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CHALLENGE

« Advanced Noise Control Materials!']
» What’s important about a noise control material?

» Cost
> Safety

» Weight

» Volume
» Recyclability
> ...

> ...
» Acoustical Performance
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OBJECTIVE: MULTIFUNCTIONALITY

* Near-field damping: dissipating
power through viscous interaction

~ ° between the porous medium and the
\ evanescent acoustical near-field of

=, .
_/ Airborne noise Sound the panel associated with sub-critical

absorption panel motionl?-7]
Structure-induced noise =~ N\

‘ D S
N ——
-_— gy - -
. Near-field
damping

Structural vibration Treated stiff panel

« Objectives: modeling, predicting and optimizing the near-field damping performance of
conventional sound absorbing materials (fiber, foam, etc.), so that a properly-designed
porous layer can achieve both structural damping and sound absorption at the same time
-> save weight and cost
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ANALYTICAL MODELING

+ Connecting damping material’s properties and performance

Optimized —

Micro-Bulk

——> .
Porous Layer Acoustics Model Acoustical

Microstructure | pajations (AFR) Bulk Properties (TMM) Properties

Obtimizati Near-Field Damping
primization Model (NFD)

Damping Properties based on Panel’s Spatial & Frequency Domain Response

AFR: micro-bulk relations for porous media made of fibers!®!

TMM: bulk-acoustical relations[® 191 including Johnson-Champoux-Allard (JCA) modell''],
Biot theoryl'-151 and B.C.s interpretation!3.16]

NFD: acoustical-damping relations including Euler-Bernoulli beam theory, wavenumber-
space Fourier transforml'’l and power analysis!'é!

TMM + NFD + AFR provides an micro-damping model to maximize fibrous media’s
damping performance by optimizing their microstructures
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MODELING OF REGULAR STRUCTURES

« Porous damping treatments in the analytical modelf?-56]

_—

-Flow resistivity

-Porosity

-Tortuosity

-Viscous characteristic length
Limp porous layer -Thermal characteristic length| L_ pgro-elastic layer

o -Bulk density
Negligible bulk -In vacuo bulk modulus Non-negligible bulk

elasticity of frame -Poisson’s ratio elasticity of frame

-Shear modulus
-Loss factor (mechanical)

« Vibrating panels in the analytical model?:>6l

.

F Partially-
constrained

Infinitely-extended ; Ui . -
LineIforce v Discontinuity I.ineIforce Discontinuity

(Unconstrained) (Constraint) panel

panel

(Constraint)

Periodically-

_- > = . > . r~ .—constrained

— — —

Id.ent|cefl N Convective pressure (fuselage-like)
Discontinuities panel

(Constraints)
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WAVENUMBER-SPACE FOURIER TRANSFORM

« An example to show wavenumber €- spatial domains Fourier transform(2]

Air half-space
z x=0

t . z=0 Unconstrained 3 mm aluminum panel
| Line force

Velocity Level [dB]

Velocity Level (dB)

Frequency [Hz]

10°

Frequency (Hz) Distance (m)

| Wavenumber [rad/m] I
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A VEHICLE FLOOR PAN-LIKE STRUCTURE

« Optimizing fibrous damping for a more realistic vibrating structure

Air half-space
x=0.382m

Line|force (In a vacuum) . . .
A line-driven, floor pan-like panel

modeled by COMSOL Multiphysics

* Target material -Flow resistivity

-Porosity

-Tortuosity

-Viscous characteristic length
Limp fibrous layer -Thermal characteristic length

— -Bulk density
Negligible bulk -In vacuo bulk modulus

elasticity of frame -Poisson’s ratio

-Shear modulus

-Loss factor (mechanical) Made of single fiber component
with uniform fiber size
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VELOCITY RESPONSE SPECTRA OF THE FLOOR PAN

A floor pan-like structure
x=0.382m (1 mm thick aluminum) Xx=1m

LineIforce (harmonic excitation at different frequencies)

x=0.382m (drlvmg pomt)E
x=0.8m
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SPATIAL RESPONSE OF THE FLOOR PAN

A floor pan-like structure
x=0m x=0.382m (1 mm thick aluminum) x=1m

L r————
b

LineIforce (harmonic excitation at different frequencies)
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WAVENUMBER RESPONSE MAPPING OF THE FLOOR PAN

Untreated FIoo!' Pan-Like StructureﬂWavenumber Response
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Interpolating and zero-padding
the spatial response, then
Discrete Fourier Transforming
(DFT) it to wavenumber domain
at each frequency

As an example, define a
target wavenumber/frequency
region with strong vibrations
that we wish to suppress




POWER DISSIPATION OF THE DAMPING TREATMENT
Mapping the power dissipation (P ;) of the limp fibrous layer by P, = P, — P,

o = 20000 Rayls/m %100 2
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2000 « Parametric study on fibrous
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AIRFLOW RESISTIVITY OPTIMIZATION OF THE TREATMENT
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AIRFLOW RESISTIVITY OPTIMIZATION OF THE TREATMENT

« Parametric study of airflow resistivity effect on damping

%107 Added-Up Energy Dissipation per Cycle

\'

Optimal airflow resistivity = 12000 Rayls/m_ - An optimal

airflow resistivity
could be
identified, which
resulted in the
largest damping
performance
within the target
“box”
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AIRFLOW RESISTIVITY OPTIMIZATION OF THE TREATMENT

* Responses comparison — wavenumber domain

Treated (0 = 12000 Rayls/m
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AIRFLOW RESISTIVITY OPTIMIZATION OF THE TREATMENT

* Responses comparison — spatial domain
Untreated Panel Treated (o = 12000 Rayls/m) Panel
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MICROSTRUCTURAL OPTIMIZATION OF THE TREATMENT

Fiber inputs:
Solid material density p; = 910 kg/m?® (made of polymer);

Fibrous layer bulk density p; = 10 kg/m?
Optimal airflow resistivity to maximize the power dissipation & = 12000 Rayls/m

Optimization results
Optimization target - optimal fiber radius r; = 3.6 pm was found by using the AFR micro-bulk relation!® model and optimization

Target material: made of single fiber
component with uniform fiber size

» Fiber size was optimized to achieve the largest damping for certain wavenumber/frequency region & panel of interests
- Different result would be obtained for different wavenumber/frequency region
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CONCLUSIONS

s Lightweight fibrous damper parametric study on macro/microscopic properties

» Significant levels of damping can be achieved by properly designed fibrous treatment
- multifunctional (absorbing & damping) fibrous layer saves weight, space and cost

The design process can be based on analytical modeling and parametric studies to
optimize bulk properties or microstructures for fibrous dampers applied on idealized
structures (partially-constrained or periodically-constrained panels)

Combined with finite element model, the design process can also be conducted on
more realistic structures such as a floor pan-like structure

In the future, extend the analysis to two-dimensional structures
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