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ABSTRACT: Detailed parameter sensitivity, model validation, and regional
calibration of the Hybrid-Maize crop model were undertaken for the purpose of
regional agroclimatic assessments. The model was run at both field scale and
county scale. The county-scale study was based on 30-yr daily weather data and
corn yield data from the National Agricultural Statistics Service survey for 24
locations across the Corn Belt of the United States. The field-scale study was
based on AmeriFlux sites at Bondville, Illinois, andMead, Nebraska. By using the
one-at-a-time and interaction-explicit factorial design approaches for sensitivity
analysis, the study found that the five most sensitive parameters of the model were
potential number of kernels per ear, potential kernel filling rate, initial light use
efficiency, upper temperature cutoff for growing degree-days’ accumulation, and
the grain growth respiration coefficient. Model validation results show that the
Hybrid-Maize model performed satisfactorily for field-scale simulations with a
mean absolute error (MAE) of 10 bu acre21 despite the difficulties of obtaining
hybrid-specific information. At the county scale, the simulated results, assuming
optimal crop management, overpredicted the yields but captured the variability
well. A simple regional adjustment factor of 0.6 rescaled the potential yield to
actual yield well. These results highlight the uncertainties that exist in applying
crop models at regional scales because of the limitations in accessing crop-
specific information. This study also provides confidence that uncertainties can
potentially be eliminated via simple adjustment factor and that a simple crop
model can be adequately useful for regional-scale agroclimatic studies.

KEYWORDS: Climatology; Regional effects; Land surface model;
Agriculture; Crop growth

1. Introduction
This study stems from a regional, multi-institutional project titled ‘‘Useful to

Usable (U2U): Transforming Climate Variability and Change Information for
Cereal Crop.’’ The U2U project seeks to develop decision support tools and climate
resiliency–related resources for sustainable agriculture and improved profitability
in the U.S. Corn Belt. One of the tasks underway is to develop historical and future
agroclimatic assessments for U.S. Corn Belt (www.Agclimate4U.org) by under-
standing the impact of current and projected climate change on corn yields (Niyogi
and Andresen 2011). To that end, the approach undertaken is to apply crop models
for estimating regional crop yields.

Amajor limitation in applying crop models at large spatial scales is the difficulty in
compiling required model input data, particularly for agronomic processes and man-
agement descriptors at regional scale. Therefore, a simple but reliable regional crop
simulating system is desired to meet the increasing demand for regional agroclimatic
assessments.

The Hybrid-Maize model (Yang et al. 2004) is selected for this study because it
is simple, fast, and has relatively fewer input requirements compared to other crop
models such as Decision Support System for Agrotechnology Transfer (DSSAT)
(Jones et al. 2003), Agricultural Land Management Alternatives with Numerical
Assessment Criteria (ALMANAC) (Kiniry and Bockholt 1998), and the Erosion-
Productivity Impact Calculator (EPIC) (Jones et al. 1991). This simplicity of crop
model input is considered an advantage for developing large spatial-scale assess-
ments. The Hybrid-Maize model has been tested and found to have reliable per-
formance in simulating corn yield at a field scale (Yang et al. 2004, 2006a; Grassini
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et al. 2009). However, to date a regional-scale, multidecadal assessment of the
Hybrid-Maize model is lacking.

Since the regions where the crop model will be applied have diverse environ-
mental conditions, it is important to test, adjust, and validate model parameters.
Sensitivity analysis is an effective tool for such a task (see Table 1 for a list of
parameters used in the analysis). Sensitivity analysis can reveal which parameters
are most highly influential to output variability (Hamby 1994). In addition, before
applying the Hybrid-Maize model at a regional scale, validations and regional cal-
ibration are necessary to assess Hybrid-Maize’s performance and understand what
can be done to improve the large-scale simulation performance across the Corn Belt.

The first sensitivity analysis for the Hybrid-Maize model was conducted using a
single representative scenario (Yang et al. 2004). This initial study was restricted to
understand the impact of a few select parameters for a single site in Lincoln,
Nebraska. Since the Hybrid-Maize model is a relatively new model that has not
been widely used in the Corn Belt, there is a need to understand the sensitivity of
simulated corn yields to different model variables and to validate the model per-
formance at a regional scale. Therefore, the objective of this paper is to test the
Hybrid-Maize model for its sensitivity over a range of parameters, validate, and
calibrate it across the Corn Belt. This study is the first step for undertaking future

Table 1. Description of parameters used in the model sensitivity analysis [adapted
from Yang et al. (2006b)].

Parameter Description

G2 Potential number of kernels per ear
G5 Potential kernel filling rate (mg per day per kernel)
K Light extinction coefficient (dimensionless)
FT Fraction of leaf biomass that can be translocated as carbohydrate to grain each day
MF Maximum fraction of leaf biomass at silking that can be translocated as

carbohydrate to grain
EF Efficiency of carbohydrate translocation from stem of leaf to grain, fraction
RD Daily root death (turnover) rate in fraction of total root biomass
SDC Stay green coefficient for controlling leaf senescence after silking (dimensionless)
LF Senescent leaf area at maturity as a fraction of maximum LAI achieved at silking
UT Upper temperature cutoff (8C) for GDD accumulation
TL Threshold LAI above which leaf senescence due to light competition occurs
BAC Biomass allocation coefficient for root at emergence, fraction
DS Development stage at which the root system stops growing
EP Empirical parameters that determine the relative contribution of a soil layer to

water uptake (dimensionless)
LWS Leaf water suction at permanent wilting point (cm)
RTT Resistance of plant to transpiration (cm)
GRG GDD requirement for germination
GRE GDD requirement for emergence per centimeter of planting depth
MDE Maximum days allowed from planting to emergence
RL, RS,
RR, RG

Growth respiration coefficient of leaf, stem, root, and grain [g CH2O g21 dry matter (DM)]

MRL, MRS,
MRR, MSR

Maintenance respiration coefficient for leaf, stem, root, and grain (g CH2O g21 DM)

MSR Maximum (photosynthetic) assimilation rate (g CO2m
22 leaf h22)

LUE Initial light use efficiency [g CO2MJ21 photosynthetically active radiation (PAR)]
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research on developing a Hybrid-Maize–based crop–climate modeling system at
larger regional spatial scales as part of the U2U project.

2. Materials and methods

2.1. Locations and data

We evaluated the Hybrid-Maize model at two spatial scales: county scale and field
scale. The county-scale study included 24 counties (Figure 1) that considered a wide
range of climatic conditions and crop yields across the Corn Belt. Data availability
and accessibility are also taken into consideration when selecting these counties.
Yield data for 18 counties (Figure 1, labeled 1–18) were used for model calibration,
and data from an additional 6 counties (Figure 1, sites 19–24) were selected for
testing the model yield adjustment factor, as described in section 3.

The 30 years (1981–2010) of daily weather data (minimum temperature, max-
imum temperature, and precipitation) were collected from the NOAA Daily
Summaries Dataset (NOAA 2015) for a select location within each county of
interest. Because of the lack solar radiation data at most weather stations, solar
radiation was generated synthetically using the WeatherAid utility from the
Hybrid-Maize crop simulation model package (Yang et al. 2005). County-level

Figure 1. County-scale simulation sites.
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corn yield data were collected from USDA annual surveys (1981–2010) (USDA
2015). Yield data were detrended to a 30-yr average of each county to decrease
the influence of technological advancements (e.g., Andresen et al. 2001; Hansen
et al. 1998). The detrending approach assumed a linear trend and was applied
here as is typically used in a variety of crop–climate studies (Hansen et al. 1998;
Phillips et al. 1999). No assessments were done to assess spatial changes and
only temporal trends were eliminated from the datasets.

The field-scale study included data from two sites at Bondville, Illinois
(40.008N, 88.298W), and Mead, Nebraska (41.188N, 96.448W). Both sites are
part of the AmeriFlux network (Baldocchi et al. 2001) that is operated for
capturing the water, energy, and carbon fluxes over different natural ecosys-
tems. Half-hourly meteorological data (2001–06) and seasonal yield data were
obtained from the AmeriFlux data access portal (AmeriFlux 2015). The main
reason to select the AmeriFlux sites is that the meteorological data and agronomic
data were collected with a high level of accuracy. Additionally, solar radiation
measurements are also available at these two sites, which provided an additional
opportunity to test the model’s overall performance at a field scale. The half-hourly
weather dataset includes air temperature, precipitation, solar radiation, and relative
humidity. Data were analyzed, paired, checked for consistency, extracted, and pro-
cessed to daily weather input data for the crop model.

2.2. Model configuration

Our intent was to run and test the crop model with minimum requirements
for crop and field management input and weather data. Required crop and field
management input data include hybrid maturity [i.e., total growing degree-
days (GDD) to maturity], planting date, and plant population. The model assumes
optimal water management (i.e., nonwater limiting) for potential yield, and the
corresponding meteorological input data required include daily minimum and
maximum air temperature (8C) and daily solar radiation (MJm22).

As stated, this study is motivated by the objective to assess the potential for
applying the Hybrid-Maize crop model at regional scales. One of the limitations
is the lack of ready access to regional cultivar information, soil data, and field
management information. This lack of data is a critical consideration for our
study, and we intend to use the model for contemporary and future climatic
impacts on crop yield in a following study (Niyogi et al. 2015). We recognize
that water stress and droughts can impact crop yields. The intent here is to
explore if the model is run in its simplest configuration what biases emerge and
if these biases can be reduced by a simple correction. Accordingly, the model
was run with minimum input requirements under optimal water conditions and
default agronomic characteristics. At the county scale, the planting date was set
at 1 May, plant population at 31 600 per acre (78 000 per ha), 1389 GDD (108C
base) (i.e., 2500 GDD for 508F base). For the field-scale studies at Bondville,
Illinois, and Mead, Nebraska, 3 years of corn planting data and plant popula-
tion are presented in Table 2. The model input data were prescribed by re-
gional agronomists and climatologists, and with their advice, model runs were
undertaken.

Earth Interactions d Volume 19 (2015) d Paper No. 9 d Page 5



2.3. Sensitivity analysis scheme

The first set of analyses was conducted based on 30-yr (1981–2010) climate
data for 18 county-scale sites (Figure 1, sites 1–18) and used a one-at-a-time
(OAT) sensitivity approach (Niyogi et al. 1997). Three groups with a total of 29
model parameters were tested (Table 3), with changes prescribed at 610%,
620%, and630% of the default values. The results were presented as the relative
percentage change of simulated yield to assess model sensitivity. The sensitivity

Table 2. Corn cropping information for two AmeriFlux field sites.

Sites Year Planting date Plant density (31000 per acre)

Bondville, Illinois 2001 19 Apr 32
2003 16 Apr 32
2005 22 Apr 32

Mead, Nebraska 2001 14 May 25
2003 13 May 27
2005 27 Apr 24

Table 3. Changes to the model input conditions in the crop model used for the OAT
analysis. The parameter description is in Table 1.

Parameter Default 230% 220% 210% 10% 20% 30%

G2 675 472.5 540 607.5 742.5 810 877.5
G5 8.7 6.09 6.96 7.83 9.57 10.44 11.31
K 0.55 0.385 0.44 0.495 0.605 0.66 0.715
FT (1023) 5.0 3.5 4.0 4.5 5.5 6.0 6.5
MF 0.15 0.105 0.12 0.135 0.165 0.18 0.195
EF 0.26 0.182 0.208 0.234 0.286 0.312 0.338
RD (1023) 5.0 3.5 4.0 4.5 5.5 6.0 6.5
SDC 4 2.8 3.2 3.6 4.4 4.8 5.2
LF 0.7 0.49 0.56 0.63 0.77 0.84 0.91
UT 34 23.8 27.2 30.6 37.4 40.8 44.2
TL 4 2.8 3.2 3.6 4.4 4.8 5.2
BAC 0.35 0.245 0.28 0.315 0.385 0.42 0.455
DS 1.15 0.805 0.92 1.035 1.265 1.38 1.495
EP 4 2.8 3.2 3.6 4.4 4.8 5.2
LWS (103) 17 11.9 13.6 15.3 18.7 20.4 22.1
RTT 9690 6783 7752 8721 10 659 11 628 12 597
GRG 15 10.5 12 13.5 16.5 18 19.5
GRE 6 4.2 4.8 5.4 6.6 7.2 7.8
MDE 25 18 20 23 28 30 33
RL 0.470 0.329 0.376 0.423 0.517 0.564 0.611
RS 0.520 0.364 0.416 0.468 0.572 0.624 0.676
RR 0.450 0.315 0.360 0.405 0.495 0.540 0.585
RG 0.490 0.343 0.392 0.441 0.539 0.588 0.637
MRL (1023) 10.0 7.0 8.0 9.0 11.0 12.0 13.0
MRS (1023) 6.0 4.2 4.8 5.4 6.6 7.2 7.8
MRR (1023) 5.0 3.5 4.0 4.5 5.5 6.0 6.5
MRG (1023) 5.0 3.5 4.0 4.5 5.5 6.0 6.5
MSR 7.0 4.9 5.6 6.3 7.7 8.4 9.1
LUE 12.5 8.8 10.0 11.3 13.8 15.0 16.3
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index (SI) (Wallach et al. 2006) was used to study parameter sensitivity and was
derived as

SI5 j[(O2OBC)/(I2 IBC)]3 (IBC/OBC)j, (1)

where O is the output value, OBC is the output value (yield) for the baseline
scenario that uses the default parameter values, I is the input value, and IBC is the
original input value of the baseline scenario. The larger the SI, the more sensitive
the yield output is to that parameter.

Because of the limitation of traditional sensitivity approaches in assessing
the interaction between parameters, a global sensitivity analysis (Niyogi et al.
1997, 1999) was also undertaken. The 30-yr weather data for Johnson County,
Iowa, were used in the model. Since the focus was on parameters that can
possibly be calibrated at the regional scale, five parameters were selected
based on the results of initial sensitivity analysis: the light extinction coeffi-
cient K, upper temperature cutoff for growing degree-days accumulation UT,
threshold LAI above which leaf senescence due light competition occurs TL,
initial light use efficiency (LUE), and a GDD10C requirement for germination
GRG. The 10 corresponding interaction groups can be identified linking the
two variable combinations as K1UT, K1 TL, K1 LUE, K1GRG, UT1 TL,
UT 1 LUE, UT 1 GRG, TL 1 LUE, TL 1 GRG, and LUE 1 GRG. For every
interaction analysis, two parameters are changed each time, which results in a
total of 253 305 960 factorial design simulations conducted for the five pa-
rameters. For each of these factorial combinations, sensitivity indices were
calculated as

Yi1j5 Yd 1ai1aj1aij. (2)

The term Yd is the result using default parameter values, ai and aj are the main
effects of each parameter, and aij is the interaction effect between two parame-
ters. As an example, for modified input, YK1LUE is the simulated yield, and
YK1LUE5 f (K, LUE). Similarly, YK is the simulated yield when only K is changed
resulting in YK 5 f (K); correspondingly, YLUE is the simulated yield when only
LUE was changed, YLUE5 f (LUE). For the different model-estimated yields,
aK 5 YK 2 Yd is the main effect from parameter K. The equation aLUE5 YLUE2Yd
yields the main effect from parameter LUE; aK1LUE5 YK1LUE2 Yd 2aK 2aLUE

is the interaction effect for K and LUE. The total variability is calculated as

VT 5
P

Vi1
P

Vij, (3)

corresponding to the global result from the 960 simulations; yi is the sum of squares
of the main effect term for parameter i, and yij is the sum of squares on the inter-
action effect between parameters.

The main effect sensitivity index is defined as

si5Vi/VT . (4)

The interaction effect sensitivity index is defined as
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Si1j5Vij/VT . (5)

The resulting total effect for the sensitivity index is

Si,T 5 (Vi1Vij)/VT . (6)

For parameter LUE, SLUE5VLUE/VT , the interaction effect sensitivity index be-
tween LUE and K is SK1LUE5VK1LUE=VT , while the total effect for the sensitivity
index of LUE is SLUE,T 5 (VLUE1VLUE1K 1VLUE1UT1⋯)/VT .

2.4. Model validation and regional calibration

This study also assessed the simulated yields against National Agricultural
Statistics Service (NASS)-reported county-scale yield data. The difference Di

between simulated yields and reported data were quantified using the mean ab-
solute error (MAE):

Di5 Ys2 Ya, (7)

where Ys is simulated yield data, and Ya is the reported data. MAE was calculated as

MAE5
PN

i51

jDij/N. (8)

The advantage of using MAE is that it is easy to interpret and has the same unit as
yield (Wallach et al. 2006).

The Hybrid-Maize model was developed to simulate the potential yield at field
scale without accounting for yield losses from nutrient deficiencies, diseases, pests,
and insects. To quantify the gap between the simulated potential yield and the actual
yield, a regional calibration was applied for the county-scale study. After reviewing
different model fits and bias correction approaches, a simple linear regression–based
adjustment appeared to be sufficient. The adjustment factor is calculated as

YiS25 ›iYiS1, (9)

where YiS1 is the simulated potential yield, ›i is the adjustment factor, and YiS2 is the
simulated yield after the adjustment. After further tests, the constant in the linear
regression analysis was set to zero. Although we realize that setting the constant to
zero in the regression equation could limit the model calibration, it helped the
process of obtaining an averaged adjustment factor for the entire Corn Belt. This
simple approach was tested and allowed calibration of the model results to account
for other environmental and agronomic as well as management decisions that are
not available (or are difficult to obtain) as an input to the model.

3. Results and discussion

3.1. Sensitivity analysis

The sensitivity index results (Figure 2) suggest that the five most sensitive
parameters are potential number of kernels per ear G2, potential kernel filling
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rate G5, initial LUE, upper temperature cutoff for growing degree-days
accumulation UT, and growth respiration coefficient of grain RG. Both G2 and
G5 are cultivar-specific genetic/management coefficients (see Table 1). The default
values of G2 and G5 in this model are the mean values of common cultivars across
the Corn Belt following Jones and Kiniry (1986). The relative changes for yield
simulations (Figure 3) highlight the uncertainties of G2 and G5 specifications that
can have the largest and almost equal impact on yield simulation.

For noncultivar-specific generic parameters group, the model is most sensitive to
UT. It is noticeable that the model is more sensitive to lower UT values (,368C)
than for a higher UT (.368C). This is because when using a lower UT (e.g., 278C),
compared to using the default value, the GDD accumulation in days that have
maximum air temperatures higher than UT will be decreased. Similarly, when
using higher UT (e.g., 408C), GDD accumulation increases when the maximum air
temperature is higher than default UT (e.g., 368C). For the study region, during the
growing season, the possibility of daily maximum temperature higher than a low
UT is a realistic occurrence. Therefore, the accumulation of GDD will be impacted
more when using low UT value.

Among the respiration and photosynthesis parameters, LUE, which relates to
CO2 assimilation, dominates model results. The SI for the simulated yield was
significantly stable across the 30 years of climatic data. Climate variation appears
to have a moderate impact on the sensitivity analysis results for the optimum
parameter condition set in the model.

Among the 29 parameters we tested, simulation results were not sensitive to nine
of the parameters (SI 5 0) because of our experimental design of optimal water
conditions. These nine parameters are fraction of leaf biomass that can be translocated

Figure 2. Yield sensitivity index of parameters (Table 1) in the Hybrid-Maize model
based on OAT approach.
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as carbohydrate to grain each day FT, maximum fraction of leaf biomass at
silking that can be translocated as carbohydrate to grain MF, efficiency of car-
bohydrate translocation from stem of leaf to grain EF, senescent leaf area at
maturity as a fraction of maximum LAI achieved at silking LF, empirical pa-
rameters that determine the relative contribution of a soil layer to water uptake
EP, leaf water suction at permanent wilting point LWS, resistance of plant to
transpiration RTT, maximum days allowed form planting to emergence MDE, and
maintenance respiration coefficient for grain MRG.

Figure 3. Average relative change in model-simulated yield corresponding to the
relative change in parameter values of the Hybrid-Maize model across 18
Corn Belt counties over 30 years (1981–2010). (The lines of G2 and G5 in
the first graph overlap each other.)
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Results of the OAT sensitivity analysis discussed above indicate that it is im-
portant to validate and calibrate the G2, G5, LUE, UT, and RG parameters. The
goal of the broader project is to apply the model at the regional scale involving the
entire U.S. Corn Belt with an aim to simulate corn yield under future climate
scenarios. However, it has been a challenge to obtain the public database of the
genetic and management parameters for the different cultivars for the whole
region. Hence, building off the OAT sensitivity analysis results, an additional
global sensitivity analysis based on a factorial design was conducted. Five pa-
rameters were selected: K, UT, TL, LUE, and GRG. In Figure 4, ignoring SI
smaller than 1%, LUE has the largest SI value. Figure 5 shows LUE contributes
the most to the total SI. Therefore, calibrating the LUE for different cultivar and
subregion, which can possibly be aided by remote sensing data (Barton and North

Figure 4. The eight largest sensitivity indices based on the factorial design.

Figure 5. Main effect and total sensitivity indices based on the factorial design.
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2001; Nichol et al. 2000), provides an encouraging avenue for regional-scale crop
modeling.

3.2. Model validation at county and field scales

The model was validated at 18 counties for 30 years (1981–2010). The results
(Figure 6) show a distinct offset with a similar, and consistent, trend between the model-
simulated yield and the NASS survey–reported yield. While the results are qualitatively
good, the averageMAE for the 18 sites is large: 85 bu acre21 (5.35Mgha21). There are
two factors that help explain the gap between the model-simulated yield and the NASS
survey–reported yield: (i) the Hybrid-Maize model simulates potential yield under

Figure 6. NASS-reported county corn yield and simulated yield before and after
regression with survey data. [The selected three counties are 1) Johnson,
Iowa; 2) Douglass, Illinois; and 3) Huntington, Indiana.] Open circles in-
dicate observations, dashed lines indicate default value (before adjust-
ment), and solid lines indicate model simulation yield with the adjustment
factor of 0.6.
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optimal conditions including lack of water stress, and (ii) the NASS survey data are the
average yield data that includes different corn cultivars with different levels of agro-
nomic management planted over a wide range of soils. However, the generally similar
trends between simulated yield and surveyed (observed) yield indicate that the appli-
cation of a regional calibration can help correct and narrow the gap between simulations
and observations. This regional calibration we adopted is as discussed above [see
Equation (9)]. At the field level, Table 4 shows that the 3-yr average simulated yield for
Mead, Nebraska, is 136bu acre21 (8.54Mgha21), while the 3-yr average measured
yield is 138bu acre21 (8.67Mgha21). The 3-yr average simulated yield in Bondville,
Illinois, is 164buacre21 (10.30Mgha21), which is slightly lower than the 3-yr average
measured yield data of 175bu acre21 (10.99Mgha21). Average MAE of these two
field sites is 10 bu acre21 (0.63Mgha21). The lower MAE at the field scale compared
to the county scale could be because the two field sites were under optimal agronomic
management, which helps the actual yield approach or even exceed the simulated
potential yield.

3.3. Regional calibration

The difference between simulated and surveyed yield is reduced after con-
ducting the regional calibration (Figure 6). The 18-county averaged MAE of the
yield data after regression analysis lowers to 21 bu acre21 (1.31Mg ha21). The
MAE of each county before and after regional calibration is shown in Figure 7.
The average adjustment factor of the 18 site county-scale study is 0.6 with a
variance of 0.007. Therefore, if the Hybrid-Maize model is applied in simulating
the county average corn yield, the model output could be calibrated by multi-
plying 0.6 to account for the simulated potential yield and surveyed (observed)
yield.

To verify the robustness of this adjustment factor, we used six additional counties
not considered in the regional calibration process. These counties include Cham-
paign, Illinois; Clinton, Indiana; Boone, Iowa; Buffalo, Nebraska; Wyandot, Ohio;
and Reno, Kansas (Figure 1, sites 19–24). The results (Table 5) indeed indicate that
this 0.6 adjustment factor is not only convenient but also yields regionally repre-
sentative yields at county scale. The averaged MAE of these six counties is
22 bu acre21 (1.37Mg ha21).

Table 4. Summary of measured (reported) and simulated corn yield at the two
AmeriFlux field sites.

Sites Year Measured yield (bu acre21) Simulated yield (bu acre21)

Bondville, Illinois 2001 168 165
2003 192 182
2005 164 145
Mean 175 164

Mead, Nebraska 2001 139 128
2003 123 140
2005 145 146
Mean 136 138

1 bu acre21 5 62.77 kg ha21

Earth Interactions d Volume 19 (2015) d Paper No. 9 d Page 13



4. Summary
This study is a building block for applying a relatively simple crop model,

Hybrid-Maize, at regional scales. According to the results of two-level sensitivity
analyses, yield simulations are sensitive to genetic and field management param-
eters such as potential number of kernels per earG2 and potential kernel filling rate
G5. The model results are also sensitive to initial light use efficiency (LUE). While
obtaining regional crop genetic and field management parameters will be chal-
lenging, the LUE data are a promising option, particularly as more satellite pro-
ducts become accessible. The validation results indicate the Hybrid-Maize model
has moderately good accuracy in simulating yield at the field scale. When vali-
dating the model at the county scale, there is a notable and generally consistent gap
between the simulated and actual survey yield. After conducting a simple regional
calibration with an adjustment factor of 0.6, the model bias was considerably
lowered. Thus, the Hybrid-Maize simulation model shows good potential for re-
gional applications using a limited set of input data to provide large-scale corn
yield simulations. In future studies, the calibrated Hybrid-Maize model will be

Figure 7. MAE (bu acre21) of 18 counties before and after applying the adjustment
factor of 0.6 to convert potential to actual yield. Numbers on the x axis
indicate locations corresponding to Figure 1.

Table 5. Average observed (reported) and simulated yield (buacre21) for 1981–
2010 for six additional counties not used in developing the regression estimate for
the adjustment factor 0.6.

County, State Observed (std dev) Simulated (std dev) MAE (bu acre21)

Clinton, Indiana 146 (20) 132 (14) 22
Champaign, Illinois 145 (22) 126 (13) 20
Reno, Kansas 132 (14) 106 (13) 29
Buffalo, Nebraska 152 (11) 130 (14) 25
Wyandot, Ohio 129 (24) 140 (14) 19
Boone, Iowa 147 (18) 142 (19) 16
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applied in a regional crop modeling using projected climatic data to assess how
climate change and climate variability can impact corn yield in the U.S. Corn Belt.
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