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Abstract 

Using an ensemble of 10 statistically downscaled global climate model (GCM) simulations, we 

project future climate change impacts on the state of Indiana (IN) for two scenarios of 

greenhouse-gas concentrations (a medium scenario--RCP4.5, and a high scenario--RCP 8.5) for 

three future time periods (2020s, 2050s, 2080s). Relative to a 1971-2000 baseline, the scenarios 

project substantial changes in temperature for IN, with a change in the annual ensemble mean 

temperature for the 2080s RCP8.5 scenario of about 5.6 °C (10.1 °F).  Such changes also 

indicate major changes in extreme temperatures.  For southern IN, the number of days with daily 

maximum temperatures above 35 °C (95 °F) is projected to be about 100 days per year for the 

2080s RCP8.5 scenario, as opposed to an average of 5 days for the historical baseline climate. 

Locations in northern IN could experience 50 days per year above 35 °C (95 °F) for the same 

conditions.  Energy demand for cooling, as measured by Cooling Degree Days (CDD), is 

projected to increase nearly fourfold in response to this extreme warming, but heating demand as 

measured by Heating Degree Days (HDD) is projected to decline by 30%, which would result in 

a net reduction in annual heating/cooling energy demand for consumers.  The length of the 

growing season is projected to increase by about 30 to 50 days by the 2080s for the RCP8.5 

scenario, and U.S. Department of Agriculture hardiness zones are projected to shift by about two 

half zones throughout IN.  By the 2080s, all GCM simulations for the RCP8.5 scenario show 

higher annual precipitation (P) over IN. Projected seasonal changes in P include a 25-30% 

increase in winter and spring P by the 2080s for the RCP8.5 scenarios and a 1-7% decline in 

summer and fall P (although there is low model agreement in the latter two seasons).  Rising 

temperatures are projected to result in systematic decreases in the snowfall-to-rain ratio from 

Nov-Mar. Snow is projected to become uncommon in southern IN by the 2080s for the RCP8.5 
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scenario, and snowfall is substantially reduced in other areas of the state.  The combined effects 

of these changes in T, P, and snowfall will likely result in increased surface runoff and flooding 

during winter and spring.   
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1. Introduction 

Regional studies of climate change (CC) are instructive because of the expected 

consistency of impacts over similar geographical areas. States in the Midwestern region of the 

U.S. are a case in point and they are frequently analyzed together as a homogeneous region (e.g. 

Winkler et al. 2012; Byun and Hamlet 2018). The Midwestern states, however, exhibit 

considerable variability in climate with both latitude and longitude. For example, the western and 

northern portions of the Midwest are considerably drier than the eastern and southern portions of 

the domain, and there are substantial increases in temperature from north to south.  

In addition to better characterizing subregional heterogeneity, there is a need to provide 

CC information at scales that support local planning efforts and that facilitate meaningful 

engagement with diverse stakeholders whose interests are affected by climate. Urban planners in 

Minneapolis, Chicago, Indianapolis, and Cincinnati, for example, face similar kinds of problems 

related to CC that are affecting the Midwest as a whole (e.g., increases in extreme heat, 

humidity, and precipitation), but the design of sustainable and resilient infrastructure in the four 

cities requires detailed CC projections that reflect the distinct baseline conditions for each city 

and the local effects of CC.  One useful way to subset a region such as the Midwest, therefore, is 

to focus on climate change impacts at multiple administrative units, such as states, counties, and 

cities. 

In this study, we provide CC projections at a very fine spatial scale for the state of 

Indiana (IN) in the U.S. using statistically downscaled gridded data sets based on the Coupled 

Model Intercomparison Project, Phase 5 (CMIP5, Taylor et al. 2012) associated with the 

Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). This detailed 

statewide study supports the Indiana Climate Change Impacts Assessment (IN CCIA) 
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(http://www.purdue.edu/discoverypark/climate/in-ccia/), led by the Purdue Climate Change 

Research Center, in partnership with the University of Notre Dame, Indiana University, the 

Midwestern Regional Climate Center, and Ball State University. 

 

2. Regional Climate Change Context 

For the two most widely used greenhouse-gas scenarios, Representative Concentration Pathways 

(RCP) 4.5 and 8.5 (Moss et al. 2008) (representing “medium” and “high” 21st century 

greenhouse-gas concentration trajectories), the Midwestern U.S. is projected to experience 

profound changes in climate by 2100, especially for temperature. Projections for annual mean air 

temperature over the Midwestern U.S. from 31 Global Climate Models (GCMs) for the RCP8.5 

scenario show an ensemble mean increase in T of about 6.5 °C (11.7 °F) by 2100 relative to the 

historical 1971-2000 baseline (Figure S1) (Byun and Hamlet 2018). The projected change in the 

annual ensemble mean for RCP4.5 over the Midwestern U.S. is about 3.3 °C (5.9 °F) by 2100 

relative to the 1971-2000 baseline. The upper tail of the annual mean temperature distribution, 

represented by the 97.5th percentile of the 31 GCM projections for RCP8.5 (i.e. a “worst-case” 

scenario), is nearly 10 °C (18 °F) warmer than the historical baseline by 2100. The ensemble 

mean values are about 1.7 °C (3.1 °F) larger than the projected global average temperature 

increase over land reported by the IPCC (~4.8 °C (8.6 °F) by 2100 for RCP 8.5) (IPCC AR5 

2013). As is apparent from Figure S1, the signal-to-noise ratio for air temperature is very large, 

so detecting temperature shifts of this magnitude over time will not be difficult or ambiguous 

from a statistical perspective (Byun and Hamlet 2018). For example, by the 2050s, the 2.5th 

percentile of the GCM simulations is already larger than the simulated 97.5th percentile for the 

mid-20st century climate. Consistent with results at the global scale (IPCC, 2013), meaningful 
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differences in annual air temperature between a “medium” (RCP 4.5) and “high” (RCP 8.5) 

emissions scenario are not evident until after the 2040s, suggesting that our collective ability to 

change temperature trajectories over the next 25 years may be minimal, even if concerted efforts 

are focused on reducing relatively short-lived greenhouse gasses such as methane or nitrous 

oxide (Smith and Mizrahi, 2013). Changes in summer temperatures show little spatial variability 

across the Midwestern U.S., whereas changes in winter temperature are largest in the 

northernmost and smallest in the southernmost parts of the domain (primarily due to snow-

albedo and water-vapor feedbacks and differences in the relative importance of outgoing 

longwave radiation in winter) (Byun and Hamlet, 2018). As a result, the existing latitudinal 

gradient in winter-mean temperature over the Midwest is projected to become somewhat less 

pronounced over time.  

 

Annual precipitation totals over the Midwest are projected to increase for all models by the 

2080s for RCP 8.5, but the changes are most pronounced in winter (DJF) and spring (MAM) 

(Figure S2). Mean changes in summer (JJA) and fall (SON), by comparison, are relatively small 

and the direction of change during these seasons is not consistent across the different GCM 

simulations (Figure S2; Byun and Hamlet 2018). In other words, the signal-to-noise ratio for 

projected precipitation change is relatively high in winter and spring and relatively low in 

summer and fall. Even though these results are downscaled, it is worth noting that GCMs, 

because of their coarse spatial resolution, currently are not able to explicitly capture changes in 

small-scale convective storms., As a result, some caution should be exercised in interpreting 

warm-season precipitation statistics over IN, for which a substantial fraction of precipitation is 

associated with convective storms. This also implies that, in assessing changes in summer 
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precipitation, the use of dynamical downscaling using high-resolution regional climate models is 

preferred due to the ability of such models to explicitly simulate convective storms in a 

physically based manner (see e.g. Liu et al. 2016; Prein et al 2018). For similar reasons, we do 

not attempt to downscale coarse-resolution GCM-simulated wind speed in this study. 

We also note that there are some important linkages between changes in P and T, 

particularly in summer. It has been commonly found in past studies, for example, that the driest 

GCM scenarios in summer tend to also have the largest increases in T (see e.g. Rupp et al. 2013). 

We show in the results section below that this is also the case for IN, but that there are additional 

connections between strong warming and wetter conditions that seem to be unique to the 

Midwest region. 

 

3. Data and Methods 

3.1 Statistically Downscaled CMIP5 Climate Projections 

A comprehensive assessment of CC impacts in Indiana requires an integrated approach using 

several different kinds of observed data sets and downscaling approaches. Historical baselines 

for this study are provided by 1/16th degree latitude-longitude (~5 x 7 km) gridded 

meteorological data sets from 1915-2013 prepared over the Great Lakes and Midwestern States 

(Chiu et al. in review). These historical data are corrected to account for precipitation gauge 

undercatch as a function of precipitation type (i.e., snow, mixed rain and snow, and rain) and 

wind speed.  Statistical downscaling techniques used here are based on monthly GCM 

simulations and provide a range of expected results based on an ensemble of 10 GCM 

projections selected to capture the range of results from 31 different models (Byun and Hamlet 

2018). As used here, statistical downscaling facilitates an informed sensitivity analysis of the 
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effects of changing climate on IN as a function of future greenhouse gas concentration (GGC) 

scenarios.   

Dynamical downscaling using high-resolution regional-scale climate models can provide 

physically based simulations of impacts that may not be adequately captured by statistical 

downscaling (e.g., interarrival time of storms, extreme wind, extreme humidity, precipitation 

from summer convective storms, and lake-effect snow). Dynamical downscaling, however, 

because of its much greater computational requirements, is often is limited to the use of a single 

large-scale (global) forcing scenario, and therefore does not evaluate the range of GCM-derived 

uncertainty that statistical downscaling can more easily accommodate. In addition, after applying 

bias corrections based on observed probability distributions, statistical downscaling is 

particularly apt for evaluating projections of extreme temperature and precipitation at fine spatial 

scales (Schoof and Robeson 2016; Byun and Hamlet 2018). Thus the two downscaling 

approaches complement each other by addressing different needs. For the remainder of this 

paper, we focus solely on results from statistical downscaling. 

Climate-change projections in this paper are evaluated using a suite of GCM simulations 

from the Coupled Model Intercomparison Project, Phase 5 (CMIP5; Taylor et al. 2012).  Course-

resolution GCM output is downscaled by the Hybrid Delta (HD) statistical downscaling 

approach (Tohver et al. 2014; Hamlet et al. 2013; Byun and Hamlet 2018) to 1/16th degree grid 

resolution (~5 x 7km). As the name suggests, the HD is a hybrid approach combining monthly 

shifts in the T and P probability distributions deriving from the well-known Bias Correction and 

Spatial Downscaling (BCSD) approach (Wood et al. 2002, 2004) with observed storm 

characteristics and accurate daily time series behavior (including extremes) deriving from 

gridded station observations. The HD approach produces a long time series of observed 
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variability (1915-2013 in our case), superimposed on systematic changes in monthly probability 

distributions deriving from GCM simulations of future climate. Thus the HD future projections 

have the same sample size and essentially the same time series behavior as the historical 

baseline. A specific year, month, or day from the future time series can be directly compared to 

its historical counterpart (e.g. water year 1933 from the historical baseline can be directly 

compared to its future counterpart water year “cc-1933”). These features of the HD make it very 

useful for calculating long-term climate statistics and estimating hydrometeorological extremes, 

because the historical and future products all have the same large sample size (99 years of daily 

data) and incorporate realistic storm and drought characteristics deriving from a long historical 

record. The strengths of the approach also imply some limitations, however, since the number of 

dry and wet days, the size and interarrival time of storms, and other contingent characteristics are 

inherited from the historical record and do not change in the future projections. Hamlet et al. 

(2013), Tohver et al. (2014), and Byun and Hamlet (2018) provide additional technical details on 

implementation and validation of the HD approach. 

For each greenhouse gas scenario, an ensemble of 10 representative GCM projections 

from the CMIP5 archive have been statistically downscaled for the 2020s (2011-2040), 2050s 

(2041-2070), and 2080s (2071-2100) using the HD approach over the entire Midwest region 

(Byun and Hamlet 2018). Methods used in selecting the 10 representative GCMs from a larger 

ensemble of 31 GCMs are reported in more detail by Byun and Hamlet (2018), but we give a 

brief overview here to help orient the reader. Using 31 GCMs from the CMIP5 archive, changes 

in annual T and P were calculated over the Midwest for the RCP 8.5 emissions scenario for the 

2080s. The performance of the models in reproducing observed climate in the Midwest was also 

evaluated, and the models were ranked according to their performance. Three groupings of 
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GCMs were then selected based on two separate criteria: a) model performance (top half of the 

performance ranking), and b) ability to capture, in the subsample, the range of changes in T and 

P from the full ensemble. The first grouping is a single model representing the central tendency 

of the entire 31-member ensemble. The second group adds five models from the outer perimeter 

of the delta T and P space (total of six ensemble members). The third group adds four additional 

members from an inner circle (total of 10 ensemble members) to flesh out the internal parts of 

the probability distribution (see Figure 5 from Byun and Hamlet 2018). Although the selection is 

made using annual changes in T and P, Figure S2 shows that the 10-member ensemble also 

captures the range and central tendency of the full 31-member ensemble for different seasons 

reasonably well. For the analyses that we show in this paper, unless otherwise noted, the full 10-

member ensemble is used. 

The end products produced by the HD downscaling method are gridded daily data sets at 

1/16th degree resolution that can be masked to produce summary results at a wide range of spatial 

scales including state- or county-wide averages, results for specific cities, or detailed state-wide 

maps. In addition to the summary results produced for this paper, these data have been provided 

to several other working groups participating in the INCCIA to support their analyses, as 

reported in the other papers that make up this special issue. 

 

3.2 Data Processing Methods for Summary Results 

The analyses presented in this paper are based on three types of basic data processing 

techniques, which are outlined in Table 1.  We will use abbreviated descriptions in figure 

captions to identify the method used to produce each figure. For example, Figure 1 is a product 
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produced using Type III data processing, with data averaged in space over the entire domain 

(IN), and then presented as a composite mean plot.   

 

4. Results and Discussion 

This section is divided into three main subsections, the first focusing on T and P impacts, the 

second focusing on impacts to growing-season length and U.S. Department of Agriculture 

(USDA) hardiness zones, and the third on impacts to heating and cooling degree days. 

 

4.1 Summary of Temperature and Precipitation Changes  

4.1.1 Temperature Changes 

Similar to the rest of the Midwest, temperature-related impacts are expected to be 

substantial in Indiana (Figure 1) By mid-21st century, temperature changes are more pronounced 

in summer than in winter. March and November show systematically lower amounts of warming 

than other months, and by the 2050s the largest temperature changes are in August. As expected, 

temperature changes are systematically larger for RCP 8.5 than for RCP 4.5 and increase with 

time for each greenhouse-gas scenario (see also Figure S1). 

Spatial patterns of warming are somewhat dependent on season, but in general there is 

little spatial variability over IN.  Table 2A summarizes the change in T for each time period and 

emissions scenario.  Note that the spatial standard deviation of changes in T is much smaller than 

the change in delta T for all seasons. 

The annual number of frost days (days with Tmin < 0 °C (32°F)) in IN decreases steadily 

during the 21st century (Figure 2), although there are still a relatively large number of frost days 

in winter even for the most extreme warming scenario (2080s RCP8.5). Northern IN, for 

example, is projected to experience a 45% decrease in the number of frost days (from 135 per 
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year for the baseline), but still has about 75 frost days per year on average even for the 2080s 

RCP8.5 scenario.   

The number of days with extreme hot temperatures (Tmax > 35°C (95°F)) in IN is 

projected to increase dramatically with warming (Figure 3). By the 2080s, the RCP8.5 scenario 

shows extreme changes in the frequency of very hot days, especially in southern IN.  In 

Evansville (in the southwest corner of the state), for example, the ensemble average number of 

very hot days increases to about 100 days per year from about 10 for the historical baseline 

climate. Table S1 shows the baseline and future projections of the number of extreme hot days 

for selected urban areas in Indiana. In northern IN, the ensemble mean number of extreme hot 

days increases to about 60 days per year on average for the 2080s RCP8.5 scenario from a 

historical baseline of about 3 days per year.   

Although these projections point unambiguously to important T impacts in the Midwest 

and IN, there are some important caveats to be made. To begin with, an examination of historical 

trends in annual average T (Figure S3) and the number of days with statewide average maximum 

T above 32.2 °C (90 ° F) (Figure S4) shows that natural climate variability in the 20th century 

(and particularly the megadroughts of the Dust Bowl years in the 1930s and 1940s) has played an 

important role in determining annual average and extreme high T regimes in IN. The extreme 

drought conditions during the Dust Bowl years, for example, resulted in approximately 

35 days per year with daily maximum T above 32.2 ° C (90 °F). Since 1960, the average number 

of days above 32.2 ° C has decreased to about 15 days per year on average, with no significant 

trend since 1960 (Figure S4). One study (Mueller et al. 2016) has argued that increased 

evaporation due to changes in crops and increasing use of irrigation may have played a key role 

in the observed systematic shift in extreme summer temperatures, but this analysis excluded the 
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Dust Bowl years and also data prior to 1910. An alternate explanation is simply that T feedbacks 

from increased P have been observed starting in about 1960 after several decades of very dry 

conditions. This better explains the available data from 1895-1915 shown in Figure S3, for 

example, which show a similar average T regime to the post-1960 data, without the crop and 

evaporation changes identified by Mueller et al. (2016). 

Although land use, irrigation, and vegetation changes are not explicitly included in this 

study, linkages between drought cycles and T are present in the climate change projections, 

especially in summer. Figure S5 shows the relationship between delta T and delta P for the 

ensemble of 10 summer projections for three time periods and two greenhouse gas concentration 

scenarios. The analysis identifies two dominant and opposing relationships between delta T and 

delta P: one showing unusually dry conditions associated with warmer conditions, and the other 

showing wetter conditions associated with warmer conditions. The first relationship is most 

pronounced and consistent across different periods and concentration scenarios. Our hypothesis 

is that the first regime is related to increased solar radiation (reduced cloudiness) and systematic 

increases in the Bowen ratio (ratio of sensible to latent heat flux) that accompany low water 

availability at the land surface.The second relationship is likely caused by increased advection 

of warm and humid air from the Gulf of Mexico or the Atlantic coast, resulting in relatively 

warm and wet conditions. These results show that extreme summer heat in the future could be 

caused either by unusually dry summer conditions or by increased warm, moist air being 

advected into the region. It’s clear, however, that the largest increases in T in summer 

accompany the driest scenarios, especially for the RCP8.5 2080s. For example, a reduction in 

summer precipitation on the order of 30% results in extreme warming of about 10 °C in the 

projections, whereas scenarios with more modest reductions in P result in only about 5 °C 
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warming (Figure S5). 

Taken together, analysis of historical trends and future projections in daily maximum T 

suggest that extreme heat scenarios in IN could prove to be highly variable in time and may be 

linked to relatively uncertain summer P impacts. The relatively weak model agreement on 

summer P changes (Byun and Hamlet 2018), for example, suggests that impacts to summer P 

(and therefore extreme high temperatures) may vary substantially from decade to decade in 

response to natural climate variability, despite overall increases in average T. In the most 

extreme case, a recurrence of extreme drought conditions like those experienced in the 1930s and 

1940s could result in unprecedented, catastrophic heat impacts when coupled with the strong 

systematic warming in the future projections. Although this would appear to be a worst-case 

scenario, such extreme changes in P and T cannot be ruled out and could emerge without 

warning in just a few years’ time and then persist for several decades, as occurred during the 

Dust Bowl years (Figure S4). 

It is worth noting as well, that annual average T show similarly high values during the 

Dust Bowl years in the 1930s and 1940s, but also display significant increasing trends through 

time after 1960 (Figure S3). Thus impacts to annual average T and daily maximum T extremes 

could prove to be quite different at different times in the future. 

In addition to changing summer precipitation, atmospheric chemistry could play a role in 

suppressing increases in maximum daily temperatures (e.g. increasing particulate concentrations 

may increase albedo, resulting in net reductions in solar radiation). High-resolution climate 

model simulations that include atmospheric chemistry are needed to explore these potential 

negative feedbacks on extreme high temperatures. 
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The number of extreme cold days (Tmin < -15 °C (5 °F)) per year is projected to decrease 

with warming (Figure S6). In the northern part of the domain, for example, the average number 

of extreme cold days per year declines from about 15 for baseline conditions to 5 for the 2080s 

RCP8.5 scenario. 

4.1.2 Precipitation Changes 

For IN, P is projected to increase substantially in winter and spring for most scenarios 

(Figure 1 bottom panels). Projected changes in summer and fall P, by comparison, show 

relatively small decreases and there is not a strong consensus between models for wetter or drier 

conditions in these seasons. This seasonal pattern of changing P increases in intensity through 

time in the scenarios. Projected annual changes in P are generally positive, and by the 2080s for 

the RCP8.5 scenario all GCMs show increases in annual P over IN. 

At the macro scale, meaningful patterns of spatial variability for changes in P are not 

readily apparent, except during fall, which shows somewhat drier conditions in southern IN and 

wetter conditions in northern IN. Spring also shows a weak pattern of wetter conditions in the 

north, but all changes in P over IN are positive in this case. Note, however, that the spatial 

standard deviation of delta P, calculated at the grid-cell scale, is often comparable or larger in 

magnitude to the average change in P itself.  Table 2B summarizes percent changes in P for each 

season, emissions scenario, and time period.   

Warming over the state is accompanied by a decreasing fraction of Nov-Mar P falling as 

snow (Figure 4). By the 2080s for RCP8.5, snow is infrequent in southern IN (little snowfall 

even in midwinter), whereas northern IN still receives substantial snowfall from Nov-Mar, albeit 

much less snowfall during this period than for the historical baseline conditions. 

Figure S7 shows substantial reductions in the number of events with more than 5 mm of 

snow water equivalent (SWE), which is approximately equal to 5 cm (2 inches) of snowfall. This 
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threshold was chosen because snowfall greater than this amount typically requires plowing to 

clear streets, and shoveling or snowblowing to clear sidewalks. This reduction in the number of 

days with more than 2 inches of snowfall therefore implies fewer resources would be required 

for plowing (municipalities and businesses) and shoveling or snowblowing (individuals). 

Although GCMs are not capable of explicitly simulating small-scale convective storms 

that often lead to annual extremes (see discussion of dynamical downscaling above), we 

nonetheless argue that simulations of heavy precipitation from GCMs, when coupled with 

probability-distribution based bias-correction approaches, are likely to represent meaningful 

changes, especially in cool season when projected precipitation changes are largest and 

convective storms are relatively rare.  Figure S8 shows increases in the ensemble average 

number of days per year with more than 25mm of precipitation. Some of the fine-scale patterns 

on the plot are caused by gridding artifacts (i.e. fewer extreme events are shown between stations 

due to averaging from multiple stations; Ensor and Robeson 2008), but the large-scale pattern 

nonetheless shows substantial increases of 3 to 4 days per year in the number of days of heavy 

precipitation. Analysis for a 50mm P threshold (not shown) yielded qualitatively similar results. 

Results for selected urban centers in IN are shown in Table S2. 

One caveat associated with this analysis is that the potential for increasing frequency of 

convective storms in mid-winter (e.g., on Feb 20, 2018 in IN) is not well captured in GCM 

simulations due to problems with spatial resolution. Similarly, changes in lake-effect snow, 

which are a function of both lake conditions (e.g., surface T, ice cover) and atmospheric 

conditions (e.g., frequency, intensity, and duration of arctic air outbreaks) are not well captured 

by GCMs, many of which do not even resolve the Great Lakes (Byun and Hamlet 2018). 

Simulations from high-resolution regional-scale climate models coupled to lake hydrodynamic 
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models are needed to better address changes in these two important impact pathways (Sharma et 

al. 2018). 

4.2 Length of Frost-Free Growing Season and USDA Hardiness Zone Maps 

The average length of the frost-free growing season increases substantially in the 

projected future climate (Figure S9).  By the 2020s, the length of the frost-free growing season 

increases by about 10 days overall and there are only minor differences between the RCP4.5 and 

8.5 scenarios.  By the 2080s, the RCP4.5 scenario shows increases in growing season of 20 to 30 

days whereas the RCP8.5 scenario shows increases of 30 to 50 days.  

Changes in ensemble-average USDA Plant Hardiness Zones (Figure S10), which are 

based on expected extreme winter low temperatures, show typical increases of about two half 

zones by the 2080s over much of IN, i.e. from zone 6a for the baseline climate to zone 7a for the 

2080s RCP8.5 scenario.  Note that zone 7a indicated for northern IN for the 2080s RCP8.5 

scenario is the same hardiness zone as southern IN for the historical climate. Zone 7b, which 

currently occurs in northern Alabama, begins to appear in extreme southern Indiana in the 2080s 

RCP8.5 scenario.  

 

4.3 Impacts to Energy Demand for Space Cooling and Heating 

Figure S11 and S12 show projected changes in cooling degree days (° F) (relative to 75 °F) and 

heating degree days (relative to 68 °F) respectively.  Cooling degree days increase by 

approximately a factor of 4 for the 2080s RCP8.5 scenarios, and heating degree days decline by 

about 30%.  These changes imply a net decrease in overall energy demand for space heating and 

cooling, however, due to the relatively large number of heating degree days in IN, and a typically 

higher coefficient of performance (COP) for electrical A/C equipment (COP ~2.5) as compared 
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to electrical space heating (COP ~1.0) (see Raymond et al. in review, and Hamlet et al. 2010 for 

additional discussion).  Note that for heating degree days, the 2080s RCP8.5 values in northern 

IN are comparable to the historical values in southern IN; whereas, for cooling degree days, the 

2080s RCP8.5 projections in northern IN are much higher than the historical values in southern 

IN. This difference reflects the fact that the largest T changes are projected during summer. 

 

 

4.4 Constructing Spatial Analogues to IN’s Projected Future Climate 

Spatial analogues for IN’s projected future climate were constructed by finding the closest match 

for the projected future IN climate to the current climate in other parts of the country. These 

analogs were based on the gridded 1981-2010 mean T and P values from the PRISM data sets 

(Daly et al. 2008). For each PRISM grid-point, winter (DJF) and summer (JJA) means of T and 

P were used to find the minimum “distance” of the projected climate to the current climate using 

a six-element vector (T and P for each of the three months). Stratifying the data by winter and 

summer shows the distinct seasonal changes that are likely to occur in IN while allowing for 

closer spatial analogs to be found. Figure S13 and S14 show winter and summer analogs for the 

2050s and 2080s respectively for the two greenhouse gas concentration scenarios. In winter, 

IN’s projected future climate approximates the current climate of the mid-Atlantic states (Figure 

S13), whereas in summer IN’s projected future climate approximates the current climate in areas 

substantially farther to the south and west (Figure S14). By the 2080s for the RCP8.5 scenario, 

for example, IN’s projected future climate in summer is comparable to the current climate of 

southeastern Texas. 
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5 Conclusions 

The state of IN is projected to experience profound changes in climate by 2100.For the 2080s 

RCP 8.5 climate change scenarios presented here, Indiana’s climate will shift to one that is 

similar to the current climate for the mid-Atlantic states in winter and similar to the current 

climate of southeaster Texas for summer. Large changes in T are projected for IN, which will 

have important impacts on urban environments (Reynolds et al. in review), human health 

(Filippelli et al. in review), energy (Raymond et al. in review), agriculture (Bowling et al., in 

preparation), forests (Phillips et al. in review), and water resources (Cherkauer et al., in 

preparation).  Substantial changes in traditional winter recreation opportunities are also projected 

due to systematic loss of snow and ice cover in the future (Chin et al. 2018). Changes in extreme 

high T are most clearly linked to drought in both the historical record and future projections, 

which implies that impacts to extreme high T may be quite variable in time in response to 

relatively uncertain changes in summer P in the projections. That is, unusually dry decades in the 

future may show extreme heat impacts, whereas less drought-prone decades may be substantially 

cooler. Unusually wet conditions in summer are also associated with very warm conditions in the 

projections, however, which suggests that warm, moist air advected from the south may be 

another important cause of extreme heat and humidity in the projections. 

Reductions in energy demand for space heating due to warming, however, will likely be a 

benefit to many (see also Raymond et al., in review), and reductions in snowfall may reduce 

costs of snow removal for municipalities, businesses, and individuals. Projected changes in P, 

particularly its seasonality, are also substantial, with a projected 25-30% increase in winter and 

spring P by the 2080s for the RCP8.5 scenario. By the 2080s all climate models in the RCP8.5 

CMIP5 archive show increases in annual P over IN, but increasing evapotranspiration with 

warming could reduce the net effects on soil moisture (Cherkauer et al., in review). Changes in 
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summer convective storms cannot be captured by large-scale climate models like the ones used 

in this study, but increasing P intensity from convective storms has already emerged in the 

historical record as an important impact pathway for cities and these trends are projected to 

continue to increase with future warming (e.g., Prein et al. 2018). We also hypothesize that 

convective storms will be increasingly observed in winter as warming progresses. Coincident 

increases in P as rain, accompanied by loss of snow cover in winter and spring, will likely impact 

water quality and erosion in agricultural areas (Bowling et al., in preparation) and may lead to 

elevated soil moisture and increased flooding in winter and spring in IN rivers (Cherkauer et al., 

this issue; Byun et al. 2018). Lake-effect snow is hypothesized to increase in the next several 

decades due to warmer lake surface temperatures and longer ice-free conditions, but towards the 

end of the 21st century T may become too warm, resulting in conversion from lake-effect snow 

to lake-effect rain, especially in the shoulder seasons. Regional-scale climate models 

dynamically coupled to lake hydrodynamic models are needed to evaluate these impact pathways 

in a more physically based manner. 
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Tabes and Figures: 

 

 

Table 1. Overview of Data Processing Approaches Used to Generate Figures and Tables. 

 Overview of Approach Examples Notes 

Type I Data are analyzed as a time series 

for each grid cell, and the results 

of the time series analysis (a single 

value for each cell) are then 

presented as a spatial map over 

some domain of interest. 

Mean, variance, change 

relative to some base 

period, ratios of snow to P, 

extreme values, ensemble 

mean, etc. extracted from 

the time series for each cell 

and plotted as a map (color 

bar or contour plot). 

In this paper 

the domain of 

interest is   

mostly IN, but 

can be any 

subset of this 

domain. 

Type II Data are averaged in space for 

some domain of interest for each 

time step, and these single values 

for each time step are then plotted 

as a line graph with time in the X 

axis. 

Domain average values of 

P or T plotted as an annual 

time series to show the 

effects of historical 

variability. Ranges can be 

shown by processing 

multiple GCMs as a 

separate time series and 

then statistically analyzing 

Any time step 

of interest can 

be used, but 

typically 

monthly or 

annual values 

are plotted. 
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the ensemble at each time 

step (e.g. Figure S1). 

Type III Data are aggregated and/or 

averaged in space and time to 

produce a single value for each 

space/time data set. A single value 

may also be extracted for each 

calendar month, to produce a 

composite mean plot of the 

seasonal cycle. 

Percent change in P for the 

Midwest for a group of 

GCMs to produce a range 

of values (e.g. Figure S2). 

Monthly domain-average 

changes in T or P for a 

group of GCMs (e.g. 

Figure 1).  
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Table 2. A) Projected annual and seasonal temperature changes (°C) over Indiana. The first value 

is the spatially averaged, ensemble mean temperature change. The value in parentheses is the 

spatial standard deviation of the ensemble mean delta T over Indiana. B) Projected annual and 

seasonal precipitation changes (%) over Indiana. The first value is the spatially-averaged, 

ensemble-mean, percent change in P.  The value in parentheses is the spatial standard deviation 

over Indiana. 

 

A) 

GHG 

Scenarios 

Future 

Periods 

Annual 

(°C) 

Spring 

(°C) 

Summer 

(°C) 

Fall  

(°C) 

Winter 

(°C) 

RCP4.5 

2020s 1.63 (0.10) 1.44 (0.11) 1.68 (0.10) 1.86 (0.10) 1.56 (0.11) 

2050s 2.71 (0.10) 2.34 (0.12) 2.83 (0.11) 2.82 (0.10) 2.86 (0.13) 

2080s 3.29 (0.11) 2.81 (0.11) 3.70 (0.11) 3.46 (0.12) 3.20 (0.14) 

RCP8.5 

2020s 1.73 (0.10) 1.36 (0.12) 1.85 (0.10) 1.80 (0.10) 1.89 (0.12) 

2050s 3.44 (0.11) 2.85 (0.12) 3.87 (0.12) 3.59 (0.11) 3.44 (0.17) 

2080s 5.60 (0.13) 4.54 (0.12) 6.56 (0.13) 6.08 (0.13) 5.22 (0.26) 

B) 

GHG 

Scenarios 

Future 

Periods 

Annual 

(%) 

Spring  

(%) 

Summer 

(%) 

Fall  

(%) 

Winter  

(%) 

RCP4.5 

2020s 1.78 (1.72) 3.75 (1.88) -1.44 (1.84) -3.89 (2.91) 8.69 (2.42) 

2050s 6.05 (1.67) 12.70 (1.81) -1.83(1.78) -2.35 (3.34) 15.67 (2.71) 

2080s 5.33 (2.13) 10.15 (2.17) -3.29 (2.11) -2.72 (3.08) 17.20 (3.01) 

RCP8.5 

2020s 2.77 (1.74) 7.35 (1.70) -3.45 (1.89) -2.97 (3.29) 10.15 (2.48) 

2050s 7.70 (1.74) 15.67 (2.14) -3.43 (1.89) -1.76 (3.03) 20.33 (2.76) 

2080s 9.97 (2.07) 17.24 (2.52) -7.60 (2.10) -1.81 (2.98) 32.06 (2.99) 
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Figure 1. Top Panels: Monthly changes in T averaged over IN relative to a 1971-2000 baseline 

for the 2020s (2011-2040), 2050s (2041-2070), and 2080s (2071-2100) with ensemble spread 

shown separately for two emissions scenarios (RCP4.5 and RCP8.5).  Bottom Panels: Monthly 

% changes in P relative to a 1971-2000 baseline with ensemble spread for the 2020s, 2050s, 

2080s RCP4.5 RCP8.5  

 [Method: Type III, one value per calendar month averaged in time and space for each GCM 

scenario, and plotted as a range and central tendency for each month]. 
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Figure 2. Map of annual number of frost days (Tmin <  0 °C (32 °F)).  Seven panels: Historical 

(1915-2013) and 2020s, 2050s, 2080s with RCP4.5 and RCP8.5 [Method: Type I, ensemble 

mean annual number of frost days for each cell]. 
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Figure 3.  Annual number of days with extreme hot temperatures (Tmax >  35 °C (95 °F)). 

Seven panels: Historical (1915-2013) and 2020s, 2050s, 2080s with RCP4.5 and RCP8.5 

[Method: Type I, ensemble mean number of extreme hot days]. 
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Figure 4.  Ensemble-average, long-term-mean fraction of Nov-Mar P as snow.  Seven panels: 

Historical (1915-2013) and 2020s, 2050s, 2080s for the RCP4.5 and RCP8.5 emissions 

scenarios. 

 

 

 

Supplemental Tables and Figures 

Table S1. Historical baseline and RCP 8.5 2080s future projections of the number extreme hot 

days (Tmax > 35 °C (95 °F)) per year for several Indiana urban centers. 

Urban Center 

# Historical 

 Hot Days 

# 2020s RCP 8.5 

Hot Days 

# 2050s RCP 8.5 

Hot Days 

# 2080s RCP 8.5 

Hot Days 

Gary 4.9 14.0 30.6 61.7 

South Bend 3.0 11.0 27.9 58.6 
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Fort Wayne 2.5 11.8 30.4 63.5 

Indianapolis 4.0 16.3 38.8 75.2 

Muncie 3.0 14.6 36.9 73.0 

Brownstown 6.2 26.2 52.2 89.9 

Evansville 10.5 34.3 61.4 98.2 

Bloomington 6.3 24.4 49.8 87.7 

Terre Haute 7.5 21.5 44.2 80.5 

Lafayette 4.9 16.3 37.6 72.3 

New Albany 8.2 31.0 58.1 96.4 
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Table S2. Historical baseline and RCP 8.5 future projections of the number of days with more 

than 25mm of precipitation for several Indiana urban centers. 

Urban Center 

# Historical 

Days (P>25mm) 

# 2020s RCP 8.5 

Days (P>25mm) 

# 2050s RCP 8.5 

Days (P>25mm) 

# 2080s RCP 8.5 

Days (P>25mm) 

Gary 9.4 9.5 10.3 10.7 

South Bend 8.6 9.0 9.8 10.4 

Fort Wayne 7.1 7.8 8.6 9.3 

Indianapolis 9.9 10.7 11.7 12.2 

Muncie 9.5 10.5 11.5 12.1 

Brownstown 11.9 12.3 13.6 14.1 

Evansville 12.5 13.0 14.4 14.7 

Bloomington 14.8 15.4 16.5 16.8 

Terre Haute 11.7 11.8 12.9 13.2 

Lafayette 8.8 10.1 11.2 11.6 

New Albany 12.8 13.0 14.3 14.9 
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Figure S1. Trajectory of annual mean temperature change over the Midwest region relative to the 

annual mean temperature for the historical baseline period (1971-2000). Each shaded bound 

represents 95% confidence interval (2.5th percentile to 97.5th percentile) and solid lines display the 

ensemble mean of 31 bias corrected GCMs results. Heavy black line shows domain-averaged 

annual temperature from historical observations (1915-2013). (Source: Byun and Hamlet 2018.)  
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Figure S2. Projected seasonal changes relative to 1971-2000 in (a) precipitation (%) and (b) 

temperature (°C) from 31 bias corrected coarse-resolution GCMs (blue) and 10 HD downscaled 

GCMs (red) based on RCP 8.5. Each range bar is bounded by the minimum and maximum 

values, and the marker represents the mean of all GCMs in each grouping. (Source: Byun and 

Hamlet 2018.) 
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Figure S3.  Statewide annual average temperature for Indiana from 1895 – 2016. Black solid 

line shows the increasing trend in annual temperature (0.1F/decade) for the period of record 

(1895-2016). The black dotted line shows the temperature trend since 1960 (0.4F”/decade). 

Data are from the NOAA Climate At A Glance Database, accessed October 2017. Data are 

further described in Vose et al., 2014.  (Vose, R. S., Applequist, S., Squires, M., Durre, I., 

Menne, M. J., Williams Jr, C. N., ... & Arndt, D., 2014:  Improved historical temperature and 

precipitation time series for US climate divisions. Journal of Applied Meteorology and 

Climatology, 53(5), 1232-1251) 
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Figure S4. The number of days per year when the maximum daily temperature averaged  over 

IN is above 90F (blue line). The linear trend over the period of record from 1915-2013 is shown 

in green.  
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Figure S5. Scatter plots of summer delta T vs. delta P for 10 climate model projections, three 

time periods, and two greenhouse gas concentration scenarios. 
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Figure S6. Annual number of days with extreme cold temperatures (Tmin < -15 °C (5 °F)). 

Seven panels: Historical (1915-2013) and 2020s, 2050s, 2080s with RCP4.5 and RCP8.5 

[Method: Type I, annual number of extreme cold days]. 
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Figure S7.  Ensemble-average, long-term mean number of days with more than 5 mm of SWE 

(~2 in of snow). Seven panels: Historical (1915-2013) and 2020s, 2050s, 2080s for the RCP4.5 

and RCP8.5 emissions scenarios. [Method: Type I, ensemble average of annual number days 

with more than 5 mm of SWE] 
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Figure S8. Ensemble average number of days with more than 25mm of precipitation. Seven 

panels:  Historical (1915-2013) and 2020s, 2050s, 2080s for the RCP4.5 and RCP8.5 emissions 

scenarios. [Method: Type I, ensemble average of annual number days with more than 25 mm of 

P] 
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Figure S9. Ensemble average duration of frost-free growing season. Seven panels: Historical 

(1915-2013) and 2020s, 2050s, 2080s for the RCP4.5 and RCP8.5 emissions scenarios [Method: 

Type I, annual number of consecutive frost free days]. 
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Figure S10. (seven panel) Maps of ensemble average USDA Plant Hardiness Zones. Seven 

panels: Historical (1976-2005) and 2020s, 2050s, 2080s for the RCP4.5 and RCP8.5 emissions 

scenarios [Method: Type I, plant hardiness zones] 
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Figure S11. Ensemble-average, long-term mean annual total cooling degree days (°F units 

relative to 75 °F).  Seven panels: Historical (1915-2013) and 2020s, 2050s, 2080s for the RCP4.5 

and RCP8.5 emissions scenarios. [Method: Type I, ensemble average of annual total cooling 

degree days] 
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Figure S12. Ensemble-average, long-term mean annual total heating degree days (°F units 

relative to 68 °F). Seven panels: Historical (1915-2013) and 2020s, 2050s, 2080s for the RCP4.5 

and RCP8.5 emissions scenarios. [Method: Type I, ensemble average of annual total heating 

degree days] 
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Figure S13. Spatial analogues for IN based on the best fit for IN’s future T and P projections in 

winter.  Historical analogues are based on PRISM long-term average monthly T and P data (Daly 

et al. 2008). 
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Figure S14. Spatial analogues for IN based on the best fit for IN’s future T and P projections in 

summer.  Historical analogues are based on PRISM long-term average monthly T and P data 

(Daly et al. 2008). 
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