c |t| .

Now, f ∈ Dom(Dn) by definition means Dn−1f ∈ Dom(D), which is equivalent to f (n−1) ∈

Dom(D). In particular, f (n−1) is differentiable a.e., and thus, for almost every z ∈ T, we

have ∣∣f (n)(z)
∣∣ = lim

t→0

∣∣∣∣f (n−1)(zeit)− f (n−1)(z)

t

∣∣∣∣ ≤ c.

Therefore,
∥∥f (n)

∥∥
∞ ≤ c, and hence, f (n) ∈ L∞(T). Given Dnf = (−i)nf (n), we have shown

Dnf ∈ L∞(T).

(⇐) : Let f ∈ Dom(Dn) and suppose Dnf ∈ L∞(T). Further, suppose for all k ≤ n− 1,

if f ∈ Dom
(
Dk
)

and Dkf ∈ L∞(T), then Mf ∈ Dom
(
δkD
)
. To prove Mf ∈ Dom(δnD), by

Theorem 3.7, it suffices to prove Mf (Dom(Dn)) ⊆ Dom(Dn) and the commutator

dn(Mf ) = [iD, ..., [iD,Mf ]]︸ ︷︷ ︸
n times
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is bounded on Dom(Dn). Given g ∈ Dom(Dn), showing Mfg ∈ Dom(Dn) amounts to

proving

(i) fg ∈ Dom(Dn−1),

(ii) Dn−1(fg) is absolutely continuous, and

(iii) (Dn−1(fg))′ ∈ L2(T).

Since Mf ∈ Dom
(
δn−1
D

)
, Proposition 3.6 implies Mf (Dom(Dn−1)) ⊆ Dom(Dn−1). Hence,

g ∈ Dom(Dn) ⊆ Dom(Dn−1) implies Mfg = fg ∈ Dom(Dn−1). Now,

Dn−1(fg) = (−i)n−1

n−1∑
j=0

(
n− 1

j

)
f (n−1−j)g(j).

Each term of the above sum is the product of absolutely continuous functions because

Dn−1−jf ∈ Dom(D) and Djg ∈ Dom(D) for all j = 0, ..., n − 1. The product of any two

absolutely continuous functions on a bounded interval is again absolutely continuous, and

thus the entire sum is as well. Therefore, (ii) is satisfied. Also,

∥∥(Dn−1(fg))′
∥∥

2
= ‖Dn(fg)‖2 ≤

n∑
j=0

(
n

j

)∥∥f (n−j)g(j)
∥∥

2
≤

n∑
j=0

(
n

j

)∥∥f (n−j)∥∥
∞

∥∥g(j)
∥∥

2
.

As ‖fn−j‖∞ =
∥∥D(n−j)f

∥∥
∞ <∞ and g ∈ Dom(Dn) ensures g(j) ∈ L2(T) for all j = 0, ..., n,

we conclude that ‖(Dn−1(fg))′‖2 <∞. Therefore, Mf (Dom(Dn)) ⊆ Dom(Dn).

Having established that dn(Mf ) is defined on Dom(Dn), we now show dn(Mf ) is bounded

on Dom(Dn). In Proposition 3.10 we observed [iD,Mf ]|Dom(D) = Mf ′ . Since f ′ ∈ L∞(T), we

concluded δD(Mf ) = Mf ′ . Following this same argument, we have dk(Mf ) = Mf (k)|Dom(Dk),

so δkD(Mf ) = Mf (k) for all k ≤ n− 1. As Dom(Dn) ⊆ Dom(Dn−1),

dn(Mf )|Dom(Dn) = d(dn−1(Mf ))|Dom(Dn) = d(Mf (n−1))|Dom(Dn) = [iD,Mf (n−1) ]|Dom(Dn).
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Furthermore, [iD,Mf (n−1) ]|Dom(Dn) = Mf (n) . By assumption, Dnf ∈ L∞(T), which is equiv-

alent to f (n) ∈ L∞(T). Therefore, the commutator dn(Mf ) agrees with the bounded op-

errator Mf (n) on Dom(Dn), which establishes by Theorem 3.7 that Mf ∈ Dom(δnD) and

δnD(Mf ) = Mf (n) .

3.3 Domains of Higher Powers

Throughout this section, D denotes an arbitrary self-adjoint operator on a Hilbert space H.

While Theorem 3.7 extends Theorem 3.2 by connecting n-times weak D-differentiability of a

bounded operator x to definedness and boundedness of an iterated commutator of x with iD,

there is no analogous theorem to Theorem 3.3 stating that Dom(δnD) remains SOT-dense in

B(H). The purpose of this section is to give a constructive proof of SOT-density of Dom(δnD)

for all n ∈ N.

Given f, g ∈ H, recall the rank-one operator f ⊗ g∗ : H → H is defined as

(f ⊗ g∗)(v) := 〈v, g〉 f for all v ∈ H.

Fix n ∈ N. We use the facts that Span{f ⊗ g∗ : f, g ∈ H} is norm-dense in K(H) and that

K(H) is SOT-dense in B(H) to prove Dom(δnD) is SOT-dense in B(H).

Lemma 3.12. Let n ∈ N. If h, k ∈ Dom(Dn), then h⊗ k∗ ∈ Dom(δnD) and

δnD(h⊗ k) =
n∑
j=0

(iD)n−jh⊗ [(iD)jk]∗.
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Proof. Let h, k ∈ Dom(Dn). First, observe that for all f, g ∈ H,

〈αt(h⊗ k∗)f, g〉 =
〈
eitD(h⊗ k∗)e−itDf, g

〉
=
〈
(h⊗ k)e−itDf, e−itDg

〉
=
〈〈
e−itDf, k

〉
h, e−itDg

〉
=
〈
eitDh, g

〉 〈
f, eitDk

〉
.

Let us consider the case when n = 1. By Proposition 3.5, h⊗ k∗ ∈ Dom(δD) if and only

if for every f, g ∈ H the map t 7→ 〈αt(h⊗ k∗)f, g〉 is continuously differentiable. Thus, it

suffices to prove that

t 7→ 〈αt(h⊗ k∗)f, g〉 =
〈
f, eitDk

〉 〈
eitDh, g

〉
is n-times continuously differentiable for all f, g ∈ H.

Fix f, g ∈ H. By Stone’s Theorem,

lim
t→0

∥∥∥∥eitDh− ht
− iDh

∥∥∥∥ = 0 and lim
t→0

∥∥∥∥eitDk − kt
− iDk

∥∥∥∥ = 0.

By the Schwarz inequality, the maps t 7→
〈
f, eitDk

〉
and t 7→

〈
eitDh, g

〉
are continuously

differentiable with derivatives t 7→
〈
f, eitD(iDk)

〉
and t 7→

〈
eitD(iDh), g

〉
, respectively. Since

the product of two continuously differentiable functions is continuously differentiable, t 7→

〈αt(h⊗ k∗)f, g〉 =
〈
eitDh, g

〉 〈
f, eitDk

〉
is continuously differentiable. As f, g ∈ H were

arbitrary, we conclude h⊗ k∗ ∈ Dom(δD).

Furthermore, Proposition 3.5 states that for all f, g ∈ H,

d

dt
〈αt(h⊗ k∗)f, g〉

∣∣
t=0

= 〈δD(h⊗ k∗)f, g〉 .
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Hence,

〈δD(h⊗ k∗)f, g〉 =
d

dt

(〈
f, eitDk

〉 〈
eitDh, g

〉) ∣∣
t=0

=
〈
f, eitDiDk

〉 〈
eitDh, g

〉 ∣∣
t=0

+
〈
f, eitDk

〉 〈
eitDiDh, g

〉 ∣∣
t=0

= 〈f, iDk〉 〈h, g〉+ 〈f, k〉 〈iDh, g〉

= 〈〈f, iDk〉h, g〉+ 〈〈f, k〉 iDh, g〉

= 〈[h⊗ (iDk)∗]f, g〉+ 〈[(iDh)⊗ k∗]f, g〉

= 〈[(iDh)⊗ k∗ + h⊗ (iDk)∗]f, g〉

As f, g ∈ H were arbitrary, δD(h⊗ k∗) = (iDh)⊗ k∗ + h⊗ (iDk)∗.

For general n ∈ N, the rank-one operator h⊗k∗ is n-times weakly D differentiable if and

only if for every f, g ∈ H the map t 7→ 〈αt(h⊗ k∗)f, g〉 is n-times continuously differentiable.

As above, 〈αt(h⊗ k∗)f, g〉 =
〈
f, eitDk

〉 〈
eitDh, g

〉
and, given h, k ∈ Dom(Dn), the functions

t 7→
〈
f, eitDk

〉
and t 7→

〈
eitDh, g

〉
are n-times continuously differentiable, where

dj

dtj
〈
f, eitDk

〉
=
〈
f, eitD[(iD)jk]

〉
and

dj

dtj
〈
eitDh, g

〉
=
〈
eitD[(iD)jh], g

〉
for each j = 1, ..., n. Since the product of two n-times continuously differentiable functions

is n-times continuously differentiable, t 7→ 〈αt(h⊗ k∗)f, g〉 is n-times continuously differen-

tiable. As f, g ∈ H were arbitrary, h ⊗ k∗ ∈ Dom(δnD), and a computation similar to the

n = 1 case yields

δnD(h⊗ k∗) =
n∑
j=0

(iD)n−jh⊗ [(iD)jk]∗.

Notation 3.13. Given a subset S ⊆ H, let F(S) := Span{f ⊗ g∗ : f, g ∈ S}.

Lemma 3.14. If S ⊆ H is a dense subspace, then F(S) is norm-dense in K(H).



41

The proof is an easy exercise which we leave to the reader.

Corollary 3.15. For each n ∈ N, Dom(δnD) ∩ F(H) is norm-dense in K(H).

Proof. By Lemma 3.12, F(Dom(Dn)) ⊆ Dom(δnD) ∩ F(H). As Dom(Dn) is dense in H

for each n ∈ N by Nelson’s Analytic Vector Theorem, Lemma 3.14 implies F(Dom(Dn)) is

norm-dense in K(H). Therefore, Dom(δnD) ∩ F(H) is norm-dense in K(H).

Theorem 3.16. For each n ∈ N, Dom(δnD) is SOT-dense in B(H).

Proof. As the norm topology is finer than the SOT on B(H),

F(H) ∩Dom(δnD)
SOT
⊇ F(H) ∩Dom(δnD)

‖·‖
= K(H)

by Corollary 3.15. Therefore, F(H) ∩Dom(δnD)
SOT

= K(H)
SOT

= B(H).

3.4 Co–Groups of Isometries and their Infinitesimal Generators

Theorem 3.16 strengthens Christensen’s Theorem 3.3 and provides a way to construct el-

ements in Dom(δnD) using elements from Dom(Dn). Given that the analytic vectors for D

are dense in H, we were led to wonder if the analytic vectors for δD (which are operators in

B(H)) were SOT-dense in B(H).

To relate the analytic vectors for D and δD as we related Dom(Dn) and Dom(δnD) in

Lemma 3.12, we exploit an equivalent notion of analyticity for the one-parameter families

for which D and δD are infinitesimal generators: {eitD}t∈R and {αt}t∈R, respectively. We

first introduce the notion of analytic vectors for a general one-parameter family on a Banach

space, and then we specialize to our setting.
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Definition 3.17. Let X be a Banach space and let Y be a closed subspace of X∗. A one-

parameter family {τt}t∈R of isometries on X into itself is called a σ(X, Y )-continuous group

of isometries of X if

1. τ0 = I,

2. τs+t = τsτt for all s, t ∈ R,

3. t 7→ τt(x) is σ(X, Y )-continuous for all x ∈ X, i.e., t 7→ ψ(τt(x)) is continuous for all

x ∈ X and ψ ∈ Y , and

4. x 7→ τt(x) is σ(X, Y )-continuous for all t ∈ R.

Note that condition (4) in Definition 3.17 is needed as Y may not be invariant under the

Banach space adjoint of τt acting on X∗. Given λ > 0, set Ωλ := {z ∈ C : Im(z) < λ}.

Definition 3.18. Given a σ(X, Y )-continuous group of isometries {τt}t∈R, an element x ∈ X

is analytic for {τt}t∈R if there exists λ > 0 and a function ϕ : Ωλ → X such that

1. ϕ(t) = τt(x) for all t ∈ R and

2. z 7→ ψ(ϕ(z)) is analytic on Ωλ for all ψ ∈ Y.

Definition 3.19. Given a σ(X, Y )-continuous group of isometries {τt}t∈R, the infinitesimal

generator S for {τt}t∈R is the operator whose domain consists of all elements x ∈ X such

that there exists x′ ∈ X which satisfies

lim
t→0

ψ

(
τt(x)− x

t
− x′

)
= 0 for all ψ ∈ Y. (∗)

If x ∈ Dom(S), set Sx := x′, where x′ satisfies condition (∗).

Proposition 3.20 below states that the two notions of analyticity in Definitions 2.14 and

3.18 are equivalent when S is the infinitesimal generator of {τt}t∈R.
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Proposition 3.20 (Bratteli-Robinson, [4]). If {τt}t∈R is a σ(X, Y )-continuous group of

isometries with infinitesimal generator S, then x is analytic for {τt}t∈R if and only if x is

an analytic vector for S.

Consider the Banach space B(H) along with the one-parameter group of ∗-automorphisms

{αt}t∈R given by αt(x) = eitDxe−itD for all x ∈ B(H), t ∈ R. The closed subspace of elemen-

tary vector functionals Y in B(H)∗ recovers the WOT on B(H) as the σ(X, Y )-topology.

Proposition 3.21. The family {αt}t∈R is a WOT-continuous group of ∗-automorphisms

with infinitesimal generator δD.

It is straightforward to check WOT-continuity of the automorphism group {αt}t∈R using

the SOT-continuity of the unitary group {eitD}t∈R. Furthermore, δD is the corresponding

infinitesimal generator for {αt}t∈R simply by definition of weak D-differentiability. As a

corollary of Propositions 3.20 and 3.21, we have the following:

Corollary 3.22. An element x ∈ B(H) is analytic for {αt}t∈R if and only if x ∈ A(δD),

where A(δD) denotes the set of analytic operators for δD.

3.5 The Riesz Map and Density of Analytic Vectors

Initially, our strategy for proving SOT-density of the set of analytic vectors for δD in B(H)

was to mimic the steps of Lemma 3.12—given h, k ∈ A(D), we wanted h⊗ k∗ to be analytic

for δD. If h, k ∈ A(D), the equivalent notion of analyticity from Proposition 3.20 implies that

for each f, g ∈ H, the maps t 7→
〈
eitDh, g

〉
and t 7→

〈
eitDk, f

〉
extend to analytic functions

on some strip in the complex plane. But then, the map t 7→
〈
f, eitDk

〉
is co-analytic, and

since 〈αt(h⊗ k∗)f, g〉 =
〈
eitDh, g

〉 〈
f, eitDk

〉
is the product of an analytic function and a

co-analytic function, we could not necessarily extend the map t 7→ 〈αt(h⊗ k∗)f, g〉 to an

analytic function on a strip in the complex plane.
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To remedy the issue of co-analyticity for the function involving k, we utilize the Riesz

map R : H → H∗ given by h 7→ ψh, where

ψh(f) := 〈f, h〉 for all f ∈ H.

Note that R is anti-unitary: 〈Rf,Rg〉H∗ = 〈g, f〉H for all f, g ∈ H.

It is clear that conjugating a self-adjoint operator D by a unitary U results in another

self-adjoint operator. Below we verify that conjugating D by R results in a self-adjoint

operator.

Lemma 3.23. Define D# : R(Dom(D))→ H∗ by D#(Rh) := R(Dh) for all h ∈ Dom(D).

The map D# := RDR−1 with Dom
(
D#
)

= R(Dom(D)) is self-adjoint.

Proof. We first show D# is a linear symmetric operator. Given h ∈ Dom(D) and λ ∈ C,

observe

D#(λRh) = [RDR−1] (λRh) = [RD](λh) = R(λDh) = λ[RDR−1](Rh) = λD#(Rh).

As h ∈ Dom(D) was arbitrary and Dom
(
D#
)

= R(Dom(D)), we have D#(λψ) = λD#ψ

for all ψ ∈ Dom
(
D#
)

and λ ∈ C. It’s easy to check additivity of D#, so D# is linear. For

f, h ∈ Dom(D),

〈
D#Rh,Rf

〉
= 〈RDh,Rf〉 = 〈f,Dh〉 = 〈Df, h〉 = 〈Rh,RDf〉 =

〈
Rh,D#Rf

〉
.

As f, h ∈ Dom(D) were arbitrary and Dom
(
D#
)

= R(Dom(D)),

〈
D#ψ, φ

〉
=
〈
ψ,D#φ

〉
for all ψ, φ ∈ Dom

(
D#
)
.
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Therefore, D# is symmetric. Note that R(Dom(D)) is dense in H∗ since Dom(D) is dense

in H and R is a continuous bijection. Thus, it suffices to show Dom
(
(D#)∗

)
⊆ Dom

(
D#
)
.

Recall that the domain of the adjoint of D# is the set

Dom
(
(D#)∗

)
= {φ ∈ H∗ : the map Dom

(
D#
)
→ C; ψ 7→

〈
D#ψ, φ

〉
is bounded}

= {φ ∈ H∗ : the map R(Dom(D))→ C; Rh 7→
〈
D#(Rh), φ

〉
is bounded}.

= {φ ∈ H∗ : the map R(Dom(D))→ C; Rh 7→
〈
R−1φ,R−1D#(Rh)

〉
is bounded}.

= {φ ∈ H∗ : the map R(Dom(D))→ C; Rh 7→
〈
R−1φ,Dh

〉
is bounded}.

Hence, given φ ∈ Dom
(
(D#)∗

)
, the map R(Dom(D))→ C defined by

Rh 7→
〈
R−1φ,Dh

〉
for all h ∈ Dom(D)

is a bounded linear functional. Then, since R is isometric, the composition

Dom(D) −→ R(Dom(D)) −→ C

h 7→ Rh 7→ 〈R−1φ,Dh〉

defines a bounded linear functional on the domain of D. By the definition of the do-

main of D∗, this implies R−1φ belongs to Dom(D∗). Further, self-adjointness of D im-

plies Dom(D) = Dom(D∗), so R−1φ ∈ Dom(D). Since R is bijective, we conclude φ ∈

R(Dom(D)) = Dom
(
D#
)
. Therefore, D# is self-adjoint.

By Nelson’s Analytic Vector Theorem, the set of analytic vectors A(D#) is dense in H∗.

As R−1 : H∗ → H is a continuous bijection, it follows that R−1[A(D#)] is dense in H.
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Notation 3.24. Given subsets S1, S2 ⊆ H, let

F(S1, S2) := Span{f ⊗ g∗ : f ∈ S1, g ∈ S2}.

Denote F(S1, S1) by F(S1).

Lemma 3.25. If S1, S2 ⊆ H are dense, then F(S1, S2) is norm-dense in K(H).

The proof of Lemma 3.25 is a simple modification of the case when S1 = S2 in Lemma 3.14.

By Lemma 3.25, F
(
A(D),R−1[A(D#)]

)
is norm-dense in K(H).

Proposition 3.26. If h ∈ A(D) and k ∈ R−1[A(D#)], then h⊗ k∗ ∈ A(δD).

Proof. Let h ∈ A(D) and k ∈ R−1[A(D#)]. By Corollary 3.22, h⊗ k∗ ∈ A(δD) if and only if

h ⊗ k∗ is analytic for {αt}t∈R. To prove h ⊗ k∗ is analytic for {αt}t∈R, we must find λ > 0

and a function ϕ : Ωλ → B(H) such that

1. ϕ(t) = αt(h⊗ k∗) for all t ∈ R and

2. z 7→ 〈ϕ(z)f, g〉 is analytic on Ωλ for all f, g ∈ H.

We construct ϕ using the two functions obtained from analytic properties of h and k. As

h ∈ A(D), Proposition 3.20 implies h is analytic for {eitD}t∈R. Thus, there exists λh > 0 and

a function ϕh : Ωλh → H such that

1. ϕh(t) = eitDh for all t ∈ R and

2. z 7→ 〈ϕh(z), g〉 is analytic on Ωλh for all g ∈ H.

As k ∈ R−1[A(D#)], there exists a unique ζk ∈ A(D#) such that k = R−1ζk. Since ζk is

analytic for D#, it is analytic for {eitD#}t∈R by Proposition 3.20. Hence, there exists λk > 0

and a function ϕk : Ωλk → H∗ such that
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1. ϕk(t) = eitD
#
ζk for all t ∈ R and

2. z 7→ 〈ϕk(z),Rf〉 is analytic on Ωλk for all f ∈ H.

Note that in (2), we simply identified H∗ with R(H). Set λ := min{λh, λk}, and fix z ∈ Ωλ.

Define a map [·, ·] : H×H → C by

[f, g] := 〈ϕh(z), g〉 〈ϕk(z),Rf〉 for all f, g ∈ H.

Sesquilinearity of the inner products on H and H∗ and antilinearity of R establishes that

[·, ·] is a sesquilinear form. Moreover, for any f, g ∈ H,

|[f, g]| = |〈ϕh(z), g〉| |〈ϕk(z),Rf〉| ≤ ‖ϕh(z)‖ ‖g‖ ‖ϕk(z)‖ ‖f‖ .

As h, k, and z are fixed, [·, ·] defines a bounded sesquilinear form on H. Thus, for each z ∈

Ωλ, the Riesz Representation Theorem for Bounded Sesquilinear Forms yields an operator

ϕ(z) ∈ B(H) such that

〈ϕ(z)f, g〉 = [f, g] = 〈ϕh(z), g〉 〈ϕk(z),Rf〉 for all f, g ∈ H.

As the two maps z 7→ 〈ϕh(z), g〉 and z 7→ 〈ϕk(z),Rf〉 are analytic on Ωλ for all f, g ∈ H,

their product z 7→ 〈ϕ(z)f, g〉 is analytic on Ωλ for all f, g ∈ H. Furthermore, for each t ∈ R,

〈ϕ(t)f, g〉 =
〈
eitDh, g

〉 〈
eitD

#

ζk,Rf
〉

=
〈
eitDh, g

〉 〈
f, eitDk

〉
= 〈αt(h⊗ k∗)f, g〉 .

As f, g ∈ H were arbitrary, we have ϕ(t) = αt(h ⊗ k∗) for all t ∈ R. Therefore, h ⊗ k∗

is analytic for {αt}t∈R in the WOT. By equivalence of analyticity for {αt}t∈R and δD, we

conclude h⊗ k∗ ∈ A(δD).
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Theorem 1.1. The set of analytic vectors for δD is SOT-dense in B(H).

Proof. Proposition 3.26 implies F(A(D),R−1[A(D#)]) is contained in A(δD), so

F
(
A(D),R−1[A(D#)]

)
⊆ A(δD) ∩ F (H).

By Lemma 3.25 and Nelson’s Analytic Vector Theorem, F
(
A(D),R−1[A(D#)]

)
is norm-

dense in K(H). Thus, A(δD)∩F(H) is norm-dense in K(H). Therefore, A(δD) is SOT-dense

in B(H).
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Chapter 4

Kernel Stabilization

The main theorem of this chapter, Theorem 1.2, states that for any self-adjoint operator D

on a Hilbert space, ker δnD = ker δD for all n ∈ N. We call this property kernel stabilization.

4.1 Motivating Example

Throughout section 4.1, we denote the standard orthonormal basis for `2(Z) by {εj : j ∈ Z},

and we denote the matrix representation of an operator x ∈ B(`2(Z)) with respect to the

standard orthonormal basis by [xrc] where

xrc := 〈xεc, εr〉 for all r, c ∈ Z.

Example 4.1. Define (Df)(j) := jf(j) for f ∈ Dom(D), where

Dom(D) := {f ∈ `2(Z) :
∑
j∈Z

j2 |f(j)|2 <∞}.

Then

(i) the operator D is self-adjoint.

(ii) an operator x ∈ B(`2(Z)) is n-times weakly D-differentiable if and only if for every
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k ≤ n, x(Dom
(
Dk
)
) ⊆ Dom

(
Dk
)

and the matrix [ik(r − c)kxrc] with dense domain

Dom
(
Dk
)

extends to a bounded operator on `2(Z). When either condition is satisfied,

[δnD(x)rc]|Dom(Dn) = [in(r − c)nxrc].

(iii) for any g ∈ `∞(Z), δD(Mg) = 0.

(iv) for all n ∈ N, ker δnD = diag(`∞(Z)).

Proof. (i) See Example 7.1.5 of [22].

(ii) Matrix multiplication shows for any r, c ∈ Z,

dk(x)rc = ik(r − c)kxrc.

Given x ∈ B(`2(Z)) such that x(Dom
(
Dk
)
) ⊆ Dom

(
Dk
)

for each k ≤ n, the domain of

dk(x) is Dom
(
Dk
)
. Theorem 3.7 states x is n-times weakly D-differentiable if and only

if for every k ≤ n, x(Dom
(
Dk
)
) ⊆ Dom

(
Dk
)

and dk(x) is bounded on Dom
(
Dk
)
. It

follows that x is n-times weaklyD-differentiable if and only if x(Dom
(
Dk
)
) ⊆ Dom

(
Dk
)

and [dk(x)rc] = [ik(r− c)kxrc] is bounded on Dom
(
Dk
)
. As D is self-adjoint, Dom

(
Dk
)

is dense in `2(Z) for all k ∈ N. Therefore, [dk(x)rc] extends to a bounded matrix on all

of `2(Z). By Theorem 3.7, the closure δnD(x) is the extension of [in(r − c)nxrc] to all of

`2(Z).

(iii) Fix g ∈ `∞(Z), and let f ∈ Dom(D). We show Mgf ∈ Dom(D). Observe

∑
j∈Z

|j(Mgf)(j)|2 =
∑
j∈Z

|jg(j)f(j)|2 ≤ ‖g‖2
∞

(∑
j∈Z

|jf(j)|2
)
<∞.
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As f ∈ Dom(D) was arbitrary, Mg(Dom(D)) ⊆ Dom(D), and hence, the commutator

[iD,Mg] is a well-defined linear operator on Dom(D). Furthermore, iD and Mg are

diagonal matrices with complex entries (which commute), so the commutator [iD,Mg]

is simply a restriction of the 0 operator to Dom(D). Theorem 3.2 implies Mg ∈ Dom(δD)

and δD(Mg) is the extension of [iD,Mg] to all of H. In particular, δD(Mg) = 0. Hence,

Mg ∈ ker δD, and since g ∈ `∞(Z) was arbitrary, diag(`∞(Z)) ⊆ ker δD.

(iv) Part (c) quickly implies diag(`∞(Z)) ⊆ ker δnD for all n ∈ N. We now show if δnD(x) = 0,

then x ∈ diag(`∞(Z)). If x ∈ Dom(δnD) and δnD(x) = 0, then x ∈ B(`2(Z)) and δnD(x)rc =

0 for every r, c ∈ Z. By part (b),

[δnD(x)rc]|Dom(Dn) = [in(r − c)nxrc],

thus, in(r − c)nxrc = 0 for every r, c ∈ Z. If r 6= c, it must be that xrc = 0, i.e., x must

be zero off the diagonal. As x ∈ B(`2(Z)), we conclude x ∈ diag(`∞(Z)). Therefore,

ker δnD = diag(`∞(Z)) for all n ∈ N.

This kernel stabilization phenomenon initially appears unique to the setting of Exam-

ple 4.1; the self-adjoint operator has a complete set of eigenvectors which forms our choice

of orthonormal basis. However, Theorem 1.2 shows that this example is not unique; kernel

stabilization holds for every self-adjoint operator on any Hilbert space.

4.2 General Kernel Stabilization of δD

Proposition 4.2. Let H be a Hilbert space and D a self-adjoint operator. The algebra ker δD

is a von Neumann algebra.
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Proof. The identity I of B(H) is easily shown to be in ker δD. Let x ∈ ker δD. As Dom(δD) is

a ∗-algebra by Theorem 3.3, x∗ ∈ Dom(δD). Since δD is a ∗-derivation, δD(x∗) = δD(x)∗ = 0.

Therefore, x∗ ∈ ker δD. Finally, if x, y ∈ ker δD, then xy ∈ Dom(δD) and δD(xy) = δD(x)y +

xδD(y) = 0, so xy ∈ ker δD.

Let (xλ)λ∈Λ ⊂ ker δD be a net converging in the WOT to some x ∈ B(H). We show x ∈

Dom(δD) and δD(x) = 0. Because δD(xλ) = 0 for all λ ∈ Λ, we trivially have δD(xλ)
WOT→ 0

as λ→∞. By Theorem 3.3, the graph of δD is WOT-closed. Therefore, x ∈ Dom(δD) and

δD(x) = 0. We conclude ker δD is a von Neumann algebra.

Notation 4.3. Let PD denote the collection of all spectral projections for D obtained

through the Spectral Theorem for Unbounded Self-Adjoint Operators. Also, let

MD := P ′′
D.

Lemma 4.4. Suppose x ∈ B(H) satisfies x(Dom(D)) ⊆ Dom(D). If P ∈PD, then

[P, [D, x]]h = [D, [P, x]]h for all h ∈ Dom(D).

Proof. Let B(R) be the bounded Borel functions on R, and for R ∈ R, define idR : R → R

by

idR(t) :=


t; -R ≤ t ≤ R

0; else

.

The Spectral Theorem, stated as in Theorem 7.2.8 of [22], provides a bounded Borel func-

tional calculus for D, that is, a ∗-homomorphism ΦD : B(R)→ B(H) satisfying ΦD(1) = I,

Dom(D) = {h ∈ H : lim
R→∞

‖ΦD(idR)h‖ <∞},
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and

Dh = lim
R→∞

ΦD(idR)h for all h ∈ Dom(D).

We claim for each P ∈PD, P (Dom(D)) ⊆ Dom(D) and PDh = DPh for all h ∈ Dom(D).

Given P ∈PD, there exists some Borel set E ⊆ R such that P = ΦD(χE). Note that

(idR · χE)(t) =


t; t ∈ E ∩ [−R,R]

0; else

.

Thus, for any h ∈ Dom(D),

lim
R→∞

‖ΦD(idR)Ph‖ = lim
R→∞

‖ΦD(idR)ΦD(χE)h‖ = lim
R→∞

‖ΦD(idR · χE)h‖ ≤ lim
R→∞

‖ΦD(idR)h‖ <∞.

Therefore, Ph ∈ Dom(D), and as h ∈ Dom(D) was arbitrary, P (Dom(D)) ⊆ Dom(D).

Furthermore,

‖DPh− PDh‖ = lim
R→∞

‖ΦD(idR)ΦD(χE)h− ΦD(χE)ΦD(idR)h‖

= lim
R→∞

‖ΦD(idR · χE)h− ΦD(χE · idR)h‖

= lim
R→∞

‖ΦD(idR · χE)h− ΦD(idR · χE)h‖

= 0.
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Given x(Dom(D)) ⊆ Dom(D), for any h ∈ Dom(D) we observe

[P, [D, x]]h = P (Dx− xD)h− (Dx− xD)Ph

= PDxh− PxDh−DxPh+ xDPh

= DPxh− PxDh−DxPh+ xPDh

= DPxh−DxPh+ xPDh− PxDh

= D(Px− xP )h+ (xP − Px)Dh

= D(Px− xP )h− (Px− xP )Dh

= [D, [P, x]]h

Hence, [P, [D, x]]h = [D, [P, x]]h for all h ∈ Dom(D), and as P ∈ PD was arbitrary, this

equality holds for any spectral projection of D.

Proposition 4.5. MD ⊆ ker δD =M′
D.

Proof. Let P ∈ PD. By the previous lemma, [D,P ] = 0 on Dom(D), so P ∈ Dom(δD) by

Theorem 3.2. Moreover, δD(P ) is the bounded extension of i(DP − PD) to all of H, which

is 0. Therefore, P ∈ ker δD. Because MD is generated as a von Neumann algebra by the

projections in PD, Proposition 4.2 implies MD ⊆ ker δD.

Let x ∈ ker δD. By Theorem 3.7, x(Dom(D)) ⊆ Dom(D) and δD(x)|Dom(D) = [D, x]|Dom(D) =

0. Then, by Theorem X.4.11 of [7], xf(D) ⊆ f(D)x for any f ∈ B(R). In particular, when

f = χE for some Borel subset E ⊆ R and P denotes the corresponding spectral projection

for D, xP = Px. Hence, x commutes with all projections in PD, and as MD is generated

as a von Neumann algebra by these projections, it follows that x ∈M′
D.

Let x ∈M′
D. For each t ∈ R, eitD ∈MD. Thus, αt(x) = eitDxe−itD = x for all t ∈ R. In

particular, for any h, k ∈ H, the function t 7→ 〈αt(x)h, k〉 = 〈xh, k〉 is constant, and thus is

continuously differentiable with derivative 0. Therefore, x ∈ ker δD by Proposition 3.5.
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We now present our kernel stabilization result.

Theorem 1.2. If D is any self-adjoint operator on a Hilbert space H, then for every n ∈ N,

ker δnD = ker δD.

Proof. We first show ker δ2
D = ker δD. The inclusion ker δD ⊆ ker δ2

D is clear. Let x ∈ ker δ2
D.

Proposition 4.5 states ker δD =M′
D. Thus, it suffices to prove x ∈ M′

D, which holds if and

only if [P, x] = 0 for every P ∈PD. By Proposition 3.6, if x ∈ Dom(δ2
D), then

(i) x(Dom(D)) ⊆ Dom(D),

(ii) δD(x)(Dom(D)) ⊆ Dom(D), and

(iii) δ2
D(x)|Dom(D) = [iD, δD(x)].

Since δ2
D(x) = 0, it must be that [iD, δD(x)] = 0. Thus, Theorem X.4.11 of [7] implies δD(x)

commutes with the bounded Borel functional calculus for D, so, in particular, [P, δD(x)] = 0

for every P ∈ PD. Because δD(x) and P both preserve the domain of D, so does the

commutator [P, δD(x)]. Thus, Lemma 4.4 implies

0 = [P, δD(x)]|Dom(D) = [P, [iD, x]]|Dom(D) = [iD, [P, x]]|Dom(D).

As [P, x] ∈ B(H), [P, x](Dom(D)) ⊆ Dom(D), and [iD, [P, x]] is bounded on the domain of
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D, Theorem 3.2 implies [P, x] ∈ ker δD. Hence, by Proposition 4.5, [P, x] ∈M′
D. Therefore,

[P, x] = (P + P⊥)[P, x](P + P⊥)

= P [P, x]P + P [P, x]P⊥ + P⊥[P, x]P + P⊥[P, x]P⊥

= P [P, x]P + PP⊥[P, x] + P⊥P [P, x] + P⊥[P, x]P⊥

= P (Px− xP )P + 0 + 0 + P⊥(Px− xP )P⊥

= PxP − PxP + 0 + 0 + 0

= 0.

As P ∈PD was arbitrary, x ∈M′
D. By Proposition 4.5, x ∈ ker δD.

We proceed by induction on n. The case when n = 1 is vacuous. Suppose ker δkD = ker δD

for some k ∈ N. Let x ∈ ker δk+1
D . Then δD(x) ∈ ker δkD, which equals ker δD by the inductive

hypothesis. Hence, x ∈ ker δ2
D. Since we have already shown ker δ2

D = ker δD, we have

x ∈ ker δD. Therefore, ker δnD = ker δD for all n ∈ N.

Remark 4.6. Let n ∈ N be arbitrary, and let x ∈ B(H). By Christensen’s Theorem 3.7,

kernel stabilization of δD is equivalent to the following statement: If

(i) the domains of the iterated commutators dk(x) for k = 1, ..., n contain a common core

C for D,

(ii) dk(x) is bounded on C for all k = 1, ..., n, and

(iii) the continuous bounded extension of dn(x) to all of H belongs to M′
D,

then [iD, x]|C = 0.

Less formally, if [iD, ..., [iD, x]]︸ ︷︷ ︸
n times

and all lower commutators are well-defined and bounded
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on a common core for D, then

[iD, ..., [iD, x]]︸ ︷︷ ︸
n times

= 0 implies [iD, x] = 0.

This rephrasing of Theorem 1.2 in the case when n = 2 is equivalent to Theorem 1.6.3 of [17]

in the self-adjoint setting. Putnam’s proof relies on techniques in the proof of Fuglede’s

Theorem, whereas our proof is direct. Establishing the equivalence of these statements

requires use of Christensen’s work in [5].

Equivalence of Kernel Stabilization to a Result of C.R. Putnam

Theorem 4.7 (Putnam, 1.6.3 [17]). Suppose D is normal and x, y ∈ B(H). If

1. xD + y ⊂ Dx and

2. yD ⊂ Dy,

then y = 0.

We claim that when D is self-adjoint, Theorem 4.7 is equivalent to Theorem 1.2 in the

case when n = 2. To show this, we show hypotheses (1) and (2) of Putnam’s Theorem 4.7

are equivalent to the hypothesis in Theorem 1.2.

(1) Note that the domain of xD + y is Dom(D) because y is bounded, and

Dom(D)x = {f ∈ H : xf ∈ Dom(D)}.

To say xD + y ⊂ Dx is to say that there is an inclusion of these operators’ graphs.
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Hence,

Γ(xD + y) ⊂ Γ(Dx) ⇐⇒ {(h, xDh+ yh) : h ∈ Dom(D)} ⊂ {(k,Dxk) : k ∈ Dom(Dx)}

⇐⇒ Dom(D) ⊂ Dom(Dx) and xDh+ yh = Dxh ∀h ∈ Dom(D)

⇐⇒ Dom(D) ⊂ {f ∈ H : xf ∈ Dom(D)} and [D, x]h = yh ∀h ∈ Dom(D)

⇐⇒ x(Dom(D)) ⊂ Dom(D) and [D, x]h = yh ∀h ∈ Dom(D).

(2) Similarly, yD ⊂ Dy is an inclusion of these operators’ graphs. Note that the domain of

yD is the domain of D, while

Dom(Dy) = {f ∈ H : yf ∈ Dom(D)}.

Thus,

Γ(yD) ⊂ Γ(Dy) ⇐⇒ {(h, yDh) : h ∈ Dom(D)} ⊂ {(k,Dyk) : k ∈ Dom(Dy)}

⇐⇒ Dom(D) ⊂ Dom(Dy) and yDh = Dyh ∀h ∈ Dom(D)

⇐⇒ Dom(D) ⊂ {f ∈ H : yf ∈ Dom(D)} and [D, y]h = 0 ∀h ∈ Dom(D)

⇐⇒ y(Dom(D)) ⊂ Dom(D) and [D, y]h = 0 ∀h ∈ Dom(D).

The content of Theorem 1.2 in the case when n = 2 is ker δ2
D ⊆ ker δD. We break the

hypothesis that x ∈ ker2
D into two simpler hypotheses:

(I) x ∈ Dom(δD)

(II) y := δD(x) ∈ Dom(δD) and δD(y) = 0.

Below we rewrite (I) and (II) using Christensen’s Theorem 3.2.
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(I) By Theorem 3.2,

x ∈ Dom(δD) ⇐⇒ ∃y ∈ B(H) st. [iD, x]|Dom(D) = y|Dom(D)

⇐⇒ Dx− xD is well-defined on Dom(D)

and ∃y ∈ B(H) s.t. [iD, x]|Dom(D) = y|Dom(D)

⇐⇒ x(Dom(D)) ⊆ Dom(D) and ∃y ∈ B(H) s.t. [iD, x]h = yh ∀h ∈ Dom(D)

⇐⇒ (1).

(II) Again by Theorem 3.2,

y ∈ Dom(δD) and δD(y) = 0 ⇐⇒ [D, y] is well-defined on Dom(D) and [D, y]|Dom(D) = 0

⇐⇒ y(Dom(D)) ⊆ Dom(D) and [D, y]h = 0 ∀h ∈ Dom(D)

⇐⇒ (2).

We have established that the statement of Theorem 1.2 in the n = 2 case is equivalent

to Theorem 4.7 in the self-adjoint setting.

The proofs of both Theorems 1.2 and 4.7 rely heavily on the Spectral Theorem for normal

operators. However, the kernel stabilization result depends only on independently-proven

facts about commutators of x ∈ B(H) with spectral projections for D, while Putnam’s

theorem is stated as a corollary to Fuglede’s Theorem. Of course, Fuglede’s Theorem makes

great use of spectral projections for normal operators, but our proof is more direct. We then

applied a simple inductive argument to get kernel stabilization for all higher powers of δD.
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4.3 Applications

Abstract Derivations on C∗-algebras

Given a self-adjoint operator D, our proof of kernel stabilization of δD relied on the relation-

ship between δD and commutation with D. Intuitively, then, kernel stabilization is likely to

occur for a derivation δ on an abstract C∗-algebra that can be implemented, under an appro-

priate representation, as commutation with a self-adjoint operator. Theorem 1.3 provides

sufficient conditions for when a derivation on a C∗-algebra has such a representation.

Under this representation, Bratteli and Robinson construct an essentially self-adjoint

operator S which implements the derivation’s action as commutation with S. Once this

essentially self-adjoint operator is defined, we use its self-adjoint closure D = S to generate

a corresponding weak-D derivation δD. We shall show δD extends δ ◦ π and then apply

Theorem 1.2 (kernel stabilization of δD) to obtain kernel stabilization of δ.

Theorem 1.3 (Bratteli-Robinson, 4 [3]). Let δ be a derivation of a C∗-algebra A, and

assume there exists a state ω on A which generates a faithful cyclic representation (π,H, f)

satisfying

ω(δ(a)) = 0 for all a ∈ Dom(δ).

Then δ is closable and there exists a symmetric operator S on H such that

Dom(S) = {h ∈ H : h = π(a)f for some a ∈ A}

and π(δ(a))h = [S, π(a)]h, for all a ∈ Dom(δ) and all h ∈ Dom(S). Moreover, if the set A(δ)

of analytic vectors for δ is dense in A, then S is essentially self-adjoint on Dom(S). For

x ∈ B(H) and t ∈ R, define

αt(x) := eiStxe−iSt
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where S denotes the self-adjoint closure of S. It follows that αt(π(A)) = π(A) for all t ∈ R,

and {αt}t∈R is a strongly continuous group of ∗-automorphisms with closed infinitesimal

generator δ̃ equaling the closure of π ◦ δ|A(δ).

The condition that there exist a state ω on A which satisfies ω(δ(a)) = 0 for all

a ∈ Dom(δ) physically represents the presence of an equilibrium state for the C∗-algebra

A of observables for a physical system with time evolution described by δ. If δ were the

infinitesimal generator for a one-parameter group of ∗-automorphisms {βt}t∈R on A, then

ω(βt(a)) = ω(a) for all t ∈ R would be an equivalent condition to require, and this condition

more commonly describes an equilibrium state. However, δ is an abstract derivation on A

with norm-dense domain, so there may not be a one-parameter group of ∗-automorphisms

for which δ is the infinitesimal generator.

Under the representation π, however, δ is implemented by commutation with S, whose

closure provides unitaries from which we can build a one-parameter group of ∗-automorphisms

{αt}t∈R on B(H). We relate the infinitesimal generator δ̃ for {αt}t∈R in Theorem 1.3 to a

derivation δu studied by Christensen.

Definition 4.8. Let D be a self-adjoint operator on a Hilbert space H. An operator x ∈

B(H) is uniformly D-differentiable if there exists y ∈ B(H) such that

lim
t→0

∥∥∥∥eitDxe−itD − xt
− y
∥∥∥∥ = 0. (∗)

We denote this by x ∈ Dom(δu) and set δu(x) = y, where y satisfies condition (∗).

Remark 4.9. Let S and δ̃ be as in Theorem 1.3, and let D = S. Then δ̃ from Theorem 1.3

and δu from Definition 4.8 are the same derivations with the same domains.

Proposition 4.10. If D is a self-adjoint operator, then ker δu = ker δD.
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Proof. Theorem 4.1 of [6] states x ∈ Dom(δu) if and only if x ∈ Dom(δD) and t 7→ αt(δD(x))

is norm-continuous. Moreover, δD extends δu. Thus, ker δu ⊆ ker δD.

Let x ∈ ker δD. Then t 7→ αt(δD(x)) = 0 is norm-continuous, and hence, x ∈ Dom(δu).

Moreover, δu(x) = [δD|Dom(δu)](x) = 0. Therefore, x ∈ ker δu. We conclude ker δD = ker δu.

Corollary 4.11. For all n ∈ N, ker δnu = ker δu.

Proof. Fix n ∈ N and let x ∈ ker δnu . Then x ∈ Dom(δnu) ⊆ Dom(δnD) and δnD(x) = δnu(x) = 0.

Therefore, x ∈ ker δnD, so by Theorem 1.2, x ∈ ker δD. By Proposition 4.10, ker δD = ker δu,

so we conclude x ∈ ker δu. Thus, ker δnu = ker δu for all n ∈ N, as claimed.

Lemma 4.12. If δ, A, π, and δ̃ are as in Theorem 1.3, then

ker δ̃n ∩ π(A(δ)) = π(ker δn) for all n ∈ N.

Proof. Fix n ∈ N. If a ∈ A(δ), then a ∈ Dom(δn) and δn(a) ∈ A(δ). Theorem 1.3 states

δ̃(π(b)) = π(δ(b)) for all b ∈ A(δ). Thus, as δn(a) ∈ A(δ), we have δ̃n(π(a)) = π(δn(a)).

Suppose δ̃n(π(a)) = 0. Then π(δn(a)) = δ̃n(π(a)) = 0, and since π is faithful, δn(a) = 0.

Therefore, π(a) ∈ π(ker δn).

Conversely, suppose a ∈ ker δn. Then a ∈ A(δ) because δj(a) = 0 for all j ≥ n and∑∞
k=0

tk

k!

∥∥δk(a)
∥∥ =

∑n−1
k=0

tk

k!

∥∥δk(a)
∥∥ <∞ for any choice of t > 0. Similar to above, δ̃n(π(a)) =

π(δn(a)) = π(0) = 0. Therefore, π(a) ∈ ker δ̃n ∩ π(A(δ)). As a ∈ A was arbitrary, ker δ̃n ∩

π(A(δ)) = π(ker δn). Finally, because n ∈ N was arbitrary, this equality holds for all n ∈

N.

Theorem 4.13. If δ, A, π, δ̃, and S are as in Theorem 1.3, then ker δn = ker δ.

Proof. Fix n ∈ N, and let a ∈ ker δn. Then a ∈ A(δ) and π(a) ∈ ker δ̃n by Lemma 4.12.

Note δ̃ = δu where D = S, so Proposition 4.11 implies ker δ̃n = ker δ̃ for all n ∈ N. Hence,
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π(a) ∈ ker δ̃ ∩ π(A(δ)). By another application of Lemma 4.12, we get a ∈ ker δ. Therefore,

ker δn = ker δ for all n ∈ N.

The Heisenberg Commutation Relation

Our second application of Theorem 1.2 gives a sufficient condition for when two self-adjoint

operators which satisfy the Heisenberg Commutation Relation must both be unbounded.

Definition 1.5. Let A and B be two (possibly unbounded) self-adjoint operators on a

Hilbert space H, with domains Dom(A) and Dom(B), respectively. We say A and B satisfy

the Heisenberg Commutation Relation (HCR) if there is a dense subspace K of H such that

(i) K ⊆ Dom([A,B]) and

(ii) [A,B]k = ik for all k ∈ K.

Definition 4.14. The classical example of a pair satisfying the HCR is the Schrödinger

pair, the quantum mechanical position operator Q and momentum operator P on L2(R)

from Examples 2.6 and 2.9.

Let S(R) denote the Schwartz space on R:

S(R) = {f ∈ C∞(R) : ∀m,n ∈ N, ‖QmP nf‖∞ <∞} .

Proposition X.6.5 of [7] shows S(R) is dense in L2(R), and it is clear from its definition that

S(R) is contained in Dom(Q) ∩ Dom(P ) and is invariant under both Q and P . Hence,

S(R) ⊆ Dom([Q,P ]). Furthermore, [Q,P ]g = ig for all g ∈ S(R). Therefore, Q and P

satisfy the HCR.

If two operators are unitarily equivalent to a direct sum of copies of the Schrödinger pair,

they are certainly both unbounded, and it is well-known that no two bounded operators may
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satisfy the HCR. Below is a well-known example of a pair of operators satisfying the HCR

where one operator is bounded.

Example 4.15. For f ∈ L2([0, 1]), define (Af)(x) = xf(x) for a.e. x ∈ [0, 1]. In contrast to

its unbounded analogue Q, the operator A is contractive. Let AC([0, 1]) denote the set of

functions which are absolutely continuous on [0, 1], and let

Dom(B) = {f ∈ AC[0, 1] : f ′ ∈ L2([0, 1]), f(0) = f(1)}.

For g ∈ Dom(B), define Bg = −ig′. Example X.1.12 of [7] shows the operator B with this

particular domain is self-adjoint. Due to boundedness of A,

Dom([A,B]) = {f ∈ Dom(B) : Af ∈ Dom(B)}.

Choose

K := {f ∈ AC([0, 1]) : f ′ ∈ L2([0, 1]), f(0) = f(1) = 0}.

Example X.1.11 of [7] shows K is dense in L2([0, 1]) as it contains all polynomials p on [0, 1]

satisfying p(0) = p(1) = 0. Furthermore, we claim K is invariant for A. Indeed, products

of absolutely continuous functions are again absolutely continuous, so (Ag)(x) = xg(x) for

a.e. x ∈ [0, 1] defines an absolutely continuous function. The a.e.-defined derivative of Ag

is equivalent to Ag′ + g by the product rule. Moreover, Ag′ + g belongs to L2([0, 1]) as

g′ ∈ L2([0, 1]) and A ∈ B(L2([0, 1])). Lastly,

(Ag)(0) = 0 · g(0) = 0 = 1 · 0 = 1 · g(1) = (Ag)(1).
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Thus, AK ⊆ K. As a result, K ⊆ Dom([A,B]). For k ∈ K, observe

[A,B]k = A(−ik′)−B(Ak) = −iAk′ − (−i)[Ak′ + k] = ik.

Therefore, A and B satisfy the HCR.

We claim the boundedness of the operators in Examples 4.14 and 4.15 is due to the rela-

tive size of Dom([Q,P ]) in L2(R) versus Dom([A,B]) in L2([0, 1]). In particular, Dom([A,B])

does not contain a core for A or B, while Dom([Q,P ]) contains a core for both Q and P .

Theorem 1.6. Let A and B be self-adjoint operators which satisfy the HCR on a dense

subspace K ⊆ H. If K is a core for A and B, then A and B are both unbounded.

Proof. Suppose that K is a core for both A and B. It is well-known that A and B cannot

both be bounded and satisfy the Heisenberg Relation. Thus, without loss of generality,

the only possibilities are that A is bounded and B is unbounded, or both A and B are

unbounded. Suppose that A ∈ B(H). Note that [A,B]k = ik for all k ∈ K if and only if

[iB,A]k = k for all k ∈ K.

As K is a core for B and ‖[iB,A]|K‖ = 1, we have that A ∈ Dom(δB). Furthermore,

δB(A) is the continuous extension of the bounded and densely-defined operator [iB,A]|K to

all of H, and thus, δB(A) = I. Trivially, I ∈ Dom(δB) and δB(I) = 0, so A ∈ Dom(δ2
B) and

δ2
B(A) = 0. Since A ∈ ker δ2

B, Theorem 1.2 implies A ∈ ker δB. But then

0 = δB(A)|K = [iB,A]|K = I|K ,

which is absurd. Therefore, A cannot be bounded. We conclude that if A and B satisfy the

HCR on a common core for A and B, then A and B must both be unbounded.
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Chapter 5

A Covariant Stone-von Neumann Theorem

5.1 (G,A, α)-Heisenberg and Schrödinger Representations

Throughout, G is a locally compact abelian group with Haar measure µ and dual group Ĝ

with Haar measure µ̂. As defined in Definition 1.8, the Schrödinger representation (λ, V ) for

a locally compact abelian group G is an example of a Heisenberg representation for G. We

seek to generalize the definition of this pair to a representation of a C∗-dynamical system

(G,A, α) on a Hilbert A-module.

Definition 5.1. A (G,A, α)-Heisenberg representation is a quadruple (X, ρ, r, s) with the

following properties:

(i) X is a full Hilbert A-module.

(ii) ρ : A → L(X) is a nondegenerate ∗-representation.

(iii) r : G→ U(X) is a (strictly continuous) unitary group representation.

(iv) s : Ĝ→ U(X) is a (strictly continuous) unitary group representation.

(v) sγrx = γ(x)rxsγ for all x ∈ G and γ ∈ Ĝ.

(vi) (ρ, r) is a nondegenerate covariant homomorphism of (G,A, α) into X.
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(vii) ρ(a)sγ = sγρ(a) for all a ∈ A and γ ∈ Ĝ.

When A = C, we recover the definition of a classical Heisenberg representation. To define

the (G,A, α)-Schrödinger representation, consider the right Hilbert A-module L2(G,A, α),

defined in Example 2.30, which we recall here for convenience. For each φ ∈ Cc(G,A) and

a ∈ A, define

[φ • a](x) := f(x)αx(a) for all x ∈ G.

Then • makes Cc(G,A) into a right A-module. For φ, ψ ∈ Cc(G,A), define

〈ψ |φ〉 :=

∫
G

αx−1 (ψ(x)∗φ(x)) dµ(x).

We denote the completion of Cc(G,A) with respect to the induced norm ‖·‖α := ‖〈· | ·〉‖1/2
A

by L2(G,A, α). Next, consider the map M : A → L(L2(G,A, α)) defined on φ ∈ Cc(G,A) by

[M(a)φ](x) := aφ(x) for all x ∈ G.

Proposition 5.2. M : A → L(L2(G,A, α)) is a well-defined nondegenerate ∗-representation.

Proof. Fix a ∈ A. First we show M(a)|Cc(G,A) is bounded with respect to ‖·‖α , and by ‖·‖α-

density of Cc(G,A) in L2(G,A, α), we may continuously extend M(a) to all of L2(G,A, α).

Recall that for any element d of a unital C∗-algebra B with unit e, d∗d ≤B ‖d‖2 e, where

≤B is the ordering on the positive elements in B. Let φ ∈ Cc(G,A). Using an approximate

identity argument and Theorem 2.2.5(b) of [15], we have that

φ(x)∗(a∗a)φ(x) ≤A φ(x)∗ ‖a∗a‖φ(x) = ‖a‖2 φ(x)∗φ(x).
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Observe

〈M(a)φ |M(a)φ〉 =

∫
G

αx−1((aφ(x))∗aφ(x)) dµ(x)

=

∫
G

αx−1(φ(x)∗a∗aφ(x)) dµ(x)

≤A
∫
G

αx−1(‖a‖2
A φ(x)∗φ(x)) dµ(x)

= ‖a‖2
A 〈φ |φ〉

Theorem 2.2.5(c) of [15] implies ‖〈M(a)φ |M(a)φ〉‖A ≤ ‖a‖
2
A ‖〈φ |φ〉‖A . Therefore,

‖M(a)φ‖2
α ≤ ‖a‖

2
A ‖φ‖

2
α ,

so M(a)|Cc(G,A) is ‖·‖α-continuous. Similarly, so is M(a∗). For φ, ψ ∈ Cc(G,A),

〈ψ |M(a)φ〉 =

∫
G

αx−1(ψ(x)∗aφ(x)) dµ(x) =

∫
G

αx−1([a∗ψ(x)]∗φ(x)) dµ(x) = 〈M(a∗)ψ |φ〉 .

As M(a) and M(a∗) are both ‖·‖α-continuous, this equality of inner products holds on

arbitrary elements of L2(G,A, α). Therefore M(a∗) = M(a)∗, so M(a) ∈ L(L2(G,A, α)).

Moreover, M is clearly linear, multiplicative, and ∗-preserving, so M is a well-defined ∗-

representation of A. We now show M is nondegenerate.

Fix φ ∈ Cc(G,A). As Range(φ) ⊆ φ[Supp(φ)]∪{0A}, and as Supp(φ) is a compact subset

of G, we see that Range(φ) is contained in a compact subset of A. Compact subsets of metric

spaces are separable, and subsets of separable subsets of metric spaces are separable, so in

particular, Range(φ) is a separable subset of A. Let D be a countable dense subset of

Range(φ). If B denotes the C∗-subalgebra of A generated by Range(φ), then B is also the

C∗-subalgebra of A generated by D. Hence, B is a separable C∗-algebra, which means that
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it possesses a sequential approximate identity (en)n∈N. Now, for each n ∈ N,

‖φ−M(en)φ‖α = ‖〈φ−M(en)φ |φ−M(en)φ〉‖1/2
A

=

∥∥∥∥∫
G

αx−1([φ(x)− enφ(x)]∗[φ(x)− enφ(x)]) dµ(x)

∥∥∥∥ 1
2

A

≤
[∫

G

‖αx−1([φ(x)− enφ(x)]∗[φ(x)− enφ(x)])‖A dµ(x)

] 1
2

=

[∫
G

‖[φ(x)− enφ(x)]∗[φ(x)− enφ(x)]‖A dµ(x)

] 1
2

=

[∫
G

‖φ(x)− enφ(x)‖2
A dµ(x)

] 1
2

.

Next, notice for all n ∈ N and x ∈ G that

‖φ(x)− enφ(x)‖2
A ≤ [‖φ(x)‖A + ‖enφ(x)‖A]2

≤ [‖φ(x)‖A + ‖en‖A‖φ(x)‖A]2

≤ [‖φ(x)‖A + ‖φ(x)‖A]2 (As ‖en‖A ≤ 1.)

= 4‖φ(x)‖2
A.

Hence, the R-valued sequence of functions {‖φ(·)− enφ(·)‖2
A}n∈N is dominated by the in-

tegrable function x 7→ 4‖φ(x)‖2
A. As this sequence converges pointwise to 0, the Lebesgue

Dominated Convergence Theorem yields

lim
n→∞
‖φ−M(en)φ‖α = 0.

Finally, an ε
3
-argument shows that for any Φ ∈ L2(G,A, α) and any ε > 0, there exists an

a ∈ A such that ‖Φ−M(a)Φ‖α < ε. Therefore, M is nondegenerate.
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Next we define u : G→ U(L2(G,A, α)), where for each φ ∈ Cc(G,A),

[uxφ](y) := αx(φ(x−1y)) for all y ∈ G.

A similar argument as in Proposition 5.2 shows that ux ∈ L(L2(G,A, α)) with adjoint

u∗x = ux−1 for each x ∈ G. Note ux|Cc(G,A) = αx ◦ ltx. Thus, as αx ∈ Aut(A) and

ltx ∈ Aut(Co(G,A)) are norm-continuous, strict continuity of the map x 7→ ux|Cc(G,A) follows

immediately. Finally, ‖·‖α-density of Cc(G,A) in L2(G,A, α) implies strict continuity holds

for the mapping x 7→ ux. Therefore, u : G → U(L2(G,A, α) is a strictly continuous unitary

group representation.

Last, consider v : Ĝ→ U(L2(G,A, α)) given by γ 7→ vγ, which acts on φ ∈ Cc(G,A) by

[vγφ](y) := γ(y)φ(y) for all y ∈ G.

Note ‖vγφ− φ‖Cc(G,A) = ‖γ · φ− φ‖Cc(G,A) = ‖γ − 1‖∞ · ‖φ‖Cc(G,A) → 0 as γ → 0. By

Corollary 2.33, we have ‖vγφ− φ‖α → 0 as γ → 0. Therefore, γ 7→ vγ|Cc(G,A) is strongly,

and thus strictly, continuous. By ‖·‖α-density of Cc(G,A) in L2(G,A, α), strict continuity

holds for the mapping γ 7→ vγ. We conclude v : Ĝ→ U(L2(G,A, α)) is a strictly continuous

unitary group representation.

Definition 5.3. The (G,A, α)-Schrödinger representation is the quadruple (L2(G,A, α),M, u, v).

When A = C, we recover the classical Schrödinger representation (λ, V ) of G.

Proposition 5.4. The (G,A, α)-Schrödinger representation is a (G,A, α)-Heisenberg rep-

resentation.

Proof. Fullness of L2(G,A, α) is established in Theorem 5.7, and nondegeneracy of M is given

in Proposition 5.2. By above, u and v are (strictly continuous) unitary group representations
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of G and Ĝ, respectively. Fix x ∈ G and γ ∈ Ĝ. Then for all y ∈ G and φ ∈ Cc(G,A),

([vγux]φ)](y) = γ(y) · [uxφ](y)

= γ(xx−1y) · αx(φ(x−1y))

= γ(x) · γ(x−1y) · αx(φ(x−1y))

= γ(x) · αx([γ · φ](x−1y))

= γ(x)[uxvγφ](y).

As y ∈ G was arbitrary, [vγux]φ = γ(x) · [uxvγ]φ for all φ ∈ Cc(G,A), and as φ ∈ Cc(G,A)

was arbitrary, this holds for any φ ∈ Cc(G,A). By ‖·‖α-density of Cc(G,A) in L2(G,A, α)

and ‖·‖α-continuity of both ux and vγ, we have vγux = γ(x) ·uxvγ. As x ∈ G and γ ∈ Ĝ were

arbitrary, this equality holds for all x ∈ G and γ ∈ Ĝ, so the pair (u, v) satisfies the Weyl

Commutation Relation.

Next we show (M, u) is a covariant homomorphism for (G,A, α). Fix x ∈ G and a ∈ A.

For any φ ∈ Cc(G,A) and y ∈ G, observe

([uxM(a)]φ)(y) = αx(aφ(x−1y)) = αx(a)αx(φ(x−1y)) = ([M(αx(a))ux]φ)(y).

As y ∈ G was arbitrary, [uxM(a)]φ = [M(αx(a))ux]φ. As φ ∈ Cc(G,A) was arbitrary, this

holds for all φ ∈ Cc(G,A). By ‖·‖α-density of Cc(G,A) in L2(G,A, α) and ‖·‖α-continuity

of the adjointable operators ux, M(a), and M(αx(a)), we have uxM(a) = M(αx(a))ux. Since

x ∈ G and a ∈ A were arbitrary, this equality holds for all x ∈ G and a ∈ A. Therefore,

(M, u) is a covariant homomorphism.

Last, for fixed γ ∈ Ĝ and a ∈ A, note that for each φ ∈ Cc(G,A),

([vγM(a)]φ)(y) = γ(y) · aφ(y) = a(γ(y) · φ(y)) = ([M(a)vγ]φ)(y) for all y ∈ G.
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By similar reasoning as above, we have that vγM(a) = M(a)vγ for any γ ∈ Ĝ and a ∈ A. It

follows that v and M are commuting representations. Therefore, (L2(G,A, α),M, u, v) is a

(G,A, α)-Heisenberg representation.

The ultimate goal of this chapter is to prove Theorem 1.11, which states that every

(G,K(H), α)-Heisenberg representation is unitarily equivalent to a direct sum of copies of the

(G,K(H), α)-Schrödinger representation. We call this the “Covariant Stone-von Neumann

Theorem.”

5.2 Green’s Imprimitivity Theorem

The Stone-von Neumann Theorem relies on the C∗-isomorphism Co(G) olt G ∼= K(L2(G)).

In [25] this isomorphism is given by the integrated form of the covariant pair (M,λ), where

M : Co(G) → B(L2(G)) takes f ∈ Co(G) to the bounded multiplication operator Mf and

λ : G → U(L2(G)) is the left regular representation. Our required generalization of this

isomorphism is achieved via Green’s Imprimitivity Theorem and Proposition 3.8 of [18].

Definition 5.5 (Rieffel). Suppose C and D are C∗-algebras and X is a left Hilbert C-module,

a right Hilbert D-module, and a C-D bimodule. Then X is a C-D imprimitivity bimodule if

(i) X is full as both a Hilbert C-module and Hilbert D-module and

(ii) C〈x | y〉 • z = x • 〈y | z〉D for all x, y, z ∈ X

where C〈· | ·〉 denotes the inner product on X as a left Hilbert C-module and 〈· | ·〉D denotes

the inner product on X as a right Hilbert D-module.

Remark 5.6 (Brown-Mingo-Shen, 1.9 [21]). As a consequence of (ii), a C-D imprimitivity

bimodule X also satisfies

C〈x • d | y〉 = C〈x | y • d
∗〉 for all x, y ∈ X, d ∈ D
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and

〈c • x | y〉D = 〈x | c∗ • y〉D for all x, y ∈ X, c ∈ C.

Moreover, the norms induced on X by C and D coincide: ‖x‖C = ‖x‖D for all x ∈ X.

Given a C∗-dynamical system (G,A, α), let σ denote the “diagonal action” on Co(G,A)

by G, i.e., for each x ∈ G, σx = αx ◦ ltx. Below we state Green’s Imprimitivity Theorem in

our specific context.

Theorem 5.7 (Green’s Imprimitivity Theorem). Let Bo := Cc(G×G,A). If (G,A, α) is a

C∗-dynamical system, then Cc(G,A) is a Bo-A pre-imprimitivity bimodule with actions

(b • f)(y) =

∫
G

b(x, y)[σx(f)](y) dµ(x) for all b ∈ Bo, y ∈ G,

(f • a)(x) = f(x)αx(a) for all a ∈ A, x ∈ G,

and inner products

[Bo〈f | g〉](x, y) = [f · σx(g)](y) = f(y)αx[g(x−1y)∗] for all x, y ∈ G

〈f | g〉A =

∫
G

αx−1(f(x)∗g(x)) dµ(x).

Moreover, the completion Z of Cc(G,A) with respect to the norms induced by Bo and A

(which coincide) is a B-A imprimitivity bimodule, where B := Co(G,A) oσ G contains a

dense copy of Bo and acts on Z by the extension of the action of Bo on Cc(G,A).

Note that Z as a right Hilbert A-module is precisely L2(G,A, α), so Green’s Imprimitivity

Theorem actually says L2(G,A, α) is a Co(G,A) oσ G-A imprimitivity bimodule.
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Proposition 5.8 (Raeburn-Williams, 3.8 [18]). If X is a C-D imprimitivity bimodule, the

map Φ : C → L(XD) defined by Φ(c)x := c • x for all x ∈ X is an isomorphism of C onto

K(XD).

Since L2(G,A, α) is a Co(G,A)oσA - A imprimitivity bimodule, Proposition 5.8 implies

Co(G,A) oσ G ∼= K(L2(G,A, α)), where L2(G,A, α) is viewed as a right Hilbert A-module.

We now give an explicit definition of Φ in this setting. Consider the map Ξ : Co(G,A) →

L(L2(G,A, α)) defined on φ ∈ Cc(G,A) by

([Ξ(f)]φ) (x) := f(x)φ(x) for all x ∈ G.

Note ‖[Ξ(f)]φ‖Cc(G,A) = ‖fφ‖Cc(G,A) ≤ ‖f‖Co(G,A) · ‖φ‖Cc(G,A), so the operator Ξ(f)|Cc(G,A)

is ‖·‖Cc(G,A)-continuous. Following an argument similar to the proof of Proposition 5.2,

Ξ(f)|Cc(G,A) is ‖·‖α-continuous, so we may continuously extend Ξ(f) to act on all of L2(G,A, α).

Checking Ξ(f)∗ = Ξ(f ∗), where f ∗(x) = f(x−1)∗ for each x ∈ G, confirms that Ξ(f) is an ad-

jointable operator on L2(G,A, α). Therefore, Ξ is a well-defined ∗-representation of Co(G,A)

on L2(G,A, α).

To explicitly describe Φ : Co(G,A) oσ G
∼=→ K(L2(G,A, α), we also require the A-valued

Fourier transform F for Ĝ, where F : Cc(Ĝ,A)→ Co(G,A) is defined on f ∈ Cc(Ĝ,A) by

[Ff ](x) :=

∫
Ĝ

f(γ)γ(x) dµ̂(γ) for all x ∈ G.

Denote Ff by f̂ . Consider the C∗-dynamical system (Ĝ,A, ι) with trivial action ι. Note

that F is just the restriction of the C∗-isomorphism ϕ2 : A oι Ĝ
∼=−→ Co(G,A) in Lemma

7.3 of [25] to the dense ∗-subalgebra Cc(Ĝ,A) of Aoι Ĝ.

Lemma 5.9. The ∗-representation Ξ : Co(G,A)→ L(L2(G,A, α)) is equal to (Mov)◦F−1,

where M× v is the integrated form of the covariant homomorphism (M, v) for (Ĝ,A, ι).
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Proof. Note that F(Cc(Ĝ,A)) is dense in Co(G,A). Fix f ∈ Cc(Ĝ,A). For φ ∈ Cc(G,A),

[(Mo v) ◦ F−1](f̂)φ = [(Mo v)(f)]φ =

(∫
Ĝ

M(f(γ))vγ dµ̂(γ)

)
︸ ︷︷ ︸

∈ L(L2(G,A,α))

φ =

∫
Ĝ

M(f(γ))vγφ dµ̂(γ)︸ ︷︷ ︸
∈ Cc(G,A)

,

where the last equality is a standard property of this vector-valued integral. The reader is

referred to Section 1.5 of [25] for details. Since point evaluation is a linear functional on

Co(G,A),

∫
Ĝ

M(f(γ))[vγφ](x) dµ̂(γ) =

∫
Ĝ

f(γ)γ(x)φ(x) dµ̂(γ)

=

(∫
Ĝ

f(γ)γ(x) dµ̂(γ)

)
φ(x)

= f̂(x)φ(x)

= [Ξ(f̂)φ](x)

for every x ∈ G. As x ∈ G was arbitrary, as was φ ∈ Cc(G,A), we have that

Ξ(f̂)|Cc(G,A) = [(Mo v) ◦ F−1](f̂)|Cc(G,A).

By density of Cc(G,A) in L2(G,A, α), this equality holds on L2(G,A, α). Then, by density

of F(Cc(Ĝ,A)) in Co(G,A) and continuity of Ξ and (Mo v) ◦ F−1, we have Ξ(g) = [(M o

v) ◦ F−1](g) for all g ∈ Co(G,A).

Having established Ξ = (Mo v) ◦ F−1, we know that Ξ is nondegenerate. We now show

(Ξ, u) is a covariant homomorphism of (G,Co(G,A), σ) into L(L2(G,A, α)). Fix x ∈ G and
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f ∈ Cc(Ĝ,A). Let φ ∈ Cc(G,A) be arbitrary. Then for all y ∈ G,

([uxΞ(f̂)]φ)(y) = αx(f̂(x−1y)φ(x−1y))

= αx(f̂(x−1y))αx(φ(x−1y))

= [σx(f̂)](y)αx(φ(x−1y))

= ([Ξ(σx(f̂))ux]φ)(y).

As y ∈ G was arbitrary, [uxΞ(f̂)]φ = [Ξ(σx(f̂))ux]φ. Also, φ ∈ Cc(G,A) was arbitrary,

and Cc(G,A) is ‖·‖α-dense in L2(G,A, α), so uxΞ(f̂) = Ξ[σx(f̂)]ux as adjointable opera-

tors. By density of F(Cc(Ĝ,A)) in Co(G,A), ‖·‖Co(G,A)-continuity of Ξ and σx suffice to

conclude uxΞ(g) = [Ξ(σx(g))]ux for all g ∈ Co(G,A). Thus, (Ξ, u) is a nondegenerate co-

variant homomorphism for (G,Co(G,A), σ) whose integrated form yields a nondegenerate

∗-representation Ξ o u : Co(G,A) oσ G→ L(L2(G,A, α)).

Proposition 5.10. The isomorphism Φ : Co(G,A) oσ G → K(L2(G,A, α)) in Proposi-

tion 5.8 is the integrated form Ξ o u.

Proof. It suffices to check that Φ(F ) = (Ξ o u)F for all F ∈ Cc(G,Co(G,A)) by density of

Cc(G,Co(G,A)) in Co(G,A) oσ G. Let φ, ψ ∈ Cc(G,A), and observe
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〈φ | [Ξ o u](F )ψ〉 =

〈
φ

∣∣∣∣ (∫
G

Ξ(Fy)uy dµ(y)

)
ψ

〉
=

∫
G

〈φ | [Ξ(Fy)uy](ψ)〉 dµ(y) [ by Lemma 2.51 ]

=

∫
G

(∫
G

αx−1

[
φ(x)∗ Fy(x) αy(ψ(y−1x))

]
dµ(x)

)
dµ(y)

=

∫
G

(∫
G

αx−1

[
φ(x)∗ Fy(x) αy(ψ(y−1x))

]
dµ(y)

)
dµ(x)

=

∫
G

αx−1

[
φ(x)∗

(∫
G

Fy(x) αy(ψ(y−1x)) dµ(y)

)]
dµ(x)

=

∫
G

αx−1

[
φ(x)∗

(∫
G

Fy(x) [σy(ψ)](x) dµ(y)

)]
dµ(x)

=

∫
G

αx−1 [φ(x)∗(F • ψ)(x)] dµ(x) [ by Green’s Imprimitivity Theorem ]

= 〈φ |Φ(F )ψ〉 .

By density of Cc(G,A) in L2(G,A, α), we conclude Φ(F ) = [Ξou](F ). Moreover, Cc(G,Co(G,A))

is dense in Co(G,A) oσ G, so we finally establish that Φ = Ξ o u.

The isomorphism Co(G) olt G ∼= K(L2(G)) relates nondegenerate ∗-representations of

Co(G) olt G with the nicely classified nondegenerate ∗-representations of K(L2(G)). For

our purposes, then, the utility of Proposition 5.8 follows only from having an analogous

classification of representations of K(X) where X is a Hilbert A-module for some C∗-algebra

A. Without more assumptions on A, however, such a classification for representations of

K(X) does not exist. Hence, we restrict our attention to Hilbert K(H)-modules.

5.3 Representations of Hilbert K(H)-modules

Henceforth, X denotes a HilbertK(H)-module. The main result of this section, Theorem 5.14,

generalizes the following theorem to representations of K(X) as adjointable operators on
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Hilbert K(H)-modules. It will be useful to keep Lemma 2.56 in mind.

Theorem 5.11 (Arveson, 1.4.4 [2]). Let A be a C∗-subalgebra of K(H), and let π be any

nondegenerate representation of A. Then there is an orthogonal family {πi} of irreducible

subrepresentations of π such that π =
∑

i πi, and each πi is equivalent to a subrepresentation

of the identity representation id : A → B(H).

Definition 5.12. Let A be a C∗-algebra. A projection p ∈ A is called minimal if and only

if p 6= 0A and the only sub-projections of p in A are 0A and p itself.

Note that the minimal projections in K(H) are simply the rank-one operators, and recall

that every nonzero Hilbert K(H)-module is full by simplicity of K(H).

Lemma 5.13. The C∗-algebra K(X) acts irreducibly on X, that is, X has no nontrivial

K(X)-invariant closed K(H)-submodules.

Proof. Suppose Y were a nontrivial K(X)-invariant closed K(H)-submodule of X. Let p be

a rank-one projection in K(H). By Lemma 2.56, Y • p and X • p are Hilbert spaces, and

furthermore, Y • p is a closed subspace of X • p. We claim that Y • p is K(X • p)-invariant.

Let b ∈ K(X • p). By Theorem 2.57, b has the form a|X•p for some a ∈ K(X). Thus,

b[Y • p] = a|X•p[Y • p] = a[Y • p] = (aY) • p ⊆ Y • p

by K(H)-linearity of a. As b ∈ K(X•p) was arbitrary, Y•p is K(X•p)-invariant. Furthermore,

(Y • p) • K(H) = Y

by Proposition 2.59, so since Y is nontrivial, Y • p must be nontrivial. Last, Y • p is a proper
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subspace of X • p. Indeed, if Y • p = X • p, then applying Proposition 2.59 twice implies

Y = (Y • p) • K(H) = (X • p) • K(H) = X,

which contradicts the assumption that Y is a proper K(H)-submodule of X. Therefore, Y • p

is a K(X • p)-invariant proper nontrivial closed subspace of X • p. This is a contradiction

to the fact that given any Hilbert space H, there are no K(H)-invariant proper nontrivial

closed subspaces of H. Since X•p is a Hilbert space, we have reached a contradiction. Thus,

there can exist no nontrivial K(X)-invariant closed K(H)-submodules of X, so K(X) acts

irreducibly on X.

Theorem 5.14. Let X and Y be Hilbert K(H)-modules. If π̃ : K(X)→ L(Y) is a nondegen-

erate ∗-representation, then π̃ is unitarily equivalent to a direct sum of copies of the identity

representation id : K(X)→ L(X).

Proof. Our proof is an adaptation of Arveson’s proof of Theorem 5.11. Fix a rank-one

projection p ∈ K(H), and consider the composition π given by

π : K(X • p)
∼=→ K(X)

π̃→ L(Y)
∼=→ B(Y • p),

where [(ΨX)|K(X•p)]
−1 : K(X • p)

∼=→ K(X) and ΨY : L(Y)
∼=→ B(Y • p) are provided by

Theorem 2.57. As π̃ is nondegenerate and π is the composition of π̃ with C∗-isomorphisms,

π is also nondegenerate. Note that X • p and Y • p are both Hilbert spaces by Lemma 2.56,

so in fact, π is a nondegenerate ∗-representation of the compact operators on the Hilbert

space X • p as bounded operators on the Hilbert space Y • p. Thus, by Theorem 5.11, there

exists an index set J and a unitary W : ⊕j∈JX•p→ Y •p such that π(a) = adW ◦⊕ja for all

a ∈ K(X • p). However, Theorem 2.57 does not necessarily lift W to a unitary w : ⊕jX→ Y,

so we proceed to construct the desired unitary w : ⊕jX→ Y.
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By Arveson’s proof, there is a rank-one projection q ∈ K(X • p) such that π(q) 6= 0.

Furthermore, Theorem 2.57 yields a minimal projection E ∈ K(X) such that q = E|X•p.

Since π(q) 6= 0, it must be that π̃(E) 6= 0. By Corollary 2.54, there is a linear functional

fq : K(X • p)→ C which satisfies fq(S)q = qSq for all S ∈ K(X • p).

Define a linear functional g : K(X)→ C by g(T ) := fq(T |X•p). For each T ∈ K(X), notice

(ETE)|X•p = E|X•p T |X•p E|X•p = q(T |X•p)q = fq(T |X•p)q = fq(T |X•p)E|X•p = [g(T )E]|X•p.

By Theorem 2.57, we conclude ETE = g(T )E for all T ∈ K(X).

Consider the K(H)-submodule E[X] of X. Note that E[X] is nonzero since E 6= 0, and

E[X] is closed because E is a projection. Thus, E[X] is a nonzero Hilbert K(H)-module.

Similarly, π̃(E)[Y] is a nonzero Hilbert K(H)-module. Hence, by Corollary 2.55, there exist

ξ ∈ E[X] and η ∈ π̃(E)[Y] such that 〈ξ | ξ〉X = p and 〈η | η〉Y = p.

Define a map w′ : [K(X)ξ]•K(H)→ [π̃(K(X))η]•K(H) by
∑n

i=1 Ti(ξ•ai) 7→
∑n

i=1 π̃(Ti)(η•



81

ai). By virtue of being an isometry, w′ is well-defined: for T1, ..., Tn ∈ K(X), a1, ..., an ∈ K(H),

∥∥∥∥∥∥
〈

n∑
i=1

π̃(Ti)(η • ai)

∣∣∣∣∣
n∑
j=1

π̃(Tj)(η • aj)

〉
Y

∥∥∥∥∥∥
K(H)

=

∥∥∥∥∥
n∑

i,j=1

〈π̃(Ti)(η • ai) | π̃(Tj)(η • aj)〉Y

∥∥∥∥∥
K(H)

=

∥∥∥∥∥
n∑

i,j=1

〈π̃(Ti)([π̃(E)η] • ai) | π̃(Tj)([π̃(E)η] • aj)〉Y

∥∥∥∥∥
K(H)

=

∥∥∥∥∥
n∑

i,j=1

〈π̃(TiE)(η • ai) | π̃(TjE)(η • aj)〉Y

∥∥∥∥∥
K(H)

=

∥∥∥∥∥
n∑

i,j=1

〈
π̃(ET ∗j TiE)(η • ai)

∣∣ η • aj〉Y
∥∥∥∥∥
K(H)

=

∥∥∥∥∥
n∑

i,j=1

〈
π̃(g(T ∗j Ti)E)(η • ai)

∣∣ η • aj〉Y
∥∥∥∥∥
K(H)

=

∥∥∥∥∥
n∑

i,j=1

g(T ∗j Ti) 〈π̃(E)(η • ai) | η • aj〉Y

∥∥∥∥∥
K(H)

=

∥∥∥∥∥
n∑

i,j=1

g(T ∗j Ti) 〈η • ai | η • aj〉Y

∥∥∥∥∥
K(H)

=

∥∥∥∥∥
n∑

i,j=1

g(T ∗j Ti) a
∗
i 〈η | η〉Y aj

∥∥∥∥∥
K(H)

=

∥∥∥∥∥
n∑

i,j=1

g(T ∗j Ti) a
∗
i p aj

∥∥∥∥∥
K(H)

Following a nearly identical computation yields

∥∥∥∥∥∥
〈

n∑
i=1

Ti(ξ • ai)

∣∣∣∣∣
n∑
j=1

Tj(ξ • aj)

〉
Y

∥∥∥∥∥∥
K(H)

=

∥∥∥∥∥
n∑

i,j=1

g(T ∗j Ti) a
∗
i p aj

∥∥∥∥∥
K(H)

.

Therefore, w′ is a surjective isometry which extends by continuity to w′ : X′ → Y′, where

X′ := [K(X)ξ] • K(H) and Y′ := [π̃(K(X))η] • K(H).



82

Note that X′ is a nonzero closed K(X)-invariant K(H)-submodule of X. Thus, by Lemma 5.13,

X = X′. Hence, w′ : X→ Y′ is a surjective isometry, which, moreover, is K(H)-linear. Thus,

w′ : X→ Y′ is unitary.

We claim w′T = [π̃(T )|Y′ ]w′ for all T ∈ K(X). Fix T ∈ K(X) and let T1, ..., Tn ∈ K(X)

and a1, ..., an ∈ K(H) be arbitrary. Then

w′T

(
n∑
i=1

Ti(ξ • ai)

)
= w′

(
n∑
i=1

TTi(ξ • ai)

)

=
n∑
i=1

π̃(TTi)(η • ai)

=
n∑
i=1

π̃(T )π̃(Ti)(η • ai)

= π̃(T )

(
n∑
i=1

π̃(Ti)(η • ai)

)

= π̃(T )w′

(
n∑
i=1

Ti(ξ • ai)

)

By density of [K(X)ξ]•K(H) in X and continuity of both w′T and (π̃(T )|Y′)w′, we have w′T =

(π̃(T )|Y′)w′. Thus, the map K(X) → L(Y′) given by T 7→ π̃(T )|Y′ is a nondegenerate ∗-

representation of K(X) on Y′ which is unitarily equivalent via w′ to the identity representation

id : K(X)→ L(X).

Complementability of Hilbert K(H)-modules allows us to apply this argument to the

subrepresentation T 7→ π̃(T )|(Y′)⊥ of π̃ : K(X) → L(Y). An exhaustive argument and

application of Zorn’s Lemma yields a family {Yj}j∈J of closed K(H)-submodules of Y and

unitaries {wj : X → Yj}j∈J such that Y = ⊕jYj. Then w := ⊕jwj is a unitary from ⊕jX

onto Y such that w[⊕jT ] = π̃(T )w for all T ∈ K(X). This completes the proof.
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5.4 Correspondence of (G,Co(G,A), lt⊗α)-Covariant Homomorphisms

and (G,A, α)-Heisenberg Representations

Let (G,A, α) be a dynamical system. Suppose s : Ĝ→ U(X) is a unitary group representa-

tion on a Hilbert A-module X and ρ : A → L(X) is a nondegenerate ∗-representation such

that ρ(a)sγ = sγρ(a) for all a ∈ A, γ ∈ Ĝ. Then the integrated form ρo s : Aoι Ĝ→ L(X)

is a nondegenerate ∗-representation by Proposition 2.50. Define Πρ,s to be the composition

Πρ,s : Co(G,A)
F−1

−→ A oι Ĝ
ρos−→ L(X). As F−1 is a C∗-isomorphism and ρ o s is a nonde-

generate ∗-representation of A oι Ĝ, the map Πρ,s is a nondegenerate ∗-representation of

Co(G,A).

Theorem 5.15. If (X, ρ, r, s) is a (G,A, α)-Heisenberg representation, then (Πρ,s, r) is a

nondegenerate covariant homomorphism for (G,Co(G,A), σ) into L(X).

Proof. Fix x ∈ G and f ∈ Cc(Ĝ,A), so f̂ ∈ Co(G,A). Let x̂ : Ĝ → C denote the copy of

x ∈ G acting as an element of the dual of Ĝ by x̂(γ) = γ(x) for each γ ∈ Ĝ. For all y ∈ G,

note

[F(f · x̂)](y) =

∫
Ĝ

f(γ)γ(x)γ(y) dµ̂(γ) =

∫
Ĝ

f(γ)γ(x−1y) dµ̂(γ) = f̂(x−1y) = [ltx(f̂)](y).
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It follows that αx ◦ F(f · x̂)
(?)
= σx(f̂) since σx = αx ◦ ltx. Thus,

rxΠρ,s(f̂) = rx

(∫
Ĝ

ρ(f(γ))sγ dµ̂(γ)

)
=

∫
Ĝ

rxρ(f(γ))sγ dµ̂(γ)

=

∫
Ĝ

ρ[αx(f(γ))] rxsγ dµ̂(γ) [ by covariance of (ρ, r) ]

=

∫
Ĝ

ρ[αx(f(γ))] γ(x)sγrx dµ̂(γ) [ as r and s satisfy the WCR ]

=

(∫
Ĝ

ρ[αx(f(γ) γ(x))]sγ dµ̂(γ)

)
rx

=

(∫
Ĝ

ρ[αx([f · x̂](γ))]sγ dµ̂(γ)

)
◦ rx

= [(ρo s)(αx ◦ (f · x̂))]rx

= [(ρo s) ◦ F−1][F(αx ◦ (f · x̂))]rx

= Πρ,s[αx ◦ F(f · x̂)]rx

= Πρ,s(σx(f̂))rx [ by (?) ].

As f ∈ Cc(Ĝ,A) was arbitrary and F(Cc(Ĝ,A)) is dense in Co(G,A), ‖·‖Co(G,A)-continuity of

both Πρ,s and σx imply rxΠρ,s(g) = Πρ,s(σx(g))rx for all g ∈ Co(G,A). Therefore, since x ∈ G

was arbitrary, (Πρ,s, r) is a nondegenerate covariant homomorphism for (G,Co(G,A), σ).

5.5 Proof of the Covariant Stone-von Neumann Theorem

Definition 5.16. Two (G,A, α)-Heisenberg representations (X, ρ, r, s) and (Y, τ, u, v) are

unitarily equivalent if there exists a unitary w : X→ Y such that

(i) τ = adw ◦ ρ, that is, τ(a) = wρ(a)w−1 for all a ∈ A,

(ii) ux = wrxw
−1 for all x ∈ G, and
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(iii) vγ = wsγw
−1 for all γ ∈ Ĝ.

Theorem 1.11. Every (G,K(H), α)-Heisenberg representation is unitarily equivalent to a

direct sum of copies of the (G,K(H), α)-Schrödinger representation.

Proof. Given a (G,K(H), α)-Heisenberg representation (X, ρ, r, s), Theorem 5.15 states (Πρ,s, r)

is a covariant homomorphism for (G,Co(G,K(H)), σ). Since Πρ,s is nondegenerate, the

integrated form Πρ,s o r is a nondegenerate ∗-representation of Co(G,K(H)) oσ G into

L(X). Let Z := L2(G,K(H), α), and recall Proposititons 5.8 and 5.10 yield the isomorphism

Ξ o u : Co(G,K(H)) oσ G
∼=→ K(Z). Thus, the composition

Θ : K(Z)
(Ξou)−1

−→ Co(G,K(H)) oσ G
Πρ,sor−→ L(X)

is a nondegenerate ∗-representation of K(Z) as adjointable operators on the Hilbert K(H)-

module X. As Z and X are Hilbert K(H)-modules, Theorem 5.14 implies Θ is unitarily

equivalent to a direct sum of copies of the identity representation id : K(Z)→ L(Z). Specif-

ically, there exists a unitary w : X→ ⊕jZ such that adw ◦Θ = ⊕jid.

We claim adw ◦ ρ = ⊕jM, adw ◦ r = ⊕ju, and adw ◦ s = ⊕jv. Note that for any covariant

homomorphism (π, q) for (G,Co(G,K(H)), σ) into L(X), we have

(adw ◦ π) o (adw ◦ q) = adw ◦ (π o q) : Co(G,K(H)) oσ G→ L(⊕jZ).

Thus, Proposition 2.52 implies

Π(adw◦ρ), (adw◦s) o (adw ◦ r) = adw ◦ (Πρ,s o r) = ⊕j(Ξ o u) = [⊕jΞ] o [⊕ju].

By Proposition 2.50, the covariant homomorphisms (Π(adw◦ρ), (adw◦s), adw ◦ r) and (⊕jΞ,⊕ju)

for (G,Co(G,K(H)), σ) must coincide since their integrated forms are the same nondegener-
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ate ∗-representation of Co(G,K(H)) oσ G into L(⊕jZ). Therefore,

Π(adw◦ρ), (adw◦s) = ⊕jΞ and adw ◦ r = ⊕ju.

Recall Ξ = (Mo v) ◦ F−1 by Lemma 5.9. Hence,

[(adw◦ρ)o(adw◦s)]◦F−1 = Π(adw◦ρ), (adw◦s) = ⊕jΞ = [⊕j(Mov)]◦F−1 = ([⊕jM]o[⊕jv])◦F−1.

By another application of Proposition 2.50, we have that adw ◦ ρ = ⊕jM and adw ◦ s =

⊕jv, as desired. We conclude (X, ρ, r, s) is unitarily equivalent to a direct sum of copies of

(Z,M, u, v).
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Chapter 6

Conclusions and Future Directions

6.1 Weak D-Antidifferentiability and Extended Derivations

Given an unbounded self-adjoint operator D on a Hilbert space H, Christensen’s work in [6]

and [5] gives multiple equivalent conditions for when an operator x ∈ B(H) makes the

commutator [iD, x] defined and bounded on Dom(D). Recall that this family of operators

is precisely Dom(δD). A lingering question is when an operator y ∈ B(H) arises as the

continuous extension of [iD, x]|Dom(D) for some x ∈ B(H), which, by Christensen’s work, is

simply when y ∈ Range(δD).

If y ∈ ker δD is nonzero, then y 6∈ Range(δD). Indeed, if y = δD(x) for some x ∈ Dom(δD),

then δ2
D(x) = δD(y) = 0. Thus, x ∈ ker δ2

D, which, by Theorem 1.2, implies x ∈ ker δD. This

contradicts the assumption that δD(x) = y 6= 0, so ker δD ∩Range(δD) = {0}. We are led to

ask:

(1) If we extended δD to act on unbounded operators that are affiliated with B(H), would

kernel stabilization for the extension ∆D of δD still hold?

(2) Would operators in ker ∆D be weakly D-antidifferentiable if we allow for antiderivatives

to be unbounded operators which are affiliated to B(H)?

Our resounding answer to (1) is “no,” and consequently our answer to (2) is “yes.” Let
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P be the momentum operator on L2(R) defined in Example 2.9, and let Q be the position

operator on L2(R) defined in Example 2.6. Recall that the domains of P and Q contain the

class of Schwartz functions S(R), which is a core for both P and Q. Let C be any common

core for P and Q. Ideally, we would define ∆P so that Q ∈ Dom(∆P ), and

∆P (Q)|C = [iP,Q]|C = I|C .

As C is dense in L2(R), we have ∆P (Q) = I, but ∆2
P (Q) = ∆P (I) = 0, so ker ∆2

P 6= ker ∆P .

Furthermore, we could say that a weak P -antiderivative of I is Q, or more generally, Q+ y

where y is any element of ker ∆P .

The notion of defining or extending a derivation on an algebra A of bounded operators

to unbounded operators which are affiliated with A is studied in [11] of R. Kadison and Z.

Liu. Specifically, Kadison and Liu consider the extensions of an arbitrary derivation δ on a

von Neumann algebras M to a derivation ∆ on the affiliated Murray-von Neumann algebra

Af(M). The definition of their extended derivation in the case whenM = B(H) and δ = δD

may be a fruitful place to begin in the quest for ∆D.

6.2 Further Generalizations of the Stone-von Neumann Theorem

Thanks to D. Pitts, the Covariant Stone-von Neumann Theorem has an interesting inter-

pretation we’ve not yet explored. Given a C∗-dynamical system (G,K(H), α), note that

for each x ∈ G, αx ∈ Aut(K(H)) must be implemented by unitary conjugation, i.e., there

exists a unitary Ux ∈ B(H) such that αx(a) = UxaU
∗
x for all a ∈ K(H). While {αx}x∈G

is a norm-continuous group, the family {Ux}x∈G need not form a group. It does, however,

satisfy a 2-cocycle condition: UxUy = σ(x, y)Uxy for all x, y ∈ G, where σ : G × G → T

is a 2-cocycle. Then, the representation G → U(H) given by x 7→ Ux defines a projective

unitary group representation. So, we could consider our classification of representations of
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dynamical systems of the form (G,K(H), α) as a classification of projective unitary group

representations.

Delving more deeply into this interpretation may offer some insight on how we can ex-

tend our Covariant Stone-von Neumann Theorem without attempting to replace K(H) with

a more general C∗-algebra. On the other hand, if A were a C∗-algebra such that any nonde-

generate ∗-representation of K(L2(G,A, α)) decomposed as in Theorem 5.14, our statement

of Theorem 1.11 would hold if we replaced K(H) with A. Identifying C∗-algebras with this

desirable representation property may require tools such as Morita equivalence and KK-

theory.

As an application of Theorem 1.11 in its current form, we are able to classify all pairs of

self-adjoint operators (A,B) on a Hilbert K(H)-module X which satisfy the HCR on some

dense {A,B}-analytic K(H)-submodule of X. This extends Huang’s main result in [9], and

will appear in an article on the arXiv this summer.
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