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Abstract— Hydrogel based pH sensors are promising 

candidates for implantable sensors due to their low-cost and 

biocompatibility. Despite their commercial potential and 

numerous theoretical/experimental reports, the trade-offs 

between different performance parameters are not well 

understood, and explicitly stated. In this work, we develop a 

numerical and analytical framework to show that there is a 

fundamental trade-off between the performance parameters i.e. 

sensitivity/dynamic range vs. response-time/response-asymmetry 

in hydrogel sensors under constrained swelling conditions.  

Specifically, we consider the effect of the gel parameters, such as 

the ionizable group density (𝑵𝒇) and its dissociation constant 

(𝑲𝒂), on the sensor performance. We show that improvement of 

sensitivity/dynamic range leads to degradation in response 

time/symmetry and therefore, a compromise must be made to 

optimize device performance. 

 
Index Terms— Hydrogel, pH Sensor, Sensitivity, Response 

Time  

 

I. INTRODUCTION 

Decorated with capture probes, stimuli-sensitive hydrogels 

are three-dimensional cross-linked polymeric materials which 

swell/shrink depending on analyte (chemical/biomolecule)  

and environmental conditions such as  pH [1]–[6], ionic 

concentration [1], temperature [5], glucose [7]–[9], antigen 

[10] , etc. These materials have been explored for numerous 

biomedical applications [11],  such as, chemical/biomolecule 

sensing [1]–[7], [10], [12], contact lenses [13], drug delivery 

[14], tissue engineering [15], etc.  Hydrogels are 

biocompatible (they do not trigger an immune response), 

encouraging their recent use in active implantable sensors [6], 

[7], [16]  to continuously monitor vital health parameters. 

Hydrogel sensors can be operated either in free swelling mode 

(FSM) or constrained-swelling mode (CSM).  When a FSM 

sensor is exposed to an analyte solution, the hydrogel volume 

changes significantly. This change can be monitored by 

optical [17]–[19], oscillating [20], or conductimetric [21], [22] 

sensors. In CSM sensors, on the other hand, the hydrogel is 

confined between a rigid porous membrane and a semi-rigid 

deformable membrane [2], [6], [7], [23], see, Fig. 1(a). The 

porous layer allows the analyte (i.e. proton) to diffuse into the 

hydrogel, but it does not deform due to the change in hydrogel 
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pressure. Instead, when the analyte concentration changes, 

hydrogel pressure deforms the deformable membrane below.   

The magnitude of the pressure (Δ𝑃) depends on several 

factors, such as the composition of the polymer comprising the 

hydrogel, the density and affinity of the capture probes to 

analyte (i.e. protons), and the environmental conditions such 

as temperature, ionic concentration, etc.  The small deflection 

of the membrane due to change in pressure can then be read 

by various transducers such as capacitive sensor [6], [7] and 

piezoelectric sensor [4], [5], [24].  

 

 
Fig. 1 (a) Schematic of a Hydrogel based Wireless Implantable 

Biochemical Sensor System: The sensor (blue) is implanted into a 

human body. The sensor is composed of an LC resonator with a 

hydrogel sandwiched between a rigid porous membrane and a 

deformable membrane. The hydrogel is pendent with the ionizable 

groups (with density, 𝑁𝑓 and dissociation constant, 𝐾𝑎) which are 

responsive to analyte (say, proton) molecules. As the analyte 

concentration changes, the pressure exerted by hydrogel on 

deformable membrane changes which can be wirelessly detected,   

(b) 1D approximation for simulation of hydrogel sensor,                   

(c) Experimental validation of static pressure change as a function of 

pH for cationic and anionic hydrogel. Lines represent the numerical 

simulation results and circle/polygon represent experimental data 

obtained from Ref. [1] and [6], respectively.  

 

 Several groups have reported numerical, analytical and 

experimental studies regarding the kinetics and steady-state 

response of free-swelling hydrogels. For example, Grimshaw 

et al. [25] and De et al. [26], [27] have reported experimental 

and numerical studies on free swelling kinetics of 

polyelectrolyte gel (without the porous membrane). Lesho et 

al. [28] reported an analytical formulation supported by 

(a)

(b) (c)
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experiments to determine swelling kinetics of unconstrained 

gels. Ballhause et al. [29] have numerically investigated the 

swelling dynamics based upon chemical stimulation due to 

change in ionic concentration. Kang et al. [30] have developed 

a chemo-electro-mechanical model to investigate pH 

dependent free-swelling of hydrogels.  

In contrast, the CSM sensors are relatively new and have 

not been analyzed as extensively.  Herber et al. [1] and Lei et 

al. [6] experimentally studied the pressure generated due to 

𝑝𝐻.  Guenther et al. [4], [5], [24] and Trinh et al. [31] reported 

analytical models to determine the response of a gel under 

constrained conditions. Despite these significant advances 

both in multi-physics modeling and experiments, the key 

design trade-offs between the signal (characterized by 

sensitivity (𝑆) and dynamic range (Δ𝑝𝐻𝑟𝑎𝑛𝑔𝑒)) and time 

response (characterized by response time (𝜏) and symmetry of 

the response) are not clearly understood. Obviously, it would 

be difficult to design and optimize a hydrogel sensor unless 

these tradeoffs are explicitly specified.  

The two important attributes that govern the sensor 

response to 𝑝𝐻 changes are: a) The concentration of ionizable 

groups (𝑁𝑓) [1], and b) The affinity of the ionizable group to 

the protons which is determined by its acid dissociation 

constant (𝐾𝑎). Both these design variables can be changed by 

using either a different ionizable group (characterized by a 

different 𝐾𝑎 [32]) and/or changing 𝑁𝑓 during hydrogel 

preparation.  

An ideal 𝑝𝐻 sensor should sense the proton density (𝑐𝐻0
+) 

with high precision (determined by sensitivity), within a 

specific period of time (determined by response time), and it 

should do so over a broad 𝑝𝐻 range (determined by dynamic 

range). Also, it is preferable to have a sensor which shows 

symmetric response for rise and fall in the 𝑝𝐻 value. 

However, our findings suggest that these performance 

parameters are correlated and the improvement of one leads to 

the degradation of the other. In this work, we provide a 

systematic numerical and analytical framework to interpret 

and highlight these trade-offs for a gel characterized by 

(𝑁𝑓 , 𝐾𝑎). Our analysis yields the following important 

conclusions regarding the trade-off between sensitivity (𝑆)/ 

dynamic range (Δ𝑝𝐻𝑟𝑎𝑛𝑔𝑒) and response time (𝜏)/response 

symmetry of CSM sensors:  

1. Trade-off dictated by density of fixed ionic groups, 𝑁𝑓: 

While 𝑆 and  Δ𝑝𝐻𝑟𝑎𝑛𝑔𝑒 of the sensor improve with 

increasing 𝑁𝑓, 𝜏 degrades.  

2. Trade-off dictated by dissociation constant1, 𝑝𝐾𝑎:  

While 𝑆 is highest for choice of 𝑝𝐾𝑎  ~ 𝑝𝐻  (i.e. desired 

𝑝𝐻 range of operation), 𝜏 degrades and the sensor 

response is asymmetric. 

   The paper is divided into following sections: In Section 2, 

 
1 Note, the acid dissociation constant (𝐾𝑎) and 𝑝𝐾𝑎 = − log10(𝐾𝑎) are 

inter-related and have been used inter-changeably throughout the manuscript. 

Similarly, the concentration of protons (𝑐𝐻0
+) is expressed in terms of the 𝑝𝐻 

(= − log10(𝑎𝐻+𝑐𝐻0
+) ≈  − log10(𝑐𝐻0

+)), where 𝑎𝐻+ is the activity factor of 

protons. 

we provide a description of the model system and describe the 

numerical and analytical model. Section 3, we use these 

models to highlight the trade-offs associated between different 

performance parameters such as signal (sensitivity/dynamic 

range) and time response (response time/symmetry of 

response). Finally, we conclude with Section 4 by 

summarizing the essence of the work. 

II. MODEL SYSTEM 

1. Device Description 

A general scheme for use of CSM sensor in detection of 

analyte concentration [6], [7], [23] is shown in Fig. 1(a). The 

sensor can be implanted in the body for continuous monitoring 

of analyte concentration (say, protons). The recognition 

element is analyte responsive hydrogel pendent with fixed 

ionizable (anionic/cationic) molecules with a density, 𝑁𝑓 and 

acid dissociation constant, 𝐾𝑎. The hydrogel is constrained 

between a rigid porous membrane (top) and a transducer 

(bottom). The porous membrane can be made from a 

biocompatible material, for example Al₂O₃ [33]. The change 

in the analyte concentration brings about a change in the 

capacitance of the micro-electromechanical system (MEMS) 

sensor due to the deformation of the flexible membrane. This 

sensor can be integrated with an inductor to form a LC 

resonator. The change in resonance frequency reflects the 

concentration of analyte in the sample, and can be read 

wirelessly using a receiver (for example, a smartphone).  

2. Numerical Framework 

A generic hydrogel layer is composed of both anionic and 

cationic ionizable groups to sense protons. The anionic groups 

are represented as 𝐻𝐴, and their deprotonated (anionic i.e. 

charged form) is given by 𝐴−. The cationic groups are 

represented as 𝐻𝐵+ and their deprotonated (neutral form) is 

given by 𝐵.  For example, for a cationic group 𝑅 − 𝑁𝐻2, 𝐵 ≡
𝑅 − 𝑁𝐻2 and 𝐻𝐵+ ≡ 𝑅 − 𝑁𝐻3

+. The protons (shown in red 

diamonds) enter from left into the rigid porous membrane and 

diffuse into the hydrogel to reach the transducer surface (see, 

Fig. 1(b). Due to change in proton concentration, the ionized 

state of ionizable groups in the hydrogel changes. This brings 

a change in concentration of salt ions which leads to osmotic 

pressure on the transducer. 

The concentration of the protons (𝑐𝐻+) in hydrogel is 

determined by time-dependent self-consistent solution of 

Poisson (Eq. A1), chemical (Eq. A6-A11) and continuity 

equations (Eq. A12). The model equations and symbol 

descriptions are listed in ATable1 and ATable2, respectively. 

Briefly, we make the following assumptions:  

a) The area of the sensor (y-z plane) is much larger than the 

thickness (x-direction), therefore 1D analysis (see, Fig. 

1(b)) is appropriate.  

b) Sensor operates in isochoric conditions, so that the change 

in the thickness of the hydrogel is negligible,  

c) The acid-base reactions are faster compared to the 

diffusion of protons [25], [26], so that chemical 

equilibrium is established almost instantaneously. 

Activity factor for all ions is assumed to be 1,  
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d) Ionic concentration (𝑐𝑠) is much higher than 𝑐𝐻0
+. 

Therefore, the movement of salt ions is much faster than 

protons [27].  

e) For simplicity, the diffusion coefficient of protons in 

hydrogel (𝐷𝐻+,gel) and porous membrane (𝐷𝐻+,por) are 

assumed to be same as in pure solvent (𝐷𝐻+). This 

approximation is true for small polymer volume fraction 

in hydrogel and large pore size in porous membrane. If 

pore size is small and/or polymer fraction large, the 

diffusion constants need to be appropriately modified  

[34], [35].  

f) For simplicity, we assume that internal strains are small, 

so that the density of ionizable groups, 𝑁𝑓 remains 

uniform during the sensing operation. If the internal 

strains are large, our model must be generalized by 

inclusion of mechanical deformation equations for a more 

accurate analysis [36].  

 

The solution of the equations provide the time and space 

dependent concentration of the ionic species (salt ions, protons 

and hydroxyl ions). The time dependent osmotic pressure 

(𝑃(𝑡)) induced due to the change in concentration of ions is 

determined by (see, Eq. A13): 

𝑃(𝑡) = ∑(𝑐𝑖 − 𝑐𝑖0) 𝑅𝑇

𝑖

 
 

(1) 

where, 𝑐𝑖 is the time-dependent concentration of ith ionic 

species at the hydrogel and transducer interface,  𝑐𝑖0 is its 

corresponding concentration in the pH solution, 𝑅 is universal 

gas constant and 𝑇 the absolute temperature.   

Subsequently, 𝑃(𝑡) is used to evaluate different 

performance parameters such as sensitivity (𝑆), dynamic range 

(𝛥𝑝𝐻𝑟𝑎𝑛𝑔𝑒), response time (𝜏) and symmetry of response. The 

sensitivity is defined as the change in osmotic pressure (Δ𝑃) 

per unit change in 𝑝𝐻. We define the dynamic range as the 

range of 𝑝𝐻 for which the sensitivity decreases by half2 from 

its maximum value (𝑆𝑚𝑎𝑥). And, finally we define the 

response time of the sensor as the time required for the 

pressure to reach 90% (rise time, 𝜏𝑟𝑖𝑠𝑒) of the peak value or 

time required for the pressure to decrease by 90% (fall time, 

𝜏𝑓𝑎𝑙𝑙) from the peak value. The response is symmetric if 

𝜏𝑟𝑖𝑠𝑒 = 𝜏𝑓𝑎𝑙𝑙 . 

Numerical model presented in this section is validated with 

the experimental data obtained from Herber et al. [1] and Lei 

et al. [6].  Fig. 1(c) shows the comparison of the simulated 

steady state pressure (lines) as a function of 𝑝𝐻 with the 

experimental data (symbols) for cationic and anionic gels. The 

results are easily explained: The uncharged groups (𝐵) in 

cationic gels are protonated (𝐻𝐵+) at low 𝑝𝐻 values and exert 

pressure on the deformable membrane.  As 𝑝𝐻 increases, the 

fraction of protonated groups decrease and hence the pressure 

decreases. In contrast, anionic gels are neutral (𝐻𝐴) at low 

𝑝𝐻 values and they become negatively charged (𝐴−) as 𝑝𝐻 is 

 
2 The choice of 0.5 for dynamic range is arbitrary, and would be defined by 

the required application. However, the dependencies discussed are true in 
general and can be applied to any value chosen for the dynamic range.  

increased. This leads to an increase in repulsive force and 

hence an increase in pressure.  

To summarize, this subsection discussed the numerical 

framework for relating the gel parameters (𝑁𝑓, 𝐾𝑎) to the 

performance parameters. In next subsection, we discuss the 

analytical framework to relate these gel parameters to 𝑆 and 𝜏.  

3. Analytical Framework 

To understand the essence/origin of the tradeoff, we consider 

the response of a hydrogel to a small change in 𝑝𝐻. First, we 

determine 𝑆 in terms of (𝑁𝑓 , 𝐾𝑎) using analytical analysis, and 

then we relate it to 𝜏 to determine the performance trade-off.  

      To determine 𝑆, we relate the pressure change to the gel 

parameters (𝑁𝑓 , 𝐾𝑎). Invoking the charge neutrality (see, Eq. 

A1) in steady state at the hydrogel/transducer interface (see, 

Fig 1(b)) i.e. 𝑥 = 𝑥ℎ, we get, 

𝜌𝑛𝑒𝑡 = 𝑞(𝑐𝑁𝑎+ − 𝑐𝐶𝑙− + 𝑐𝐻+ − 𝑐𝑂𝐻− ) + 𝜌𝐹 = 0 (2) 

where, 𝑐𝑖 are the concentrations of ionic species 𝑖 and 𝜌𝐹 is the 

fixed charge density (see, Eq. A3) due to ionizable groups. 

Since, [𝐻+] and [𝑂𝐻−] concentrations are negligible, Eq. (2) 

becomes,  

𝑞(𝑐𝑁𝑎+ − 𝑐𝐶𝑙−) + 𝜌𝐹 = 0 (3) 

The concentration of [𝑁𝑎+] and [𝐶𝑙−] ions can be related to 

potential, 𝜓𝑑 at 𝑥 = 𝑥𝑝 (called Donnan potential) using Eq. 

A4, i.e. 

𝑐𝑁𝑎+ = 𝑐𝑠𝜆,     𝑐𝐶𝑙− = 𝑐𝑠/𝜆 (4) 

where, 𝜆 = exp (−
𝑞𝜓𝑑

𝑘𝐵𝑇
) and 𝑐𝑠 is the ionic concentration.  

Considering only anionic gels with ionizable density, 𝑁𝑎 = 𝑁𝑓 

and using Eq. A6-A8, we get,  

𝜌𝐹 = −𝑞𝑐𝐴− = − 𝑞𝑁𝑓 (1 + 𝑐𝐻
+/𝐾𝑎)⁄  (5) 

If potential 𝜓𝑑 is small, 𝑐𝐻+(𝑥 = 𝑥𝑝) ≈ 𝑐𝐻0
+ (see, Eq. A5).  

Using Eq. 3-5, we get, 

𝜆2 − 𝛼 𝜆 − 1 = 0 (6) 

where,  𝛼 = (𝑁𝑓/𝑐𝑠) (1 +
𝑐

𝐻0
+

𝐾𝑎
)⁄ .  

Since, the concentration of 𝐻+ and 𝑂𝐻− are small compared 

to salt ions, therefore, we can ignore their contributions to 

osmotic pressure. The pressure increase at the 

“transducer/hydrogel interface” is then given by (using Eq. 1, 

4 and 6), 

𝑃 ≈ 𝑅𝑇 (𝜆 +
1

𝜆
− 2) 𝑐𝑠 = 𝑅𝑇𝑐𝑠 (√𝛼2 + 4 − 2) 

(7) 

The sensitivity, S is given by,  

𝑆 =
𝑑𝑃

𝑑𝑝𝐻
≈ 𝛼

𝑁𝑓
2

√𝑁𝑓
2 + 𝛽2

 
(8) 

where, 𝛼 = 2.3𝑅𝑇
𝜂

(1+𝜂)2, 𝜂 = 10−𝑝𝐻+𝑝𝐾𝑎  and 𝛽 = 2𝑐𝑠(1 +

𝜂). Eq. 8 suggests that as 𝑁𝑓 increases, 𝑆 also increases. This 

is because with increase in 𝑁𝑓, 𝜌𝐹 (see, Eq. 5) increases, and 

hence the concentration of ions which exert osmotic pressure 

increases.  
 

Now that we know 𝑆 as a function of gel parameters (𝑁𝑓, 

𝑝𝐾𝑎), we relate response time (𝜏) to the parameters (𝑁𝑓, 𝑝𝐾𝑎). 
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If the diffusion through the top rigid porous membrane is fast 

as compared to diffusion through hydrogel, 𝜏 is limited only 

due to transport in hydrogel. Therefore, 𝜏 can be expressed as 

[25], [28],  

𝜏 = 𝛾
 4𝑙2

𝜋2𝐷𝑒𝑓𝑓

,            𝐷𝑒𝑓𝑓 = 𝐷𝐻+/ (1 +
𝑁𝑓𝐾𝑎

(𝐾𝑎 + 𝑐𝐻+)2
) 

 

(9) 

where, 𝑙 is the hydrogel thickness (see, Fig. 1(b)) and 𝐷𝐻+ is 

the diffusion constant of protons (𝑐𝐻+) in the hydrogel 

membrane, and 𝛾 is a proportionality constant. The protons 

moving through the hydrogel membrane are slowed due to 

instantaneous quasi-equilibrium established between the 

protons and the ionizable groups (see, Ref [37] for more 

information), this results in reduced effective diffusion 

constant (𝐷𝑒𝑓𝑓) and an increased 𝜏.  

Eq. 9 suggests that 𝜏 scales as 𝑙2, the thickness of the 

hydrogel. However, for a sensor to work, there must be 

sufficient strain at the transducer, and this ultimately puts a 

minimum limit to the hydrogel thickness. For a given 𝑙, 𝜏 

decreases as 𝑁𝑓 decreases or as 𝐾𝑎 shifts away from 𝑐𝐻+.  

Neglecting 1 in Eq. 9 and rearranging, we get 𝑁𝑓 = 𝑘𝜏 where 

𝑘 =
𝜋2𝐷

𝐻+

4𝛾𝑙2

(𝐾𝑎+𝑐
𝐻+)

2

𝐾𝑎
. Therefore, by substituting 𝑁𝑓 = 𝑘𝜏 in 

Eq. 8, we get 𝑆 vs. 𝜏 trade-off equation, 

𝑆 = 𝑎𝜏2 √𝜏2 + 𝜏0
2⁄  

(10) 

where, 𝑎 = 2.3 𝑅𝑇 𝑘
𝜂

(1+𝜂)2 and 𝜏0 = 2(1 + 𝜂)𝑐𝑠/𝑘.  

Trade-off highlighted by Eq. 10 is one of the key conclusions 

of the paper. It suggests that an increase in 𝑆 is correlated to an 

increase in 𝜏. Therefore, a compromise must be made between 

the two performance parameters for CSM sensors.  

Limitations of analytical analysis: Although the analytical 

analysis provides some intuition into the trade-off, a numerical 

model (as discussed earlier) is essential to  a) include the 

effect of Donnan potential, 𝜓𝑑 (which can be considerable for 

large 𝑁𝑓), b) account for diffusion through the porous 

membrane, c) interpret the asymmetry in time response for 

large 𝑝𝐻 changes (since, 𝑐𝐻+ is a function of space and time), 

d) explain the effect of ionic concentration on the response 

time.  

III. RESULTS AND DISCUSSIONS 

In this section, we use the numerical model to determine the 

response of the sensor on gel parameters (𝑁𝑓 , 𝑝𝐾𝑎), and use 

analytical model to interpret the trade-offs between the 

performance parameters. We suggest ways to improve the 

signal and time response and show that the improvement of 

one performance parameter (such as sensitivity/dynamic 

range) leads to degradation of the other (response 

time/symmetry in response). Therefore, a trade-off must be 

considered between performance parameters for optimal 

design of the sensor.  

1) Role of Ionizable Group Density (𝑵𝒇): 

𝑁𝑓 is a design variable that can be changed during hydrogel 

preparation. As discussed in Section II, 𝑁𝑓 not only affects the 

response time but also sensitivity. In addition, 𝑁𝑓 affects the 

dynamic range and apparent 𝑝𝐾𝑎 (point of maximum 

sensitivity). In this subsection, we will discuss the role of 𝑁𝑓 

in dictating these performance parameters and associated 

trade-offs between them. 

Fig. 2(a) shows the numerical simulation of normalized 

sensitivity as a function of 𝑝𝐻 − 𝑝𝐾𝑎 for two different ratios 

of anionic group densities (𝑁𝑓) to the salt concentration (𝑐𝑠). 

Two observations can be made: First, as 𝑁𝑓 increases, the 

maximum sensitivity point i.e. apparent 𝑝𝐾𝑎 (𝑝𝐾𝑎𝑝𝑝) shifts to 

right. The shift in 𝑝𝐾𝑎𝑝𝑝 point reflects the change in Donnan 

potential due to ionized fixed charges. Second, the dynamic 

range (𝛥𝑝𝐻𝑟𝑎𝑛𝑔𝑒) increases from Δ𝑝𝐻1 to Δ𝑝𝐻2.  Fig. 2(b) 

shows the dependence of 𝛥𝑝𝐻𝑟𝑎𝑛𝑔𝑒  and Δ𝑝𝐾𝑎 = 𝑝𝐾𝑎𝑝𝑝 −

𝑝𝐾𝑎 on 𝑁𝑓/𝑐𝑠 ratio. The 𝛥𝑝𝐻𝑟𝑎𝑛𝑔𝑒  increases by almost 0.7 𝑝𝐻 

units as 𝑁𝑓/𝑐𝑠 ratio increases from 0.1 to 10. Further, 𝑝𝐾𝑎𝑝𝑝 

deviates from the real 𝑝𝐾𝑎 by almost 1 unit for very large 

anionic density (𝑁𝑓 = 1𝑀 for 𝑐𝑠 = 100𝑚𝑀). To summarize, 

if 𝑁𝑓 is large, the dynamic range is high and 𝑝𝐻 at which 

sensor is most sensitive (𝑝𝐾𝑎𝑝𝑝) shifts away from 𝑝𝐾𝑎.  

 
Fig. 2(a) Normalized change in pressure as a function of pH for two 

different ratios of anionic density (𝑁𝑓) to salt concentrations (𝑐𝑠). The 

sensitivity is maximum near the 𝑝𝐾𝑎 (i.e. apparent 𝑝𝐾𝑎) of the anionic groups. 

(b) Change of dynamic range (Δ𝑝𝐻𝑟𝑎𝑛𝑔𝑒) and the difference between the 

apparent 𝑝𝐾𝑎 and real 𝑝𝐾𝑎 (Δ𝑝𝐾𝑎) as a function of the 𝑁𝑓/𝑐𝑠 ratio.  As the 

ratio increases, the dynamic range of the sensor increases. Symbols are the 

numerical simulation results and the lines are guide to eye. 

    Fig. 3 (a) shows the numerically simulated pressure change 

as a function of time for a small change in 𝑝𝐻 (from 5 to 5.1, 

with 𝑝𝐾𝑎 = 5) for two different densities of the anionic group 

i.e. 25 𝑚𝑀 and 100 𝑚𝑀 respectively. While the pressure 

change (Δ𝑃) increases as 𝑁𝑓 changes from 25 𝑚𝑀 to 

100 𝑚𝑀, it takes longer to reach the saturation pressure value.   

 
Fig. 3(a) Change in pressure as a function of time for two different anionic 

densities upon 𝑝𝐻 step from 5 to 5.1 (𝑝𝐾𝑎 = 5), (b) Tradeoff between 
sensitivity and response time: As the sensitivity increases, the response time 

also increases. Symbols represent numerical simulation and line represents fit 

using Eq. 10. Hydrogel thickness is 20 𝜇𝑚, Porous membrane thickness is 

5 𝜇𝑚.  
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Fig. 3(b) shows the trade-off between sensitivity               

(𝑆 = Δ𝑃/Δ𝑝𝐻) and response time (𝜏) as 𝑁𝑓 is varied. While 𝑆 

increases with 𝑁𝑓, 𝜏 increases as well, leading to a slower 

sensor response. This trend is in agreement with the 

experiments by Herber et. al. [1] where the authors increased 

the relative composition of monomer dimethylaminoethyl 

methacrylate (DMAEMA) in their hydrogel preparation. 

Therefore, a compromise must be made between 𝑆 and 𝜏.  

Interestingly, despite of the simplifying assumptions made 

in derivation of Eq. 10, the analytical result (line) in Fig. 3(b) 

matches the numerical result (symbols) quite well with 

appropriate fitting parameters 𝑎 and 𝜏0 (see, ATable 3).  

Numerical simulations show that neglecting Donnan potential 

overestimates sensitivity by ~25% and response time by 

~30%.  Also, while Eq. (9) suggests that 𝜏 is independent of 

salt concentration (𝑐𝑠), detailed numerical simulations (not 

shown) show that 𝜏 can vary by almost 2-3 times as 𝑐𝑠 

changes from 20 𝑚𝑀 to 200 𝑚𝑀. Therefore, although all the 

qualitative trends and trade-offs as a function of various sensor 

parameters are explained by analytical model in Sec IIC, a 

numerical simulation is essential for accurate prediction of the 

response time and sensitivity. 

To summarize, Fig. 2(b) and Fig. 3(b) highlight the 

importance of 𝑁𝑓 in dictating the trade-off between different 

performance parameters. While 𝑆 and Δ𝑝𝐻𝑟𝑎𝑛𝑔𝑒 both improve 

as 𝑁𝑓 increases, 𝜏 degrades. The requirement to have a 

reasonable 𝜏 puts a maximum limit on 𝑁𝑓.  

2) Role of dissociation constant (𝒑𝑲𝒂) of ionizable groups: 

The choice of anionic/cationic ionizable group 

(characterized by a 𝑝𝐾𝑎) can significantly affect 𝑆 and 𝜏. In 

this subsection, we consider the choice of ionizable group for 

a 𝑝𝐻 sensor designed to operate near 𝑝𝐻 = 5 (as an 

illustrative example). However, the implications are general 

and the same analysis follows for other 𝑝𝐻 values.  

2.1) Time response for small pH changes (𝛥𝑝𝐻 ≪
𝑙𝑜𝑔10(𝑒)): Fig. 4 (a) shows the numerically simulated change 

in pressure as a function of time for three different anionic 

groups for the 𝑝𝐻 change, Δ𝑝𝐻 by 0.1 unit at base 𝑝𝐻 = 5 

(i.e. desired 𝑝𝐻 operation). Two observations can be made: 

First, the response of the sensor is symmetric (rise time is 

same as fall time).  Second, 𝜏 is maximum for anionic group 

with 𝑝𝐾𝑎 close to the desired range of operation of the device 

(𝑝𝐻 = 5).  

 
Fig. 4 (a) Change in pressure as a function of time for a 𝑝𝐻 change from 5 →
5.1 → 5 for anionic groups with different  𝑝𝐾𝑎 values, (b) The change in 

response time (𝜏) and pressure change (Δ𝑃) as a function of 𝑝𝐾𝑎. While 𝑆 is 

high for 𝑝𝐾𝑎 close to the desired 𝑝𝐻 range, 𝜏 is also high. Blue and red 
symbols represent numerical simulation result, and blue line represent fit 

using Eq. 9. Red line is a guide to eye. Hydrogel thickness is 20 𝜇𝑚, Porous 

membrane thickness is 5 𝜇𝑚, 𝑁𝑓 = 100 𝑚𝑀. 

Fig. 4(b) shows the numerically simulated (symbols) 

response time and pressure change as a function of 𝑝𝐾𝑎 of the 

ionizable group. Analytical expression for response time, 𝜏 ≈

𝑎 𝐾𝑎/(𝐾𝑎 + 𝑐𝐻+)2 (see, Eq. 9) (line) fits the numerical result 

quite well with appropriate fitting parameter 𝑎 (see, ATable 

3), and average 𝑐𝐻+. The figure illustrates that while 

sensitivity (𝑆 ~ Δ𝑃) is maximum when 𝑝𝐾𝑎  ~ 𝑝𝐻, the 

response of the sensor is slowest.  Therefore, a trade-off must 

be considered between 𝑆 and 𝜏 for appropriate design of the 

sensor.      

 2.2) Time response for large pH changes (𝛥𝑝𝐻 ≥ 𝑙𝑜𝑔10(𝑒)): 
Fig. 5(a) shows the simulated response of the sensor for a 𝑝𝐻 

change from 4 → 5 → 4 for anionic groups with different 

𝑝𝐾𝑎. Two observations can be made: a) The sensitivity is 

higher when 𝑝𝐾𝑎 is close to the base 𝑝𝐻 value, b) The sensor 

response is asymmetric i.e. 𝜏𝑟𝑖𝑠𝑒 ≠  𝜏𝑓𝑎𝑙𝑙 .  

      Fig. 5(b) shows the numerically simulated (symbols) 𝜏rise, 

𝜏fall and sensitivity (𝑆 ~ Δ𝑃) as a function of the 𝑝𝐾𝑎. 

Analytical expression for response time, 𝜏 ≈ 𝑎 𝐾𝑎/

(𝐾𝑎 + 𝑐𝐻+,eff)
2
 (see, Eq. 9) (blue/green line) fits the numerical 

result for both 𝜏𝑟𝑖𝑠𝑒  and 𝜏𝑓𝑎𝑙𝑙  quite well with appropriate 

fitting parameters (see, ATable3). Note, that we use effective 

proton concentration 𝑐𝐻+,eff (obtained from fit) instead of 𝑐𝐻+, 

since the concentration of protons (𝑐𝐻+) increase/decreases by 

a factor of 10 as the 𝑝𝐻 change is large. The figure illustrates 

that the sensor response is symmetric and faster only for 

choice of anionic groups whose 𝑝𝐾𝑎 is far off from the base 

𝑝𝐻 value.  However, 𝑆 degrades in such a scenario, and 

therefore a trade-off must be considered.  

 
Fig. 5 (a) Change in pressure as a function of time for large changes in 𝑝𝐻 

values (from 𝑝𝐻 = 4 → 5 → 4) for different choice of anionic groups (i.e. 

different 𝑝𝐾𝑎′𝑠), (b) The rise (𝜏𝑟𝑖𝑠𝑒) and fall (𝜏𝑓𝑎𝑙𝑙) time and the change in 

pressure as a function of the 𝑝𝐾𝑎. While the sensor is most sensitivity for 𝑝𝐾𝑎 

close to the base 𝑝𝐻 value (i.e. 𝑝𝐻 = 5), the response time is also high.  

Further, the asymmetry (i.e. 𝜏𝑟𝑖𝑠𝑒 ≠  𝜏𝑓𝑎𝑙𝑙) is high when 𝑝𝐾𝑎 is close to the 

desired 𝑝𝐻 range. The symbols show numerical simulation and smooth lines 

show the fit to the analytical expression (Eq. 9) for 𝜏𝑟𝑖𝑠𝑒 and 𝜏𝑓𝑎𝑙𝑙.  

 

To summarize, Fig. 4(b) and Fig. 5(b) highlight the 

importance of ionizable group (i.e. 𝑝𝐾𝑎) in dictating the trade-

off between 𝑆 and 𝜏, for sensors with both small and large 𝑝𝐻 

variations. While 𝑆 is maximized if 𝑝𝐾𝑎  ~ 𝑝𝐻, 𝜏 degrades and 

the asymmetry (for large 𝑝𝐻 changes) increases. Therefore, a 

compromise must be made between 𝑆 and 𝜏 or symmetry of 

response for appropriate design of the sensor.  
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IV. CONCLUSIONS 

Biocompatibility of hydrogel encourages its use in 

implantable biochemical sensors, however, the design of the 

hydrogel based sensors is non-trivial and requires a careful 

theoretical analysis for optimizing different performance 

parameters such as signal (sensitivity/dynamic range) and time 

response (response time/symmetry of sensor response). Our 

analysis demonstrates that there is a fundamental trade-off 

between performance parameters of a CSM hydrogel sensor. 

Specifically,  

1. If a high sensitivity and a high dynamic range is desirable 

(for applications where sluggishness of the response is not 

a primary concern), the density of ionizable group (𝑁𝑓) 

should be high and the ionizable group should be selected 

such that its 𝑝𝐾𝑎 is close to the desired pH range.  

2. On the other hand, if fast response time and symmetry is an  

essential prerequisite, 𝑁𝑓  should be low and ionizable 

group should be selected such that its 𝑝𝐾𝑎 is shifted away 

from the desired 𝑝𝐻 range.  

Our analysis suggests opportunity for improving dynamic 

range of the sensor. The high sensitivity near 𝑝𝐾𝑎 suggests 

that the dynamic range can be improved by using hydrogels 

prepared with more than one type of ionizable group.  The 

technical feasibility of this approach would be a fruitful 

research direction for hydrogel sensors. 

APPENDIX 

ATable1. Equations for numerical simulation 

Poisson Equation: 

−
𝜕

𝜕𝑥
(𝜀(𝑥)

𝜕𝜓(𝑥, 𝑡)

𝜕𝑥
) = 𝜌𝑛𝑒𝑡(𝑥, 𝑡) = 𝜌𝑀(𝑥, 𝑡) + 𝜌𝐹(𝑥, 𝑡) 

(A1) 

𝜌𝑀(𝑥, 𝑡) = 𝑞(𝑐𝑁𝑎+ − 𝑐𝐶𝑙− + 𝑐𝐻+ − 𝑐𝑂𝐻− ), (A2) 

𝜌𝐹(𝑥, 𝑡) = 𝑞(𝑐𝐻𝐵+ − 𝑐𝐴−) (A3) 

𝑐𝑁𝑎+ = 𝑐𝑠 exp (−
𝑞𝜓(𝑥,𝑡)

𝑘𝑇
) ,𝑐𝐶𝑙− = 𝑐𝑠 exp (

𝑞𝜓(𝑥,𝑡)

𝑘𝑇
) (A4) 

𝑐𝑂𝐻− = 𝐾𝑤/𝑐𝐻+ 

𝑐𝐻+ = 𝑐𝐻0
+ exp (−

𝑞𝜓𝑑

𝑘𝑇
) (in steady state) 

(A5) 

 

Chemical Equilibrium:   

Anionic Ionizable Groups:    
aK

HA H A    
(A6) 

  𝑁𝑎 = 𝑐𝐻𝐴 + 𝑐𝐴−      (A7) 𝐾𝑎 = 𝑐𝐻+𝑐𝐴− 𝑐𝐻𝐴⁄ ,      (A8) 

Cationic Ionizable Groups:  bK

HB H B    (A9) 

 𝑁𝑏 = 𝑐𝐻𝐵+ + 𝑐𝐵    (A10) 𝐾𝑏 = 𝑐𝐻+𝑐𝐵/𝑐𝐻𝐵+,   (A11) 

Continuity Equation: 
𝜕𝑐𝐻+,𝑡𝑜𝑡

𝜕𝑡
= −

𝜕

𝜕𝑥
(𝐽H+,drift + 𝐽H+,diff) 

𝐽H+,drift = −𝜇𝐻+(𝑥)𝑐𝐻+
𝜕𝜓

𝜕𝑥
,       JH+,diff = −𝐷𝐻+(𝑥)

𝜕𝑐𝐻+

𝜕𝑥
 

𝑐𝐻+,𝑡𝑜𝑡 = 𝑐𝐻+ + 𝑐𝐻𝐴 + 𝑐𝐻𝐵+ 

(A12) 

Osmotic Pressure: (see, Ref. [27]) 

𝑐𝑔𝑒𝑙 = 𝑐𝑁𝑎+,𝑔𝑒𝑙 + 𝑐𝐶𝑙−,𝑔𝑒𝑙 + 𝑐𝐻+,𝑔𝑒𝑙 + 𝑐𝑂𝐻−,𝑔𝑒𝑙 

𝑃(𝑡) = 𝑅𝑇(𝑐𝑔𝑒𝑙 − 𝑐𝑠𝑜𝑙) 

 

 

(A13) 

𝑐𝑔𝑒𝑙 = 𝑐(𝑥 = 𝑥ℎ , 𝑡), 𝑐𝑠𝑜𝑙 = 𝑐(𝑥 = 0, 𝑡) 

Boundary Conditions (see, Fig. 1(b)): 

𝜓(𝑥 = 0, 𝑡) = 0;  𝑐𝐻+(𝑥 = 0, 𝑡) = 10−𝑝𝐻 

(𝑑𝜓/𝑑𝑥)𝑥=𝑥ℎ
= 0 ; (𝑑𝑐𝐻+/𝑑𝑥)𝑥=𝑥ℎ

= 0 

 

(A14) 

 
ATable2. Description of Symbols 

Symbol Quantity 

𝜏 Response time 

𝜏𝑟𝑖𝑠𝑒 or 

𝜏𝑓𝑎𝑙𝑙 

Time required for pressure to reach 90% of the peak pressure 

value or decrease by  90% of the peak value. 

𝑆 Sensitivity of the sensor 

Δ𝑝𝐻𝑟𝑎𝑛𝑔𝑒 Dynamic range of the sensor 

𝑙 Thickness of hydrogel membrane 

𝐵,  𝐴− Deprotonated form of cationic and anionic groups, 

respectively. Example: 𝐵 ≡ 𝑅 − 𝑁𝐻2, 𝐴− ≡ 𝑅 − 𝐶𝑂𝑂− 

𝐻𝐵+, 𝐻𝐴 Protonated form of cationic and anionic groups, respectively. 

𝑐𝐻+ , 𝑐𝑂𝐻− 

𝑐𝑁𝑎+,𝑐𝐶𝑙− 

Concentration of proton, hydroxyl, sodium and chloride ions 

at position 𝑥 and time 𝑡, respectively. 

𝑐𝐻0
+ Concentration of protons to be detected in sample solution 

𝑐𝑠 Ionic concentration of the solution 

𝜌𝑀 Mobile ion charge density 

𝜌𝐹 Fixed charge density due to protonation/deprotonation of the 

ionizable groups in hydrogel 

𝐾𝑎,  𝐾𝑏 Acid dissociation constant for anionic and cationic groups, 
respectively in hydrogel  

𝐾𝑤 The ionization constant of water at absolute temperature 𝑇 

𝑝𝐾𝑎, 𝑝𝐾𝑏 𝑝𝐾𝑎 = − log10(𝐾𝑎), 𝑝𝐾𝑏 = − log10(𝐾𝑏) 

𝑁𝑎 , 𝑁𝑏 The density of ionizable anionic and cationic groups, 
respectively 

𝑁𝑓 The density of the ionizable groups (anionic or cationic) 

𝐷𝑒𝑓𝑓 Effective diffusion coefficient of protons in hydrogel after 

accounting for reaction with ionizable groups 

𝜓𝑑 Donnan Potential i.e. potential at 𝑥 = 𝑥ℎ in steady state 

 
ATable3. List of fitting parameters for match of analytical 

expressions to numerical model 

Fig., Plot Fitting Parameters 

3(b), 𝑆 vs. 𝑁𝑓 𝛼 = 0.6 kPa/mM, 𝛽 = 180.4 mM 

3(b), 𝑆 vs. 𝜏 𝑎 = 16420 𝑘𝑃𝑎 min-1, 𝜏0 = 3629 min 

4(b), 𝜏𝑠 vs. 𝑝𝐾𝑎  𝑎 = 9.5 × 10−2 min mM 

5(b), 𝜏𝑟𝑖𝑠𝑒 vs. 𝑝𝐾𝑎 𝑎 = 7.24 × 10−2 min mM, 𝑐𝐻+,eff = 10−3mM 

5(b), 𝜏𝑓𝑎𝑙𝑙 vs. 𝑝𝐾𝑎 𝑎 = 5.83 × 10−2 min mM, 𝑐𝐻+,eff = 4.5 × 10−3 mM 

ACKNOWLEDGEMENTS 

The authors would like to thank Prof. B. Ziaie, A. Ebrahimi, 

H. Jiang,  and X. Jin for useful discussions.  

 

REFERENCES 

 
[1] S. Herber, J. Eijkel, W. Olthuis, P. Bergveld, and A. Van Den Berg, 

“Study of chemically induced pressure generation of hydrogels 

under isochoric conditions using a microfabricated device,” J. 
Chem. Phys., vol. 121, no. 6, pp. 2746–2751, 2004. 

[2] M. Lei, A. Baldi, T. Pan, Y. Gu, R. A. Siegel, and B. Ziaie, “A 

hydrogel-based wireless chemical sensor,” in 17th IEEE 
International Conference on Micro Electro Mechanical Systems. 

Maastricht MEMS 2004 Technical Digest, Jan. 2004, pp. 391–394. 

[3] G. Gerlach, M. Guenther, J. Sorber, G. Suchaneck, K.-F. Arndt, and 
A. Richter, “Chemical and pH sensors based on the swelling 

behavior of hydrogels,” Sensors Actuators B Chem., vol. 111–112, 

pp. 555–561, Nov. 2005. 
[4] M. Guenther, D. Kuckling, C. Corten, G. Gerlach, J. Sorber, G. 

Suchaneck, and K. Arndt, “Chemical sensors based on 

multiresponsive block copolymer hydrogels,” Sensors Actuators B 
Chem., vol. 126, no. 1, pp. 97–106, Sep. 2007. 

[5] M. Guenther, G. Gerlach, and T. Wallmersperger, “Non-linear 



IEEE TRANSACTIONS ON ELECTRON DEVICES 

 

7 

Effects in Hydrogel-based Chemical Sensors: Experiment and 

Modeling,” J. Intell. Mater. Syst. Struct., vol. 20, no. 8, pp. 949–
961, 2009. 

[6] M. Lei, A. Baldi, E. Nuxoll, R. A. Siegel, and B. Ziaie, “Hydrogel-

based microsensors for wireless chemical monitoring.,” Biomed. 
Microdevices, vol. 11, no. 3, pp. 529–38, Jun. 2009. 

[7] M. Lei, A. Baldi, E. Nuxoll, R. A. Siegel, and B. Ziaie, “A 

hydrogel-based implantable micromachined transponder for 
wireless glucose measurement.,” Diabetes Technol. Ther., vol. 8, 

pp. 112–122, Feb. 2006. 

[8] C. Zhang, M. D. Losego, and P. V Braun, “Hydrogel-Based Glucose 
Sensors: Effects of Phenylboronic Acid Chemical Structure on 

Response,” Chem. Mater., vol. 25, no. 15, pp. 3239–3250, Aug. 

2013. 
[9] C. Zhang, G. G. Cano, and P. V Braun, “Linear and fast hydrogel 

glucose sensor materials enabled by volume resetting agents.,” Adv. 

Mater., vol. 26, no. 32, pp. 5678–83, Aug. 2014. 
[10] T. Miyata, N. Asami, and T. Uragami, “A reversibly antigen-

responsive hydrogel.,” Nature, vol. 399, no. 6738, pp. 766–9, Jun. 

1999. 
[11] A. S. Hoffman, “Hydrogels for biomedical applications,” Adv. Drug 

Deliv. Rev., vol. 54, no. 1, pp. 3–12, Jan. 2002. 

[12] N. A. Peppas and C. D. Bures, “Glucose-Responsive Hydrogels,” 
Encyclopedia of Biomaterials and Biomedical Engineering., 

Abingdon, UK.: Taylor & Francis, 2008, pp. 1163–1173 

[13] P. C. Nicolson and J. Vogt, “Soft contact lens polymers: an 
evolution,” Biomaterials, vol. 22, no. 24, pp. 3273–3283, Dec. 

2001. 
[14] T. R. Hoare and D. S. Kohane, “Hydrogels in drug delivery: 

Progress and challenges,” Polymer (Guildf)., vol. 49, no. 8, pp. 

1993–2007, Apr. 2008. 
[15] K. Y. Lee and D. J. Mooney, “Hydrogels for Tissue Engineering,” 

Chem. Rev., vol. 101, no. 7, pp. 1869–1880, Jul. 2001. 

[16] T. Tokuda, M. Takahashi, K. Uejima, K. Masuda, T. Kawamura, Y. 
Ohta, M. Motoyama, T. Noda, K. Sasagawa, T. Okitsu, S. Takeuchi, 

and J. Ohta, “CMOS image sensor-based implantable glucose sensor 

using glucose-responsive fluorescent hydrogel.,” Biomed. Opt. 
Express, vol. 5, no. 11, pp. 3859–70, Nov. 2014. 

[17] M. F. McCurley, “An optical biosensor using a fluorescent, swelling 

sensing element,” Biosens. Bioelectron., vol. 9, no. 7, pp. 527–533, 
Mar. 1994. 

[18] Z. Shakhsher, W. R. Seitz, and K. D. Legg, “Single Fiber-Optic pH 

Sensor Based on Changes in Reflection Accompanying Polymer 
Swelling,” Anal. Chem., vol. 66, no. 10, pp. 1731–1735, May 1994. 

[19] M. T. V. Rooney and W. Rudolf Seitz, “An optically sensitive 

membrane for pH based on swellable polymer microspheres in a 
hydrogel,” Anal. Commun., vol. 36, no. 7, pp. 267–270, Jan. 1999. 

[20] A. Richter, A. Bund, M. Keller, and K.-F. Arndt, “Characterization 

of a microgravimetric sensor based on pH sensitive hydrogels,” 
Sensors Actuators B Chem., vol. 99, no. 2–3, pp. 579–585, May 

2004. 

[21] N. F. Sheppard, R. C. Tucker, and S. Salehi-Had, “Design of a 
conductimetric pH microsensor based on reversibly swelling 

hydrogels,” Sensors Actuators B Chem., vol. 10, no. 2, pp. 73–77, 

Jan. 1993. 
[22] N. F. Sheppard Jr., M. J. Lesho, P. McNally, and A. Shaun 

Francomacaro, “Microfabricated conductimetric pH sensor,” 

Sensors Actuators B Chem., vol. 28, no. 2, pp. 95–102, Aug. 1995. 
[23] P. Dak and M. A. Alam, “A Predictive Model for Hydrogel based 

Wireless Implantable Bio-chemical Sensors,” in 73st Device 

Research Conference, 2015. 
[24] M. Guenther, G. Gerlach, and T. Wallmersperger, “Piezoresistive 

biochemical sensors based on hydrogels,” Microsyst. Technol., vol. 

16, no. 5, pp. 703–715, 2010. 
[25] P. E. Grimshaw, J. H. Nussbaum, A. J. Grodzinsky, and M. L. 

Yarmush, “Kinetics of electrically and chemically induced swelling 

in polyelectrolyte gels,” J. Chem. Phys., vol. 93, no. 6, p. 4462, 
1990. 

[26] S. K. De, N. R. Aluru, B. Johnson, W. C. Crone, D. J. Beebe, and J. 

Moore, “Equilibrium swelling and kinetics of pH-responsive 
hydrogels: models, experiments, and simulations,” J. 

Microelectromechanical Syst., vol. 11, no. 5, pp. 544–555, Oct. 

2002. 
[27] S. K. De and N. R. Aluru, “A chemo-electro-mechanical 

mathematical model for simulation of pH sensitive hydrogels,” 

Mech. Mater., vol. 36, no. 5–6, pp. 395–410, 2004. 

[28] M. J. Lesho and N. F. Sheppard, “A method for studying swelling 
kinetics based on measurement of electrical conductivity,” Polym 

Gels Netw, vol. 5, no. 6, pp. 503–523, 1998. 

[29] D. Ballhause and T. Wallmersperger, “Coupled chemo-electro-
mechanical finite element simulation of hydrogels: I. Chemical 

stimulation,” Smart Mater. Struct., vol. 17, no. 4, p. 045011, 2008. 

[30] B. Kang, Y. D. Dai, X. H. Shen, and D. Chen, “Dynamical 
modeling and experimental evidence on the swelling/deswelling 

behaviors of pH sensitive hydrogels,” Mater. Lett., vol. 62, no. 19, 

pp. 3444–3446, 2008. 
[31] Q. Thong Trinh, G. Gerlach, J. Sorber, and K.-F. Arndt, “Hydrogel-

based piezoresistive pH sensors: Design, simulation and output 

characteristics,” Sensors Actuators B Chem., vol. 117, no. 1, pp. 17–
26, Sep. 2006. 

[32] D. D. Perrin, B. Dempsey, and E. P. Serjeant, pKa prediction for 

organic acids and bases. Chapman and Hall, 1981. 
[33] D. S. Finch, T. Oreskovic, K. Ramadurai, C. F. Herrmann, S. M. 

George, and R. L. Mahajan, “Biocompatibility of atomic layer-

deposited alumina thin films.,” J. Biomed. Mater. Res. A, vol. 87A, 
no. 1, pp. 100–6, Oct. 2008. 

[34] L. Pisani, “Simple Expression for the Tortuosity of Porous Media,” 

Transp. Porous Media, vol. 88, no. 2, pp. 193–203, Feb. 2011. 
[35] B. Amsden, “Solute Diffusion within Hydrogels. Mechanisms and 

Models,” Macromolecules, vol. 31, no. 23, pp. 8382–8395, Nov. 

1998. 
[36] S. R. Eisenberg and  a J. Grodzinsky, “The kinetics of chemically 

induced nonequilibrium swelling of articular cartilage and corneal 
stroma.,” J. Biomech. Eng., vol. 109, no. February 1987, pp. 79–89, 

1987. 

[37] A. J. Grodzinsky, Fields, Forces, and Flows in Biological Systems, 
1st Editio. Garland Science, 2008. 

 

 

 

Piyush Dak received the B.Tech. & M. Tech. 

degree in Engineering Physics from IIT Bombay, 
Mumbai, India in 2010. He is currently pursuing 

the Ph.D. degree with the School of Electrical and 

Computer Engineering at Purdue University, 
West Lafayette, IN, USA.  

His current research interests include modeling, 

simulation and characterization of electronic 
devices for memory and healthcare applications.  

 

 

 

Muhammad Ashraful Alam (M’96–SM’01–

F’06) received the Ph.D. degree from Purdue 
University in 1995.  

After spending a decade at Bell Laboratories in 

Murray Hill, NJ, working laser dynamics, 
crystal growth, and CMOS reliability, he 

returned to Purdue in 2004, where he currently 

holds the Jai N Gupta Professorship of Electrical 
Engineering. His current research includes 

physics, performance limits, and novel concepts 

in biosensors, solar cells, and transistors.  
 

 

 

 


	Numerical and Analytical Modeling to Determine Performance Trade-offs in Hydrogel-based pH Sensors
	

	/var/tmp/StampPDF/dRmInb8K6x/tmp.1466534481.pdf.2PBKn

