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INVESTIGATION

Repeats of Unusual Size in Plant Mitochondrial
Genomes: Identification, Incidence and Evolution
Emily L. Wynn and Alan C. Christensen1

School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0666

ORCID IDs: 0000-0001-6902-9301 (E.L.W.); 0000-0002-1125-3172 (A.C.C.)

ABSTRACT Plant mitochondrial genomes have excessive size relative to coding capacity, a low mutation
rate in genes and a high rearrangement rate. They also have abundant non-tandem repeats often including
pairs of large repeats which cause isomerization of the genome by recombination, and numerous repeats of
up to several hundred base pairs that recombine only when the genome is stressed by DNA damaging
agents or mutations in DNA repair pathway genes. Early work on mitochondrial genomes led to the
suggestion that repeats in the size range from several hundred to a few thousand base pair are
underrepresented. The repeats themselves are not well-conserved between species, and are not always
annotated in mitochondrial sequence assemblies. We systematically identified and compared these
repeats, which are important clues to mechanisms of DNA maintenance in mitochondria. We developed
a tool to find and curate non-tandem repeats larger than 50bp and analyzed the complete mitochondrial
sequences from 157 plant species. We observed an interesting difference between taxa: the repeats are
larger and more frequent in the vascular plants. Analysis of closely related species also shows that plant
mitochondrial genomes evolve in dramatic bursts of breakage and rejoining, complete with DNA sequence
gain and loss. We suggest an adaptive explanation for the existence of the repeats and their evolution.
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It has longbeenknownthatplantmitochondrial genomesaremuch larger
than those of animals (Ward, B. L. et al. 1981) and include significant
amounts of non-coding DNA (Schuster, W. and A. Brennicke 1994).
These genomes also often have repeats of several kb, leading to mul-
tiple isomeric forms of the genome (Folkerts, O. and M. R. Hanson
1989; Klein, M. et al. 1994; Palmer, J. D. and L. A. Herbon 1988;
Palmer, J. D. and C. R. Shields 1984; Siculella, L. et al. 2001; Sloan,
D. B. et al. 2010; Stern, D. B. and J. D. Palmer 1986). Plant mitochon-
drial genomes have very low mutation rates, but paradoxically
have such high rearrangement rates that there is virtually no

conservation of synteny (Drouin, G. et al. 2008; Palmer, J. D. and
L. A. Herbon 1988; Richardson, A. O. et al. 2013; Wolfe, K. et al.
1987).

In addition to the large, frequently recombining repeats, there are
often other repeated sequences in the size range of 1kb and lower
(Arrieta-Montiel, M. P. et al. 2009; Forner, J. et al. 2005). Ectopic re-
combination between these non-tandem repeats has been shown to
increase when double-strand breakage is increased, or in plants mutant
for DNA maintenance genes (Abdelnoor, R. V. et al. 2003; Shedge,
V. et al. 2007; Wallet, C. et al. 2015). Understanding the repeats is
critical to understanding the mechanisms of DNA maintenance and
evolution in plant mitochondria, yet they have never been systemati-
cally identified and analyzed. In addition to being infrequently and
inconsistently annotated and described in mitochondrial genome
sequences, repeats are often described as long, short and intermedi-
ate-length (Arrieta-Montiel, M. P. et al. 2009; Davila, J. I. et al. 2011;
Miller-Messmer, M. et al. 2012). The repeats are sometimes thought to
be distributed into two size classes (one of up to several hundred bp and
another of several kb), but this is derived from early studies of Arab-
idopsis and a few other species in which repeats were described and
annotated (Alverson, A. J. et al. 2011b; Andre, C. et al. 1992; Arrieta-
Montiel, M. P. et al. 2009; Davila, J. I. et al. 2011; Folkerts, O. andM. R.
Hanson 1989; Sugiyama, Y. et al. 2005).
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The most likely hypothesis that explains the peculiar characteristics
of plant mitochondrial genomes is that double-strand break repair
(DSBR) is abundantly used in plant mitochondria, perhaps to the
exclusion of nucleotide excision and mismatch repair pathways
(Christensen, A. C. 2014; Christensen, A. C. 2018). Double-strand
break repair is very accurate when the repair is template-based, ac-
counting for the low mutation rate in genes, but the nonhomologous
end-joining or break-induced-replication pathways can account for the
creation of repeats and chimeric genes, expansions, and loss of synteny
through rearrangements.

The inconsistent reporting and annotation of repeated sequences
leads to a number of questions. What is the best way to discover and
characterize them? Is the size distribution really bimodal in angio-
sperms? Are there repeats in the mitochondria of other groups of green
plants? How do they differ between groups? Can they be followed
through evolutionary lineages like genes? Are the repeats themselves
somehow adaptive, or are they a side-effect of DSBR that is neutral or
nearly neutral? The availability in recent years of complete mitochon-
drial genome sequences across a wide variety of taxa of green plants
allows us to begin addressing these questions. We describe a compu-
tational strategy for finding non-tandem repeats within plant mito-
chondrial genomes. Using this tool we describe the phylogenetic
distribution of repeats in both size classes, examine their evolution in
a family of closely related angiosperms, and propose an hypothesis for
the evolutionary significance of the repeats and theDSBR processes that
produce them.

MATERIALS AND METHODS

Sequence data and manipulation
Table 1 lists the mitochondrial genome sequences that were
downloaded as FASTA format files from GenBank (https://www.
ncbi.nlm.nih.gov/genbank/). BLAST searches (Altschul, S. F. et al.
1990) were done using version 2.7.1 on a Linux-based machine. In
addition to the sequences shown in Table 1, mitochondrial genomes
from several Brassica species were used to compare close relatives.
These sequences are as follows: Brassica carinata; JF920287, Brassica
rapa; JF920285, Brassica oleracea fujiwase; AP012988, Brassica napus
polima; FR715249, Brassica juncea; JF920288. Alignments were done
using the clustalW implementation in the VectorNTI 11.5 software
package (ThermoFisher).

Repeat Analysis
Custom Python scripts are in Supplementary Materials. The script
ROUSFinder.py (SupplementalFileS1)usesblastn toperformapairwise
ungapped comparison of a sequence with itself, both strands separately,
using aword size of 50, E value of 10,000, reward for amatch+1, penalty
for amismatch -20.The script thenconcatenates the twooutputfiles and
the full length self-identity is deleted. Alignments are then sorted and
compared to identify and remove duplicate repeats, and an output file
containing each distinct repeat in fasta format is created. The sorting by
size allows the script to automate the curation of the repeats by
comparing the query start and end coordinates of each identified
repeated sequencewith the subject start and end coordinates of repeated
sequences of the same size. When there are more than two copies of a
repeat, BLAST does not report every pairwise hit, so the output file of
FASTA-formatted sequences of repeats is then used as a query with the
entiregenomeas subject to locate every copyof that repeat, createa table,
and a table of binned sizes. The output can also be formatted for
GenBank annotation. MultipleRepeats.py (Supplemental File S2) auto-
mates running ROUSFinder.py on every sequence within a directory.

Prior work identifying repeats, especially in Arabidopsis thaliana
(Arrieta-Montiel, M. P. et al. 2009) showed that although BLAST is
very useful, it has some characteristics that make it difficult to automate
curation of the identified matches of non-tandem DNA sequences. For
example, if there are a number of mismatches in a repeat, sometimes
BLAST will identify subsets of the repeat sequence, or not give the same
alignments when two imperfect repeats are used as queries of the entire
genome. When there are three or more copies of a repeat, BLAST will
also not identify every possible pairwise alignment, giving a subset
instead.When examining the repeats in a single species, these problems
can be solved by additional manual curation and inspection of the
species. However, for automated curation of sequences from multiple
species, some compromises have to be made. The simplest way to
curate the repeated sequences is to ensure that the sizes of each repeat
in a pair are the same. This ensures that repeats can be matched with
each other by examining the coordinates of each copy to find all copies
of the repeated sequence. In Arabidopsis thaliana, an ungapped blastn
searchwith amatch reward of +1 and amismatch penalty of -18 or lower
ensured that different copies of the repeats were the same length, allowing
automated curation. We therefore set the penalty parameter to -20 to
make the automated curation reliable and fast. In order to more carefully
examine the repeats in a single species, the script ROUSFinder2.py (Sup-
plemental File S3) allows the user to set the match reward and mismatch
penalty parameters on the command line.

After an initial analysis of sequences available in early 2018,we added
additional species to the data in late 2018. These additional species are
indicated in Table 1 by an asterisk. These include two hornworts, two
liverworts, 3 bryophytes and 14 angiosperms. These new species do not
change the patterns or conclusions compared to the earlier analysis,
providing additional validation of the use of BLAST and the curation
methods described.

Data Availability
The authors state that all data necessary for confirming the conclusions
presented in this article are represented fullywithin the article, including
pythonscripts inSupplementalMaterial andaccessionnumbersofDNA
sequences shown in Table 1. Supplemental material available at Figshare:
https://doi.org/10.25387/g3.7425680.

RESULTS

Repeats in plant mitochondrial genomes
The existence of large non-tandem repeats in plant mitochondrial
genomes is well known by now, but they have not been systematically
identified and analyzed. Prior studies used variations of BLAST
(Altschul, S. F. et al. 1990) to find repeats (Alverson, A. J. et al.
2011a; Alverson, A. J. et al. 2010; Alverson, A. J. et al. 2011b; Liu, Y.
et al. 2014) or REPuter (Hecht, J. et al. 2011; Kurtz, S. and C. Schleier-
macher 1999). Other available software packages specifically identify
tandem repeats, or repeats matching known repetitive sequences. Due
to the ready availability of BLAST and the flexibility of its use, and
because most prior work used it, we wrote and used a Python script
called ROUSFinder.py that uses BLAST to identify non-tandem repeats
within mitochondrial genomes. The parameters for identification of a
sequence repeat were relatively stringent and included a blastn word
size of 50, and match/mismatch scores of +1/-20. Any choice of pa-
rameters will necessarily identify some false positives and false nega-
tives. These parameters were chosen in order to find duplicate copies of
sequence that were either recently created or recently corrected by gene
conversion. As described in the Methods, they were also chosen to
enable automated curation of the repeats that are found in the first
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n Table 1 List of species and mitochondrial DNA accession numbers

Species Group Subgroup Accession

Auxenochlorella protothecoides Chlorophytes Chlorophyta KC843974.1
Botryococcus braunii Chlorophytes Chlorophyta LT545992.1
Bracteacoccus aerius Chlorophytes Chlorophyta KJ806265.1
Chlamydomonas eustigma Chlorophytes Chlorophyta BEGY01000520.1
Chlamydomonas reinhardtii Chlorophytes Chlorophyta EU306617.1
Chlorella sp. ArM0029B Chlorophytes Chlorophyta KF554428.1
Dunaliella salina strain GN Chlorophytes Chlorophyta KX641169.1
Eudorina sp. Chlorophytes Chlorophyta KY442294.1
Gloeotilopsis planctonica Chlorophytes Chlorophyta KX306823.1
Gloeotilopsis sarcinoidea Chlorophytes Chlorophyta KX306822.1
Hariotina sp. MMOGRB0030F Chlorophytes Chlorophyta KU145405.1
Kirchneriella aperta Chlorophytes Chlorophyta NC_024759.1
Lobosphaera incisa Chlorophytes Chlorophyta KP902678.1
Microspora stagnorum Chlorophytes Chlorophyta KF060942.1
Mychonastes homosphaera Chlorophytes Chlorophyta NC_024760.1
Neochloris aquatica Chlorophytes Chlorophyta NC_024761.1
Nephroselmis olivacea Chlorophytes Nephroselmidophyceae AF110138.1
Oltmannsiellopsis viridis Chlorophytes Chlorophyta DQ365900.1
Ourococcus multisporus Chlorophytes Chlorophyta NC_024762.1
Polytoma uvella Chlorophytes Chlorophyta NC_026572.1
Prototheca wickerhamii Chlorophytes Chlorophyta U02970.1
Pseudendoclonium akinetum Chlorophytes Chlorophyta AY359242.1
Tetradesmus obliquus Chlorophytes Chlorophyta CM007918.1
Trebouxiophyceae sp. MX-AZ01 Chlorophytes Chlorophyta JX315601.1
Ulva flexuosa Chlorophytes Chlorophyta KX455878.1
Ulva linza Chlorophytes Chlorophyta NC_029701.1
Bathycoccus prasinos Chlorophytes Prasinophytes NC_023273.1
Cymbomonas tetramitiformis Chlorophytes Prasinophytes KX013548.1
Micromonas sp. RCC299 Chlorophytes Prasinophytes FJ859351.1
Monomastix sp. OKE-1 Chlorophytes Prasinophytes KF060939.1
Ostreococcus tauri Chlorophytes Prasinophytes CR954200.2
Prasinoderma coloniale Chlorophytes Prasinophytes KF387569.1
Pycnococcus provasolii Chlorophytes Prasinophytes GQ497137.1
Pyramimonas parkeae Chlorophytes Prasinophytes KX013547.1
Anthoceros angustus� Anthocerotophyta Anthocerotophyta NC_037476.1
Leiosporoceros dussii� Anthocerotophyta Anthocerotophyta NC_039751.1
Megaceros aenigmaticus Anthocerotophyta Anthocerotophyta EU660574.1
Phaeoceros laevis Anthocerotophyta Anthocerotophyta GQ376531.1
Aneura pinguis Marchantiophyta Marchantiophyta KP728938.1
Calypogeia neogaea� Marchantiophyta Marchantiophyta NC_035980.1
Marchantia polymorpha Marchantiophyta Marchantiophyta NC_001660.1
Pleurozia purpurea Marchantiophyta Marchantiophyta NC_013444.1
Treubia lacunosa Marchantiophyta Marchantiophyta JF973315.1
Tritomaria quinquedentata� Marchantiophyta Marchantiophyta NC_037041.1
Anomodon attenuatus Bryophytes Bryophytes JX402749.1
Atrichum angustatum Bryophytes Bryophytes KC784956.1
Bartramia pomiformis Bryophytes Bryophytes KC784955.1
Brachythecium rivulare Bryophytes Bryophytes KR732319.1
Bucklandiella orthotrichacea Bryophytes Bryophytes KP742835.1
Buxbaumia aphylla Bryophytes Bryophytes KC784954.1
Climacium americanum Bryophytes Bryophytes KC784950.1
Codriophorus aciculare Bryophytes Bryophytes KP453983.1
Funaria hygrometrica Bryophytes Bryophytes KC784959.1
Hypnum imponens Bryophytes Bryophytes KC784951.1
Nyholmiella gymnostoma Bryophytes Bryophytes KX578030.1
Nyholmiella obtusifolia� Bryophytes Bryophytes NC_031767.1
Orthotrichum callistomum Bryophytes Bryophytes KX578029.1
Orthotrichum speciosum� Bryophytes Bryophytes NC_026121.1
Oxystegus tenuirostris Bryophytes Bryophytes KT326816.1
Physcomitrella patens Bryophytes Bryophytes NC_007945.1
Ptychomnion cygnisetum Bryophytes Bryophytes KC784949.1
Racomitrium elongatum� Bryophytes Bryophytes NC_026890.1

(continued)
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n Table 1, continued

Species Group Subgroup Accession

Sanionia uncinata Bryophytes Bryophytes KP984757.1
Sphagnum palustre Bryophytes Bryophytes KC784957.1
Stoneobryum bunyaense Bryophytes Bryophytes KX578031.1
Syntrichia filaris Bryophytes Bryophytes KP984758.1
Tetraphis pellucida Bryophytes Bryophytes KC784953.1
Tetraplodon fuegianus Bryophytes Bryophytes KT373818.1
Ulota phyllantha Bryophytes Bryophytes KX578033.1
Zygodon viridissimus Bryophytes Bryophytes KX711975.1
Chaetosphaeridium globosum Streptophyta Charophyta AF494279.1
Chara vulgaris Streptophyta Charophyta AY267353.1
Chlorokybus atmophyticus Streptophyta Charophyta NC_009630.1
Closterium baillyanum Streptophyta Charophyta NC_022860.1
Entransia fimbriata Streptophyta Charophyta KF060941.1
Klebsormidium flaccidum Streptophyta Charophyta KP165386.1
Nitella hyalina Streptophyta Charophyta JF810595.1
Roya obtusa Streptophyta Charophyta KF060943.1
Ophioglossum californicum Tracheophyta Fern NC_030900.1
Psilotum nudum Tracheophyta Fern NC_030952.1
Huperzia squarrosa Tracheophyta Lycophyte NC_017755.1
Selaginella moellendorffii Tracheophyta Lycophyte GL377739.1
Cycas taitungensis Tracheophyta Gymnosperm AP009381.1
Ginkgo biloba Tracheophyta Gymnosperm KM672373.1
Welwitschia mirabilis Tracheophyta Gymnosperm NC_029130.1
Aegilops speltoides Tracheophyta Angiosperm AP013107.1
Ajuga reptans Tracheophyta Angiosperm KF709392.1
Allium cepa Tracheophyta Angiosperm KU318712.1
Ammopiptanthus mongolicus� Tracheophyta Angiosperm NC_039660.1
Arabidopsis thaliana Tracheophyta Angiosperm BK010421
Arabis alpina� Tracheophyta Angiosperm NC_037070.1
Batis maritima Tracheophyta Angiosperm KJ820684.1
Beta vulgaris Tracheophyta Angiosperm BA000024.1
Betula pendula Tracheophyta Angiosperm LT855379.1
Boea hygrometrica Tracheophyta Angiosperm JN107812.1
Bombax ceiba� Tracheophyta Angiosperm NC_038052.1
Brassica nigra Tracheophyta Angiosperm KP030753.1
Bupleurum falcatum� Tracheophyta Angiosperm NC_035962.1
Butomus umbellatus Tracheophyta Angiosperm KC208619.1
Cannabis sativa Tracheophyta Angiosperm KU310670.1
Capsicum annuum Tracheophyta Angiosperm KJ865410.1
Carica papaya Tracheophyta Angiosperm EU431224.1
Castilleja paramensis Tracheophyta Angiosperm KT959112.1
Chrysanthemum boreale� Tracheophyta Angiosperm NC_039757.1
Citrullus lanatus Tracheophyta Angiosperm GQ856147.1
Citrus sinensis� Tracheophyta Angiosperm MG736621.1
Cocos nucifera Tracheophyta Angiosperm KX028885.1
Corchorus capsularis Tracheophyta Angiosperm KT894204.1
Daucus carota subsp. sativus Tracheophyta Angiosperm JQ248574.1
Diplostephium hartwegii Tracheophyta Angiosperm KX063855.1
Eruca vesicaria Tracheophyta Angiosperm KF442616.1
Geranium maderense Tracheophyta Angiosperm NC_027000.1
Glycine max Tracheophyta Angiosperm JX463295.1
Gossypium hirsutum Tracheophyta Angiosperm NC_027406.1
Helianthus annuus Tracheophyta Angiosperm CM007908.1
Heuchera parviflora Tracheophyta Angiosperm KR559021.1
Hibiscus cannabinus Tracheophyta Angiosperm MF163174.1
Hordeum vulgare Tracheophyta Angiosperm AP017300.1
Hyoscyamus niger Tracheophyta Angiosperm KM207685.1
Ipomoea nil Tracheophyta Angiosperm AP017303.1
Lagerstroemia indica Tracheophyta Angiosperm KX641464.1
Leucaena trichandra� Tracheophyta Angiosperm NC_039738.1
Liriodendron tulipifera Tracheophyta Angiosperm NC_021152.1
Lolium perenne Tracheophyta Angiosperm JX999996.1

(continued)
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iteration of BLAST. A duplication longer than 100 bases that has several
mismatches or a gap in the center of the repeat unit will be identified as
two different repeats by this script. However, mismatches in the center
of one copy of a repeat are indicative of either two independent events
producing the two parts of the repeat, or mutation and drift that have
escaped gene conversion. Because we are concerned with the recombi-
nation behavior of the repeats we therefore chose to call these two
different repeats. To analyze and identify repeats in a single sequence for
further study or annotation would require additional manual curation
of the output. The word size parameter of 50 is chosen to make the
output more manageable. Reducing the word size identifies numerous
smaller repeats, but the smaller the repeats get, the more complex the
curation task of distinguishing identical sequences from similar ones of
the same size – a task that at this point still needs to be done manually.
Reducing the word size does not change the conclusions about any of
the potentially recombinogenic repeats that also distinguish the major
groups in the plant kingdom. Previous work in Arabidopsis thaliana
has shown that crossover products between non-tandem repeats of
556bp or smaller in accession Col-0 and 204bp or smaller in accession
Ws are undetectable by PCR (Wallet, C. et al. 2015), similar to prior
results using Southern blots (Arrieta-Montiel, M. P. et al. 2009; Davila,
J. I. et al. 2011; Sakamoto, W. et al. 1996)

The species we used represent a significant subset of the complete
mitochondrial genomesequences fromgreenplants inGenBankandare
shown in Table 1. Sequences available on GenBank are not a random
sample across taxa (food crops are very over-represented, for example),
so to reduce sampling bias somewhat we used only one species per

genus. Incomplete sequences or sequences with gaps or wildcard char-
acters (such as N, R, Y, etc.) are not handled well by BLAST without
further curation, so these were not used. Species with multiple distinct
chromosomes were also not used because of the additional layer of
complexity from inter- and intra-chromosomal repeats. The full output
is in Supplemental Table S1. The repeats seen in plant mitochondrial
genomes are much larger than those found in random sequence (data
not shown), suggesting that they arise from specific biological processes
and are not stochastic.

Phylogenetic clustering
The distribution of repeat sizes forms distinct clusters between broad
phylogenetic groups (see Figure 1). Because there are different numbers
of species in each group, and some species have an order of magnitude
more total repeats than others, we represent the data as the fraction of
species within that group that have at least one repeat within a given
size range. The complete output is in Supplemental Table S1. Within
the chlorophytes, repeats of greater than 200bp are rare. The exceptions
are the prasinophytes (discussed below) and a few interesting cases.
Chlamydomonas reinhardtii has a 532 bp inverted repeat at the termini
of its linear chromosome. Dunaliella salina, Kirchneriella aperta and
Polytoma uvella have novel structures at a small number of loci
that consist of overlapping and nested repeats and palindromes
(Smith, D. R. et al. 2010). The function of these structures is unknown,
but they are unusual and not common in the chlorophytes. The
prasinophyte group resembles the rest of the chlorophytes in having
no non-tandem repeats greater than 200bp but many of them include

n Table 1, continued

Species Group Subgroup Accession

Lotus japonicus Tracheophyta Angiosperm JN872551.2
Medicago truncatula Tracheophyta Angiosperm KT971339.1
Millettia pinnata Tracheophyta Angiosperm JN872550.1
Mimulus guttatus Tracheophyta Angiosperm JN098455.1
Nelumbo nucifera� Tracheophyta Angiosperm KR610474.1
Nicotiana tabacum Tracheophyta Angiosperm BA000042.1
Nymphaea colorata� Tracheophyta Angiosperm KY889142.1
Oryza sativa Indica Tracheophyta Angiosperm NC_007886.1
Phoenix dactylifera Tracheophyta Angiosperm JN375330.1
Platycodon grandiflorus� Tracheophyta Angiosperm NC_035958.1
Populus tremula Tracheophyta Angiosperm KT337313.1
Raphanus sativus Tracheophyta Angiosperm NC_018551.1
Rhazya stricta Tracheophyta Angiosperm KJ485850.1
Ricinus communis Tracheophyta Angiosperm HQ874649.1
Rosa chinensis� Tracheophyta Angiosperm CM009589.1
Salix suchowensis Tracheophyta Angiosperm KU056812.1
Salvia miltiorrhiza Tracheophyta Angiosperm KF177345.1
Schrenkiella parvula Tracheophyta Angiosperm KT988071.2
Senna tora� Tracheophyta Angiosperm NC_038053.1
Silene latifolia Tracheophyta Angiosperm HM562727.1
Sinapis arvensis Tracheophyta Angiosperm KM851044.1
Sorghum bicolor Tracheophyta Angiosperm DQ984518.1
Spinacia oleracea Tracheophyta Angiosperm KY768855.1
Styphnolobium japonicum� Tracheophyta Angiosperm NC_039596.1
Tripsacum dactyloides Tracheophyta Angiosperm NC_008362.1
Triticum aestivum Tracheophyta Angiosperm AP008982.1
Utricularia reniformis� Tracheophyta Angiosperm NC_034982.1
Vicia faba Tracheophyta Angiosperm KC189947.1
Vigna angularis Tracheophyta Angiosperm AP012599.1
Viscum album Tracheophyta Angiosperm NC_029039.1
Vitis vinifera complete Tracheophyta Angiosperm FM179380.1
Zea mays strain NB Tracheophyta Angiosperm AY506529.1
Ziziphus jujuba Tracheophyta Angiosperm KU187967.1
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two copies of a single very large repeat between 9.5 and 14.4 kb. This is
similar to many chloroplast genomes and it is possible that this struc-
ture is involved in replication (Bendich, A. J. 2004). The bryophytes
generally resemble the chlorophytes; there are no repeats longer
than 200bp.

In contrast to the chlorophytes and bryophytes, the Marchantiophyta
(liverworts) and Anthocerotophyta (hornworts) have repeats greater than
200bp in size, but none bigger than 1131bp. The other lineages of
streptophytic green algae (referred to as charophytes in GenBank) resem-
ble the chlorophytes albeit with a slightly higher upper limit. In this group
the largest repeat is found in Chlorokybus atmophyticus and is 291bp.

The ferns and lycophytes are strikingly different from the previous
groups. Unfortunately the number of species sequenced is low. They
have large numbers of repeats and the repeat sizes range well above
200bp, up to10kb.Somemembers of these groups, suchasHuperzia, are
similar to the bryophytes, but others are large and have significant
repeat content (Guo, W. et al. 2017). These groups are underrepre-
sented among available mitochondrial sequences, in part due to the
complexity caused by the repetitive nature of lycophyte and fern mito-
chondrial genomes (Grewe, F. et al. 2009), but the patterns are notice-
ably different from the nonvascular plants described above.

Theangiospermsare representedverywell in the sequencedatabases.
Only one member of this group does not have any repeats larger than
200bp (Medicago truncatula). A small number of angiosperms lack
repeats larger than 1 kbp, and approximately half include repeats larger
than 9 kbp. Silene conica, a species with multiple large chromosomes
not included in our dataset has a nearly 75kb sequence found in both
chromosomes 11 and 12 (Sloan, D. B. et al. 2012). Gymnosperms are
also underrepresented, but appear to be similar to the other vascular
plants. Interestingly, the gymnosperms Ginkgo biloba andWelwitschia
mirabilis resemble angiosperms, while Cycas taitungensis is more sim-
ilar to ferns. The C. taitungensismitochondrion has numerous repeats,
includingmany that are tandemly repeated. Five percent of this genome
consists of the mobile Bpu element, a remarkable level of repetitiveness
(Chaw, S. M. et al. 2008).

It is only in the vascular plants that the number and size of repeated
sequences in mitochondrial genomes has been expanded. The vascular
plants generally only have mitochondrial genomes a few times larger
than the bryophytes, liverworts and hornworts, but the repeats are
expanded well beyond proportionality to size. Some taxa, such as the
Geraniaceae, Plantago, and Silene include species with significantly
expanded mitochondrial DNA (Park, S. et al. 2015; Parkinson, C. L.
et al. 2005; Sloan, D. B. et al. 2012). These species are outliers in the
mitochondrial genome sizes and the number of repeats, but the under-
lying DNA replication, recombination and repair processes are likely to
be the same. There appears to have been a significant change in mito-
chondrial DNAmaintenancemechanisms coincident with the origin of
the vascular plants.

Repeat sizes and frequency in angiosperms
Large repeats of several kilobases have been identified in several species
and shown to be recombinationally active, isomerizing angiosperm
mitochondrial genomes (Folkerts, O. and M. R. Hanson 1989; Klein,
M. et al. 1994; Palmer, J. D. and L. A. Herbon 1988; Palmer, J. D. and
C. R. Shields 1984; Siculella, L. et al. 2001; Sloan, D. B. 2013; Stern, D. B.
and J. D. Palmer 1986). A few species have been reported to lack such
structures (Palmer, J. D. 1988). The first comprehensive catalog of re-
peated sequences shorter than 1000 base pairs was done in Arabidopsis
thaliana, and they were shown to be recombinationally active in some
mutant backgrounds, but not generally in wild type (Arrieta-Montiel,
M. P. et al. 2009; Davila, J. I. et al. 2011; Miller-Messmer, M. et al. 2012;

Shedge, V. et al. 2007). Is the spectrum of repeat sizes in Arabidopsis,
and its bimodality, typical for angiosperms? Figure 2 illustrates the
presence of repeats in the size range of 50bp to over 10,000 bp in
72 angiosperms, sorted by the class and order of the species. While
individual species often have a bimodal distribution of sizes, there is no
size range that is universally absent from the distribution. Thirteen of
the 72 species have no repeats larger than 600bp, leaving open the
question of whether those particular mitochondrial genomes isomerize
through recombination. All of the other species have a large repeat of
somewhere between 600bp and 65kbp. There is no pattern of repeat
size distribution or total size with the phylogenetic group or total mi-
tochondrial genome size, suggesting that these are not produced by
stochastic processes, and suggesting that they occur and change faster
than speciation does.

Alignment of repeats within the Brassicales
Inorder totest thehypothesis that the repeated sequences change rapidly
compared to speciation events, leading to the lack of pattern in the
Angiosperm orders, we analyzed 6 closely related species in the Brassica
genus. Within the Brassica genus there are three diploid species:
Brassica rapa, Brassica nigra and Brassica oleracea, and three allotetra-
ploid species (Cheng, F. et al. 2017). The diploid nuclear genomes are
called the A, B and C genomes, respectively. Based on both nuclear and
mitochondrial sequences it appears that Brassica carinata has the
B. nigra and B. oleracea nuclear genomes (BBCC) and the B. nigra
mitochondrial genome, while Brassica juncea has the B. nigra and
B. rapa nuclear genomes (BBCC) and the B. rapa mitochondrial ge-
nome. Brassica napus has two subspecies, polima and napus. Both have
the B. oleracea and B. rapa nuclear genomes (AACC), but B. napus
polima appears to have the B. rapamitochondrial genome and B. napus
napus has the B. oleraceamitochondrial genome (Chang, S. et al. 2011;
Franzke, A. et al. 2011; Grewe, F. et al. 2014). Thus it appears that the
hybridization event between B. oleracea and B. rapa occurred at least
twice, with each species being thematernal parent. In the analysis below
we use the B. napus polimamitochondrial genome.We compared these
Brassica species to Raphanus sativus and Sinapis arvensis as outgroups.
These species are the closest relatives of the Brassicas with complete
mitochondrial genome sequences (Grewe, F. et al. 2014). Several of
these species were mapped prior to genomic sequencing, and repeated
sequences and mitochondrial genome isomerization was observed
(Palmer, J. D. 1988; Palmer, J. D. and L. A. Herbon 1986).

All eight of these species include one pair of long repeats, ranging in
length from 1.9kb to 9.7kb. However, these species show an interesting
pattern. B. nigra, B. carinata, R. sativus and S. arvensis, hereafter re-
ferred to as groupA, each have two copies of a 6.5 to 9.7kb repeat that is
only present as single copy sequence in the mitochondria of B. rapa,
B. oleracea, B. napus and B. juncea, herafter referred to as group B (see
Figure 3). The group B species each have two copies of a long repeat
1.9kb long that is present as single-copy sequence in group A. Figure 3
shows these repeated sequences, aligned only to each other and placed
onto the known phylogenetic tree of the Brassicales (Grewe, F. et al.
2014). The longest repeats are aligned, and the genes flanking them are
shown. Part A shows the long repeat and neighboring sequences from
the A group and the homologous single-copy sequences from the
B group. Part B compares the long repeat from the B group to the
single-copy homologous region from the A group.

Grewe et al. examined the synonymous substitution rates in genes
of Brassicales mitochondrial genomes (Grewe, F. et al. 2014) and found
them to be very low, consistent with most land plants. However, the
presence of repeats allows mutations in non-coding DNA to be exam-
ined qualitatively. The long repeats in the A group differ by large block
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substitutions and insertion/deletions (alignments are shown in Supple-
mental Figure S1). Where two copies are present in a species there are
very few difference between copies, and they are generally near the
boundaries of the repeats. Although significant differences can arise
during speciation events, both copies of a repeat within a species remain
identical. This supports the hypothesis that copies of repeated DNA are
maintained as identical sequence by frequent recombination and gene
conversion.

The long repeat of B. nigra and B. carinata underwent massive
change in the lineage leading to the B group of Brassica species (see
Figure 3). The first 1.6kb and the last 1.7kb of the long repeat in the
A group are conserved in the B group, and the ccmB gene still flanks the
repeat on one side. However, the last 1.7kb are inverted and separated
from the first 1.6kb by 3.3kb of a sequence of unknown origin. An
additional difference is seen in B. oleracea wherein rps7 now flanks
the repeat rather than ccmB. Other major changes appear to have
occurred in the time since B. nigra diverged from the ancestor of
B. oleracea and B. rapa; a comparison of the complete mitochondrial
genomes of B. rapa and B. nigra reveal at least 13 segments of DNA that
have been rearranged. No major rearrangements have occurred be-
tween B. nigra and B. carinata, nor between B. rapa, B. juncea and
B. napus polima. B. oleracea differs from B. rapa by approximately six
rearrangement events (Grewe, F. et al. 2014).

At the same time that the long repeat of the A group was being
dramatically altered in the lineage leading to B. rapa and B. oleracea,
a new long repeat appeared in the B group, which includes the
coding sequence of the cox2 gene. This new long repeat is
maintained throughout this group of four species, and the flanking
genes are also conserved (see Figure 3; sequence alignments are
shown in Supplemental Figure S2). The cox2 gene is single copy
in the A group and is in a nearly syntenic arrangement with neigh-
boring genes.

DISCUSSION
The availability of complete mitochondrial genome sequences from
many taxa of green plants allows us to compare the abundance and size
distribution of non-tandem repeats across taxa. Although such repeats
have been known for some time, their functions (if any) and evolution
are largely mysterious. It has been suggested that their existence and
maintenance are outgrowths of double-strand break repair events such
as nonhomologous end-joining (NHEJ), break-induced replication
(BIR) and gene conversion (Christensen, A. C. 2018). We describe here
a Python script that uses BLAST (Altschul, S. F. et al. 1990) to find non-
tandem repeats within sequences, and use it to analyze plantmitochon-
drial DNA. In addition, comparison of repeats between closely related

species within the Brassicales showed that repeat differences between
species were largely due to rearrangements and block substitutions or
insertions, which could be due to NHEJ and BIR, while the two copies
of the repeat were identical within a species, suggesting continuing
repair by gene conversion or homologous recombination.

Repeats in mitochondria appear to be more abundant and larger in
the vascular plants than in the non-vascular taxa. This suggests that the
first vascular common ancestor of lycophytes, ferns, gymnosperms and
angiosperms acquired new mechanisms of mitochondrial genome
replication and repair that led to a proliferation of repeats and increases
in repeat size and mitochondrial genome size. Complete sequences of
more species, particularly in the lycophytes and ferns, is necessary to add
clarity but the ancestor of vascular plants evidently made a transition to
increased use of double-strand break repair in their mitochondria,
leading to the genomic gymnastics seen today.

The analysis of repeats in the Brassica species suggests that mitochon-
drial genomes can remain relatively static for long periods of time, but can
also diverge very rapidly by rearrangements, sequence loss, and gain of
sequences of unknown origin. This pattern resembles punctuated equi-
librium (Gould, S. J. and N. Eldredge 1977). The mechanisms and fre-
quency are unknown, but it suggests that a lineage can experience a burst
of genome recombination, breakage and rejoining, dramatically rearrang-
ing and altering themitochondrial genome, as if it had been shattered and
rebuilt. These events occur on a time scale that is faster than that of
speciation, leading to high levels of divergence, and loss of synteny.

Qualitative differences have been described between the repeats
shorter and longer than about 1kb (Arrieta-Montiel, M. P. et al.
2009; Klein, M. et al. 1994; Mower, J. P. et al. 2012). In general the
largest repeats within a species have been found to recombine consti-
tutively, leading to isomerization of the genome into multiple major
forms. The shortest repeats (less than 50bp) may be involved in ho-
mologous recombination events only rarely, while those of intermedi-
ate size, generally in the 100s of base pairs, can recombine in response
to genome damage or in DNA maintenance mutants, but do not
normally do so in unstressed, non-mutant plants, as noted above.
The intermediate size repeats have been primarily analyzed in Arabi-
dopsis thaliana, and have been found to recombine in abnormal
conditions. In plants treated with ciprofloxacin (which induces mito-
chondrial double-strand breaks), or in mutants of the mitochondrial
recG homolog, repeats of 452, 249, 204 and 126bp were seen to recom-
bine (Wallet, C. et al. 2015). In mutants ofmsh1 (which results in high
levels of ectopic recombination), there was some recombination seen
between repeats as small as 70bp, but none in repeats of 50bp or smaller
(Davila, J. I. et al. 2011). This suggests a changing spectrum of function
and activity correlated with size, which could also vary by species.

Figure 1 Size distributions of repeats in groups of
species. The number of species represented in each
group is shown. Headings indicate the bins of
repeat sizes and the numbers indicate the fraction
of species in that group that have at least one repeat
of that size. Heat map color coding is blue for one
and yellow for zero.
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Functional analysis of repeat recombination can be done by analyz-
ing clones big enough to include the repeats (Klein, M. et al. 1994), by
long read sequencing (Shearman, J. R. et al. 2016), PCR (Wallet, C. et al.
2015) or by Southern blotting (Arrieta-Montiel, M. P. et al. 2009;
Sakamoto, W. et al. 1996). Functional analysis of the large repeats is
an important step in understanding plant mitochondrial genome struc-
ture and evolution (Guo,W. et al. 2016; Guo,W. et al. 2017; Sloan, D. B.
2013) and may reveal different patterns of recombination between

species, which would reveal important differences in the replication
and repair machinery and dynamics.

We doubt that there is an adaptive advantage to large size and
abundant rearrangements in the genomes of plantmitochondria.We
suggest that these are correlated traits accompanying the adaptive
advantage of a greatly increased reliance on double-strand break
repair. DNA repair is critically important because damage is more
likely in mitochondria than the nucleus due to the presence of

Figure 2 Distribution of repeat sizes among angiosperms. Species are sorted by the phylogenetic groups as described by the Angiosperm
phylogeny group (Cole et al. 2017). The number of repeats of each size class is shown. Blue shading indicates a number greater than zero.
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reactive oxygen species. In animals, the mitochondrial mutation rate
is high, but the reduced mitochondrial genome size minimizes the
number of potential mutational targets (Lynch,M. et al. 2006; Smith,
D. R. 2016). However, with multiple copies of mitochondrial DNA
in each cell, an alternative strategy in a high DNA damage environ-
ment is to increase the use of template DNA in repair. The accuracy
of double-strand break repair when a template is used is accompa-
nied by the creation of chimeras, rearrangements and duplications
when templates are not identical or cannot be found by the repair
enzymes. Dramatic expansions, rearrangements and losses, accom-
panied by low substitution rates in genes is characteristic of flower-
ing plant mitochondria. Selection on gene function maintains the
genes, while the expansions and rearrangements must be nearly
neutral. Once mitochondria evolved very efficient double-strand
break repair, and a mechanism for inducing double-strand breaks
at the sites of many types of damage, more primitive mechanisms,
such as nucleotide excision repair can and have been lost
(Gualberto, J. M. et al. 2014; Gualberto, J. M. and K. J. Newton
2017) without obvious evolutionary cost.

The adaptive value of increased and efficient double-strand break
repair is probably to avoid mutations in the essential genes of mito-
chondria, and is possible because of the abundance of double-stranded
template molecules in each cell. However this mechanism of repair
has an additional correlated trait. There are bacterial species, such as
Deinococcus radiodurans, that excel at double-strand break repair and
can rebuild even significantly fragmented genomes (Krisko, A. and
M. Radman 2013) while also being able to minimize radiation-induced
damage (Sharma, A. et al. 2017). While D. radiodurans is notoriously
resistant to ionizing radiation, the adaptive value is thought to be
desiccation resistance, because dehydration is more likely to have been
experienced than extreme radiation in the history of the lineage, and
also produces double-strand breaks (Mattimore, V. and J. R. Battista
1996). Radiation resistant bacteria in unrelated phylogenetic groups
show more genome rearrangements and loss of synteny than their
radiation sensitive relatives (Repar, J. et al. 2017), suggesting that abun-
dant double-strand break repair is the cause of both the resistance to
significant double-strand breakage and the loss of synteny. An inter-
esting possibility is that very efficient double-strand break repair in

Figure 3 Alignment of long repeats in the
Brassicales. A phylogenetic tree is shown at
left, derived from Grewe et al. (Grewe, F.
et al. 2014). Part A aligns the longest repeat
in Group A (R. sativus, S. arvensis, B. nigra
and B. carinata) and shows the genes flanking
them. The homologous single-copy sequence
from B. rapa, B. napus, B. juncea and B. oleracea
is also shown. Part B aligns the longest re-
peat in Group B (B. rapa, B. napus, B. juncea
and B. oleracea), and shows the homologous
single-copy region in Group A. Red arrows
indicate the long repeats that were used to
align all sequences in the two parts of the
figure. Blue indicates genes in the flanking
regions that may or may not be conserved
or rearranged. Green indicates rRNA genes
and small arrows represent tRNA genes.
Branch lengths in the tree are not to scale.
The sequences are depicted at the scale
shown in the figure.
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plant mitochondria also confers desiccation resistance as a correlated
trait. Because mitochondria are metabolically active immediately upon
imbibition of seeds, DNA damage must be repaired very efficiently and
rapidly (Paszkiewicz, G. et al. 2017). Efficient repair of desiccation-
mediated damage in all cellular compartments is a prerequisite to being
able to produce seeds or spores for reproduction. It is possible that the
DNA repair strategy of plant mitochondria was one of several factors
(including desiccation resistance of the nuclear and plastid genomes,
presumably by distinct mechanisms) that are beneficial to vascular
plants. The evidence of the repeats suggests that the transition to dou-
ble-strand break repair in mitochondria occurred at approximately the
same time as the transition to vascularity in plants, and it may have
been one of several traits that enabled their success. In addition, once
the life cycles of land plants included periods of desiccation in spores
and seeds, double-strand breakage would have increased, accompanied
by increases in rearrangements, expansions, and chimeras. The mech-
anisms of double-strand break repair continue to be important for
understanding the evolution of plant mitochondrial genomes.

ACKNOWLEDGMENTS
We are grateful to Jeff Mower and Brandi Sigmon for many helpful
comments on the manuscript, and Alex Kozik (UC Davis) for beta
testing. ACC is grateful to Meric Lieberman and Isabelle Henry (U.C.
Davis) for introducing him to Python scripting. ELW thanks Maya
Khasin for support and encouragement. This work was supported in part
by a grant from the National Science Foundation (MCB-1413152).

LITERATURE CITED
Abdelnoor, R. V., R. Yule, A. Elo, A. C. Christensen, G. Meyer-Gauen et al.,

2003 Substoichiometric shifting in the plant mitochondrial genome is
influenced by a gene homologous to MutS. Proc. Natl. Acad. Sci. USA
100: 5968–5973. https://doi.org/10.1073/pnas.1037651100

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
1990 Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
https://doi.org/10.1016/S0022-2836(05)80360-2

Alverson, A. J., D. W. Rice, S. Dickinson, K. Barry, and J. D. Palmer,
2011a Origins and recombination of the bacterial-sized multichromosomal
mitochondrial genome of cucumber. Plant Cell 23: 2499–2513. https://doi.org/
10.1105/tpc.111.087189

Alverson, A. J., X. Wei, D. W. Rice, D. B. Stern, K. Barry et al., 2010 Insights
into the evolution of mitochondrial genome size from complete se-
quences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol.
Biol. Evol. 27: 1436–1448. https://doi.org/10.1093/molbev/msq029

Alverson, A. J., S. Zhuo, D. W. Rice, D. B. Sloan, and J. D. Palmer,
2011b The mitochondrial genome of the legume Vigna radiata and the
analysis of recombination across short mitochondrial repeats. PLoS One
6: e16404. https://doi.org/10.1371/journal.pone.0016404

Andre, C., A. Levy, and V. Walbot, 1992 Small repeated sequences and the
structure of plant mitochondrial genomes. Trends Genet. 8: 128–132.

Arrieta-Montiel, M. P., V. Shedge, J. Davila, A. C. Christensen, and
S. A. Mackenzie, 2009 Diversity of the Arabidopsis Mitochondrial Ge-
nome Occurs via Nuclear-Controlled Recombination Activity. Genetics
183: 1261–1268. https://doi.org/10.1534/genetics.109.108514

Bendich, A. J., 2004 Circular Chloroplast Chromosomes: The Grand Illu-
sion. Plant Cell 16: 1661–1666. https://doi.org/10.1105/tpc.160771

Chang, S., T. Yang, T. Du, Y. Huang, J. Chen et al., 2011 Mitochondrial
genome sequencing helps show the evolutionary mechanism of mito-
chondrial genome formation in Brassica. BMC Genomics 12: 497. https://
doi.org/10.1186/1471-2164-12-497

Chaw, S. M., A. C. Shih, D. Wang, Y. W. Wu, S. M. Liu et al., 2008 The
mitochondrial genome of the gymnosperm Cycas taitungensis contains a
novel family of short interspersed elements, Bpu sequences, and abundant

RNA editing sites. Mol. Biol. Evol. 25: 603–615. https://doi.org/10.1093/
molbev/msn009

Cheng, F., J. Liang, C. Cai, X. Cai, J. Wu et al., 2017 Genome sequencing
supports a multi-vertex model for Brassiceae species. Curr. Opin. Plant
Biol. 36: 79–87. https://doi.org/10.1016/j.pbi.2017.01.006

Christensen, A. C., 2014 Genes and Junk in Plant Mitochondria—Repair
Mechanisms and Selection. Genome Biol. Evol. 6: 1448–1453. https://doi.org/
10.1093/gbe/evu115

Christensen, A. C., 2018 Mitochondrial DNA repair and genome evolution,
pp. 11–31 in Annual Plant Reviews, Plant Mitochondria, Ed. 2, edited by
Logan, D. C., Wiley-Blackwell, New York, NY

Cole, T. C. H., H. H. Hilger, and P. F. Stevens, 2017 Angiosperm phylogeny
poster (APP) – Flowering plant systematics, 2017. PeerJ Preprints 5:
e2320v4. https://doi.org/10.7287/peerj.preprints.2320v4.

Davila, J. I., M. P. Arrieta-Montiel, Y. Wamboldt, J. Cao, J. Hagmann et al.,
2011 Double-strand break repair processes drive evolution of the mi-
tochondrial genome in Arabidopsis. BMC Biol. 9: 64. https://doi.org/
10.1186/1741-7007-9-64

Drouin, G., H. Daoud, and J. Xia, 2008 Relative rates of synonymous
substitutions in the mitochondrial, chloroplast and nuclear genomes of
seed plants. Mol. Phylogenet. Evol. 49: 827–831. https://doi.org/10.1016/j.
ympev.2008.09.009

Folkerts, O., and M. R. Hanson, 1989 Three copies of a single recombina-
tion repeat occur on the 443 kb master circle of the Petunia hybrida
3704 mitochondrial genome. Nucleic Acids Res. 17: 7345–7357. https://
doi.org/10.1093/nar/17.18.7345

Forner, J., B. Weber, C. Wietholter, R. C. Meyer, and S. Binder,
2005 Distant sequences determine 59 end formation of cox3 transcripts
in Arabidopsis thaliana ecotype C24. Nucleic Acids Res. 33: 4673–4682.
https://doi.org/10.1093/nar/gki774

Franzke, A., M. A. Lysak, I. A. Al-Shehbaz, M. A. Koch, and
K. Mummenhoff, 2011 Cabbage family affairs: the evolutionary history
of Brassicaceae. Trends Plant Sci. 16: 108–116. https://doi.org/10.1016/j.
tplants.2010.11.005

Gould, S. J., and N. Eldredge, 1977 Punctuated Equilibria: The Tempo and
Mode of Evolution Reconsidered. Paleobiology 3: 115–151. https://doi.org/
10.1017/S0094837300005224

Grewe, F., P. P. Edger, I. Keren, L. Sultan, J. C. Pires et al.,
2014 Comparative analysis of 11 Brassicales mitochondrial genomes
and the mitochondrial transcriptome of Brassica oleracea. Mitochon-
drion. 19: 135–143. https://doi.org/10.1016/j.mito.2014.05.008

Grewe, F., P. Viehoever, B. Weisshaar, and V. Knoop, 2009 A trans-splicing
group I intron and tRNA-hyperediting in the mitochondrial genome of
the lycophyte Isoetes engelmannii. Nucleic Acids Res. 37: 5093–5104.
https://doi.org/10.1093/nar/gkp532

Gualberto, J. M., D. Mileshina, C. Wallet, A. K. Niazi, F. Weber-Lotfi et al.,
2014 The plant mitochondrial genome: dynamics and maintenance.
Biochimie 100: 107–120. https://doi.org/10.1016/j.biochi.2013.09.016

Gualberto, J. M., and K. J. Newton, 2017 Plant Mitochondrial Genomes:
Dynamics and Mechanisms of Mutation. Annu. Rev. Plant Biol. 68:
225–252. https://doi.org/10.1146/annurev-arplant-043015-112232

Guo, W., F. Grewe, W. Fan, G. J. Young, V. Knoop et al., 2016 Ginkgo and
Welwitschia Mitogenomes Reveal Extreme Contrasts in Gymnosperm
Mitochondrial Evolution. Mol. Biol. Evol. 33: 1448–1460. https://doi.org/
10.1093/molbev/msw024

Guo, W., A. Zhu, W. Fan, and J. P. Mower, 2017 Complete mitochondrial
genomes from the ferns Ophioglossum californicum and Psilotum
nudum are highly repetitive with the largest organellar introns. New
Phytol. 213: 391–403. https://doi.org/10.1111/nph.14135

Hecht, J., F. Grewe, and V. Knoop, 2011 Extreme RNA editing in coding
islands and abundant microsatellites in repeat sequences of Selaginella
moellendorffii mitochondria: the root of frequent plant mtDNA recom-
bination in early tracheophytes. Genome Biol. Evol. 3: 344–358. https://
doi.org/10.1093/gbe/evr027

Klein, M., U. Eckert-Ossenkopp, I. Schmiedeberg, P. Brandt, M. Unseld et al.,
1994 Physical mapping of the mitochondrial genome of Arabidopsis

558 | E. L. Wynn and A. C. Christensen

https://doi.org/10.1073/pnas.1037651100
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1105/tpc.111.087189
https://doi.org/10.1105/tpc.111.087189
https://doi.org/10.1093/molbev/msq029
https://doi.org/10.1371/journal.pone.0016404
https://doi.org/10.1534/genetics.109.108514
https://doi.org/10.1105/tpc.160771
https://doi.org/10.1186/1471-2164-12-497
https://doi.org/10.1186/1471-2164-12-497
https://doi.org/10.1093/molbev/msn009
https://doi.org/10.1093/molbev/msn009
https://doi.org/10.1016/j.pbi.2017.01.006
https://doi.org/10.1093/gbe/evu115
https://doi.org/10.1093/gbe/evu115
https://doi.org/10.1186/1741-7007-9-64
https://doi.org/10.1186/1741-7007-9-64
https://doi.org/10.1016/j.ympev.2008.09.009
https://doi.org/10.1016/j.ympev.2008.09.009
https://doi.org/10.1093/nar/17.18.7345
https://doi.org/10.1093/nar/17.18.7345
https://doi.org/10.1093/nar/gki774
https://doi.org/10.1016/j.tplants.2010.11.005
https://doi.org/10.1016/j.tplants.2010.11.005
https://doi.org/10.1017/S0094837300005224
https://doi.org/10.1017/S0094837300005224
https://doi.org/10.1016/j.mito.2014.05.008
https://doi.org/10.1093/nar/gkp532
https://doi.org/10.1016/j.biochi.2013.09.016
https://doi.org/10.1146/annurev-arplant-043015-112232
https://doi.org/10.1093/molbev/msw024
https://doi.org/10.1093/molbev/msw024
https://doi.org/10.1111/nph.14135
https://doi.org/10.1093/gbe/evr027
https://doi.org/10.1093/gbe/evr027


thaliana by cosmid and YAC clones. Plant J. 6: 447–455. https://doi.org/
10.1046/j.1365-313X.1994.06030447.x

Krisko, A., and M. Radman, 2013 Biology of extreme radiation resistance:
the way of Deinococcus radiodurans. Cold Spring Harb. Perspect. Biol. 5:
a012765. https://doi.org/10.1101/cshperspect.a012765

Kurtz, S., and C. Schleiermacher, 1999 REPuter: fast computation of
maximal repeats in complete genomes. Bioinformatics 15: 426–427.
https://doi.org/10.1093/bioinformatics/15.5.426

Liu, Y., R. Medina, and B. Goffinet, 2014 350 my of mitochondrial genome
stasis in mosses, an early land plant lineage. Mol. Biol. Evol. 31:
2586–2591. https://doi.org/10.1093/molbev/msu199

Lynch, M., B. Koskella, and S. Schaack, 2006 Mutation Pressure and the
Evolution of Organelle Genomic Architecture. Science 311: 1727–1730.
https://doi.org/10.1126/science.1118884

Mattimore, V., and J. R. Battista, 1996 Radioresistance of Deinococcus
radiodurans: functions necessary to survive ionizing radiation are also
necessary to survive prolonged desiccation. J. Bacteriol. 178: 633–637.
https://doi.org/10.1128/jb.178.3.633-637.1996

Miller-Messmer, M., K. Kuhn, M. Bichara, M. Le Ret, P. Imbault et al.,
2012 RecA-dependent DNA repair results in increased heteroplasmy of
the Arabidopsis mitochondrial genome. Plant Physiol. 159: 211–226.
https://doi.org/10.1104/pp.112.194720

Mower, J. P., A. L. Case, E. R. Floro, and J. H. Willis, 2012 Evidence against
equimolarity of large repeat arrangements and a predominant master
circle structure of the mitochondrial genome from a monkeyflower
(Mimulus guttatus) lineage with cryptic CMS. Genome Biol. Evol. 4:
670–686. https://doi.org/10.1093/gbe/evs042

Palmer, J. D., 1988 Intraspecific variation and multicircularity in Brassica
mitochondrial DNAs. Genetics 118: 341–351.

Palmer, J. D., and L. A. Herbon, 1986 Tricircular mitochondrial genomes of
Brassica and Raphanus: reversal of repeat configurations by inversion.
Nucleic Acids Res. 14: 9755–9764. https://doi.org/10.1093/nar/14.24.9755

Palmer, J. D., and L. A. Herbon, 1988 Plant mitochondrial DNA evolves
rapidly in structure, but slowly in sequence. J. Mol. Evol. 28: 87–97.
https://doi.org/10.1007/BF02143500

Palmer, J. D., and C. R. Shields, 1984 Tripartite structure of the Brassica
campestris mitochondrial genome. Nature 307: 437–440. https://doi.org/
10.1038/307437a0

Park, S., F. Grewe, A. Zhu, T. A. Ruhlman, J. Sabir et al., 2015 Dynamic
evolution of Geranium mitochondrial genomes through multiple
horizontal and intracellular gene transfers. New Phytol. 208: 570–583.
https://doi.org/10.1111/nph.13467

Parkinson, C. L., J. P. Mower, Y. L. Qiu, A. J. Shirk, K. Song et al.,
2005 Multiple major increases and decreases in mitochondrial substi-
tution rates in the plant family Geraniaceae. BMC Evol. Biol. 5: 73.
https://doi.org/10.1186/1471-2148-5-73

Paszkiewicz, G., J. M. Gualberto, A. Benamar, D. Macherel, and D. C. Logan,
2017 Arabidopsis Seed Mitochondria Are Bioenergetically Active Im-
mediately upon Imbibition and Specialize via Biogenesis in Preparation
for Autotrophic Growth. Plant Cell 29: 109–128. https://doi.org/10.1105/
tpc.16.00700

Repar, J., F. Supek, T. Klanjscek, T. Warnecke, K. Zahradka et al.,
2017 Elevated Rate of Genome Rearrangements in Radiation-Resistant
Bacteria. Genetics 205: 1677–1689. https://doi.org/10.1534/
genetics.116.196154

Richardson, A. O., D. W. Rice, G. J. Young, A. J. Alverson, and J. D. Palmer,
2013 The “fossilized” mitochondrial genome of Liriodendron tulipifera:
ancestral gene content and order, ancestral editing sites, and extraordi-
narily low mutation rate. BMC Biol. 11: 29. https://doi.org/10.1186/1741-
7007-11-29

Sakamoto, W., H. Kondo, M. Murata, and F. Motoyoshi, 1996 Altered
mitochondrial gene expression in a maternal distorted leaf mutant of

Arabidopsis induced by chloroplast mutator. Plant Cell 8: 1377–1390.
https://doi.org/10.1105/tpc.8.8.1377

Schuster, W., and A. Brennicke, 1994 The Plant Mitochondrial Genome:
Physical Structure, Information Content, RNA Editing, and Gene Mi-
gration to the Nucleus. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:
61–78. https://doi.org/10.1146/annurev.pp.45.060194.000425

Sharma, A., E. K. Gaidamakova, O. Grichenko, V. Y. Matrosova, V. Hoeke
et al., 2017 Across the tree of life, radiation resistance is governed by
antioxidant Mn(2+), gauged by paramagnetic resonance. Proc. Natl.
Acad. Sci. USA 114: E9253–E9260. https://doi.org/10.1073/
pnas.1713608114

Shearman, J. R., C. Sonthirod, C. Naktang, W. Pootakham, T. Yoocha et al.,
2016 The two chromosomes of the mitochondrial genome of a sugar-
cane cultivar: assembly and recombination analysis using long PacBio
reads. Sci. Rep. 6: 31533. https://doi.org/10.1038/srep31533

Shedge, V., M. Arrieta-Montiel, A. C. Christensen, and S. A. Mackenzie,
2007 Plant mitochondrial recombination surveillance requires unusual
RecA and MutS homologs. Plant Cell 19: 1251–1264. https://doi.org/
10.1105/tpc.106.048355

Siculella, L., F. Damiano, M. R. Cortese, E. Dassisti, G. Rainaldi et al.,
2001 Gene content and organization of the oat mitochondrial genome.
Theor. Appl. Genet. 103: 359–365. https://doi.org/10.1007/
s001220100568

Sloan, D. B., 2013 One ring to rule them all? Genome sequencing provides
new insights into the ‘master circle’ model of plant mitochondrial DNA
structure. New Phytol. 200: 978–985. https://doi.org/10.1111/nph.12395

Sloan, D. B., A. J. Alverson, J. P. Chuckalovcak, M. Wu, D. E. McCauley et al.,
2012 Rapid evolution of enormous, multichromosomal genomes in
flowering plant mitochondria with exceptionally high mutation rates.
PLoS Biol. 10: e1001241. https://doi.org/10.1371/journal.pbio.1001241

Sloan, D. B., A. J. Alverson, H. Storchova, J. D. Palmer, and D. R. Taylor,
2010 Extensive loss of translational genes in the structurally dynamic
mitochondrial genome of the angiosperm Silene latifolia. BMC Evol. Biol.
10: 274. https://doi.org/10.1186/1471-2148-10-274

Smith, D. R., 2016 The mutational hazard hypothesis of organelle genome
evolution: 10 years on. Mol. Ecol. 25: 3769–3775. https://doi.org/10.1111/
mec.13742

Smith, D. R., R. W. Lee, J. C. Cushman, J. K. Magnuson, D. Tran et al.,
2010 The Dunaliella salina organelle genomes: large sequences, inflated
with intronic and intergenic DNA. BMC Plant Biol. 10: 83. https://doi.org/
10.1186/1471-2229-10-83

Stern, D. B., and J. D. Palmer, 1986 Tripartite mitochondrial genome of
spinach: physical structure, mitochondrial gene mapping, and locations
of transposed chloroplast DNA sequences. Nucleic Acids Res. 14:
5651–5666. https://doi.org/10.1093/nar/14.14.5651

Sugiyama, Y., Y. Watase, M. Nagase, N. Makita, S. Yagura et al., 2005 The
complete nucleotide sequence and multipartite organization of the to-
bacco mitochondrial genome: comparative analysis of mitochondrial
genomes in higher plants. Mol. Genet. Genomics 272: 603–615.
https://doi.org/10.1007/s00438-004-1075-8

Wallet, C., M. Le Ret, M. Bergdoll, M. Bichara, A. Dietrich et al., 2015 The
RECG1 DNA Translocase Is a Key Factor in Recombination Surveillance,
Repair, and Segregation of the Mitochondrial DNA in Arabidopsis. Plant
Cell 27: 2907–2925. https://doi.org/10.1105/tpc.15.00680

Ward, B. L., R. S. Anderson, and A. J. Bendich, 1981 The mitochondrial
genome is large and variable in a family of plants (cucurbitaceae). Cell 25:
793–803. https://doi.org/10.1016/0092-8674(81)90187-2

Wolfe, K., W. Li, and P. Sharp, 1987 Rates of nucleotide substitution vary
greatly among plant mitochondrial,chloroplast and nuclear DNAs. Proc.
Natl. Acad. Sci. USA 84: 9054–9058. https://doi.org/10.1073/pnas.84.24.9054

Communicating editor: B. Andrews

Volume 9 February 2019 | Repeats in Plant Mitochondria | 559

https://doi.org/10.1046/j.1365-313X.1994.06030447.x
https://doi.org/10.1046/j.1365-313X.1994.06030447.x
https://doi.org/10.1101/cshperspect.a012765
https://doi.org/10.1093/bioinformatics/15.5.426
https://doi.org/10.1093/molbev/msu199
https://doi.org/10.1126/science.1118884
https://doi.org/10.1128/jb.178.3.633-637.1996
https://doi.org/10.1104/pp.112.194720
https://doi.org/10.1093/gbe/evs042
https://doi.org/10.1093/nar/14.24.9755
https://doi.org/10.1007/BF02143500
https://doi.org/10.1038/307437a0
https://doi.org/10.1038/307437a0
https://doi.org/10.1111/nph.13467
https://doi.org/10.1186/1471-2148-5-73
https://doi.org/10.1105/tpc.16.00700
https://doi.org/10.1105/tpc.16.00700
https://doi.org/10.1534/genetics.116.196154
https://doi.org/10.1534/genetics.116.196154
https://doi.org/10.1186/1741-7007-11-29
https://doi.org/10.1186/1741-7007-11-29
https://doi.org/10.1105/tpc.8.8.1377
https://doi.org/10.1146/annurev.pp.45.060194.000425
https://doi.org/10.1073/pnas.1713608114
https://doi.org/10.1073/pnas.1713608114
https://doi.org/10.1038/srep31533
https://doi.org/10.1105/tpc.106.048355
https://doi.org/10.1105/tpc.106.048355
https://doi.org/10.1007/s001220100568
https://doi.org/10.1007/s001220100568
https://doi.org/10.1111/nph.12395
https://doi.org/10.1371/journal.pbio.1001241
https://doi.org/10.1186/1471-2148-10-274
https://doi.org/10.1111/mec.13742
https://doi.org/10.1111/mec.13742
https://doi.org/10.1186/1471-2229-10-83
https://doi.org/10.1186/1471-2229-10-83
https://doi.org/10.1093/nar/14.14.5651
https://doi.org/10.1007/s00438-004-1075-8
https://doi.org/10.1105/tpc.15.00680
https://doi.org/10.1016/0092-8674(81)90187-2
https://doi.org/10.1073/pnas.84.24.9054

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	12-18-2018

	Repeats of Unusual Size in Plant Mitochondrial Genomes: Identification, Incidence and Evolution
	Emily L. Wynn
	Alan C. Christensen

	Repeats of Unusual Size in Plant Mitochondrial Genomes: Identification, Incidence and Evolution

