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EXECUTIVE SUMMARY

CORRELATION BETWEEN RESILIENT
MODULUS (MR) OF SOIL, LIGHT WEIGHT
DEFLECTOMETER (LWD), AND FALLING

WEIGHT DEFLECTOMETER (FWD)

Introduction

INDOT adopted the Mechanistic-Empirical Pavement Design

Guide (MEPDG) beginning on January 1, 2009. This is a new

design guide based on the FHWA Long Term Pavement Perfor-

mance (LTPP) field study that has existed for more than 20 years.

The new guide requires pavement design input parameters that

are more accurate, representing actual conditions in the field, as

well as other tests for input parameters that are sensitive to the

performance of the pavement during its design life. One such

parameter is the resilient modulus, MR. The resilient modulus is

obtained in the laboratory and requires specialized and expensive

equipment. The test itself needs significant time and effort. These

limitations have led researchers to develop MR prediction models

according to type of soil, as well as alternative methods to estimate

the resilient modulus using non-destructive tests such as FWD,

LWD, and DCP. The tests are fast and easy and, as a result, are

widely used for compaction control in the U.S. In Indiana, DCP

and LWD are recommended for chemically stabilized subgrade

soils and aggregates. However, limited work has been conducted

to relate MR and DCP for Indiana soils. Clearly, robust and

credible correlations between MR and FWD, LWD, and DCP are

needed.

The objectives of this project are geared toward a practical

approach for pavement design procedures to effectively deter-

mine the soil resilient modulus for rehabilitation projects. The

ultimate goal of the research is to create guidelines for selecting

values of soil subgrade stiffness, targeting specifically untreated

subgrade soils type A-6 and A-7-6. A total of four sites located

around in Indiana were selected to conduct the field tests.

Laboratory tests were also performed using soil samples obtained

from the sites.

The scope of the project was expanded to further investigate

relations between field FWD and laboratory resilient modulus

tests using the data repository of INDOT to obtain additional

geotechnical and pavement information.

Findings

The objective of this study is to assess the potential use of FWD,

LWD, and DCP tests to estimate the resilient modulus of fine-

grained soil subgrades (A-6 and A-7-6). Four sites were selected to

conduct the field tests, with subgrade soils from the sites classified

as: (1) US 31 (A-4 soils with 58% of passing #200 and 8.5 PI),

(2) SR 37 (A-7-6 soils with 88% of passing #200 and 23.8 PI),

(3) SR 641 (A-6 soils with 83% of passing #200 and 18.4 PI),

and (4) Ramp A (A-6 soils with 72% of passing #200 and 14.0

PI). In addition to the outcomes from the four sites, additional

data were collected from the data repository of INDOT, which

has geotechnical and pavement information. Analysis of the field

FWD and laboratory MR tests led to the following conclusions:

N The results obtained from FWD tests conducted on top of

the pavement can be used to estimate the resilient modulus

of the subgrade soils obtained from the laboratory as long

as the quality of the tests is high and the pavement layer

thicknesses are accurate.

N The results from FWD tests conducted on top of the sub-

grade are not reliable, likely due to the lack of confinement

of the soil.

N The stiffness calculated from LWD tests performed on top of

the subgrade does not compare well with the resilient

modulus of the soil obtained in the laboratory.

N The correlation by Salgado and Yoon (2003) does not show

a good relation between the soil stiffness obtained from DCP

and the MR obtained from the laboratory test.

Implementation

N High-quality FWD tests conducted on top of the pavement

provide reasonable estimates of the resilient modulus of the

subgrade soils.

N The results obtained from LWD and DCP conducted on top

of the subgrade can be used for quality control of the

subgrade, but they may not provide reliable estimates of the

resilient modulus of the soil obtained in the laboratory.

N To obtain good-quality data from FWD tests, the LTPP pro-

tocol is recommended for research-level work, with a small

modification for production-level testing. There are other very

good protocols available that INDOT could explore for use.
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1. INTRODUCTION AND RESEARCH
OBJECTIVES

INDOT adopted the Mechanistic-Empirical Pave-
ment Design Guide (MEPDG) beginning on January 1,
2009. This is a new design guide based on the FHWA
Long Term Pavement Performance (LTTP) field study
for more than 20 years. The new pavement design guide
requires pavement design input parameters that are
more accurate, representing actual conditions in the
field, and other tests input parameters that are sensitive
to the performance of the pavement during its design
life. One such parameter is the resilient modulus, MR.
The resilient modulus is obtained in the laboratory
and requires a specialized and expensive equipment.
The test itself needs significant time and effort. These
limitations have led researches to develop MR predic-
tion models according to type of soil and alternative
methods to estimate the resilient modulus using non-
destructive tests such as FWD, LWD, and DCP. The
tests are fast and easy and, as a result, are widely used
for compaction control in the U.S. In Indiana, DCP
and LWD are recommended for compaction control of
subgrade soils and aggregates. However, limited work
has been conducted to relate MR and DCP for Indiana
soils, (e.g., Salgado & Yoon, 2003). Clearly, robust and
credible correlations between MR and FWD, LWD, and
DCP are needed for Indiana.

The objectives of this project are geared toward a
practical approach for pavement design procedures to
effectively determine the soil resilient modulus for reha-
bilitation projects. The ultimate goal of the research is
to create guidelines for selecting values of soil subgrade
stiffness, targeting specifically untreated subgrade soils
type A-6 and A-7-6. The following are the milestones to
achieving this end goal:

1. Review the state of stress-strain in laboratory resilient
modulus testing and field FWD, LWD, and DCP tests.

2. Review conversion factors/models between FWD, LWD,
and DCP and laboratory resilient modulus.

3. Provide recommendations for obtaining the subgrade
resilient modulus for pavement rehabilitation projects.

To accomplish these milestones, an extensive litera-
ture review and a combination of field testing and
laboratory testing was undertaken. The objective was to
develop approximate methods to estimate MR using
field tests such as FWD, LWD, and DCP. A number of
correlations already exist between the tests (Abu-
Farsakh, Nazzal, Alshibli, & Seyman, 2005; Fleming,
Frost, & Rogers, 2000; Nazzal, Abu-Farsakh, Alshibli,
& Mohammed, 2007; Siekmeier et al., 2009; Salgado &
Yoon, 2003), but it is not clear how credible or accurate
the estimates obtained from those correlations are, and
in particular for those soils found in Indiana.

It was decided to identify sites under construction
where the subgrade was classified as A-6 and A-7-6 and
was not chemically treated. At each of the sites, the field
tests were conducted and, at the same location, soil
samples were taken to do the resilient modulus test in

the laboratory, such that meaningful comparisons
could be established between the field and the labo-
ratory tests. The following sections provide the sum-
mary of the work done and the major conclusions.
Further information, test details, test data and analysis
are included in the Appendices.

2. FIELD TESTS

The sites to conduct the field tests were selected
based on the following criteria: type of soils, compacted
subgrade with natural soils not chemically modified, and
testing availability. This project targeted fine-grained
soils classified as A-6 and A-7-6. An important con-
sideration was site availability, including access, project
schedule but also that the project fit the designed testing
plan (details described in this section), which required a
testing area 90 m (300 ft) long and flat subgrade to be
able to perform FWD, LWD and DCP tests. These
requirements, which were essential for the project,
made the site selection quite challenging. Additional
issues such as equipment availability, weather and
coordination with the contractor added difficulty to
the task. The authors are very thankful to INDOT per-
sonnel for their collaboration, and in particular to
Mr. Nayyar Siddiki. Without the support of INDOT,
the project would not have been possible.

Four sites were identified and selected for the
project. The locations are shown in Figure 2.1. The
projects chosen were: (1) US 31 in Kokomo, (2) SR
37 in Paoli, (3) SR 641 in Terre Haute, (4) Ramp
line A connecting SR 641 and SR 46 in Terre Haute.
At each of the four sites, the soil properties were
determined using the laboratory tests summarized in
Table 3.1. According to AASHTO M 145-91 (2012),
the soil samples from US 31 were classified as A-4,
from SR 641 and Ramp A as A-6, and the soil from
SR 37 as A-7-6.

FWD, LWD, and DCP tests were performed to eval-
uate the stiffness of the subgrade soils. A 90 m (300 ft)
length section at each site was selected and 11 test
points were marked at 9 m (30 ft) intervals where the
tests were performed (see Figure 2.2). All of the eleven
points are labeled with numbers 1 to 11, which will be
used to identify the soil samples at a site, e.g., US 31_1.
All the field tests were conducted at the same loca-
tion to reduce material variability and obtain mean-
ingful comparisons between the resilient moduli
estimated from the tests and obtained in the laboratory.
At a given location, all of the three tests were done
adjacent to each other to avoid site disturbance; all
of the tests were done within a radius of 0.3 m (1 ft).
In addition, sand cone tests and nuclear gauge tests
were performed to measure unit weight and water
content of the in-situ soils. More details are found in
Appendix Chapter 3.

ELMOD 5, the Boussinesq’s equation, and Salgado
and Yoon’s (2003) relationship are used to calculate the
equivalent modulus from FWD, LWD, and DCP test
results, respectively.
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2.1 Site on US 31

The site was located in Kokomo, Howard County,
Indiana. See Figure 2.3.

On August 23, 2013, FWD, LWD, DCP and nuclear
tests were conducted on the subgrade. Figure 2.4 shows
the estimated moduli from FWD, LWD, and DCP, and
includes the in-situ water content and optimum water
content. The FWD modulus (EFWD) ranged from 36
MPa to 134 MPa. The estimated modulus from the
LWD tests ranged from 37 to 90 MPa. The values of

the modulus estimated from the DCP were around 95
MPa. The stiffness of the subgrade obtained using the
FWD, EFWD, and computed using ELMOD 5 are highly
variable, while that obtained using LWD, ELWD, and
DCP, EDCP, are relatively uniform. Also, the stiffness
obtained from DCP is consistently higher than that
obtained from LWD.

On May 13, 2014, FWD tests were conducted at
the same location, but on top of the pavement, when
the site was open to traffic. The results are plotted in
Figure 2.5 together with the results of the FWD tests
done on top of the subgrade. The figure shows uniform
values and a reduction of the subgrade modulus when
using the results of the test completed on top of the
pavement. We hypothesize that this is due to two issues:
one is the increase in confinement of the soil provided
by the pavement, and the other is due to the loading
of the subgrade due to traffic and changes of moisture
content of the subgrade while in service.

2.2 Site on SR 37

The site was located on SR 37 in Mitchell, Lawrence
County, Indiana, and consisted of a road-widening
project (see Figure 2.6).

On September 23, 2013, FWD, LWD, DCP and sand
cone tests were conducted on the subgrade. Figure 2.7
plots the estimated moduli obtained using the results of
FWD, LWD, and DCP tests, as well as the in-situ water
content and optimum water content of the subgrade.

Figure 2.1 Location of the four test sites.
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Figure 2.2 Schematic of selected section and test location.

Figure 2.3 Photograph of the US 31 site.



Figure 2.4 EFWD, ELWD, EDCP and water content at US 31.

Figure 2.5 Comparison of EFWD of the subgrade, from FWD tests on top of the subgrade and on top of the pavement. US 31.

Figure 2.6 View of SR 37 site.
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The values of EFWD, as in the previous case, were highly
variable and ranged from 31 MPa to 111 MPa, while
from LWD and DCP were more uniform. The modulus
values computed from LWD oscillated from 15 MPa to
31 MPa and those from DCP from 25 MPa to 65 MPa.
The water content was close to the optimum, except at
No. 5 location. Also, as with the previous site, the
moduli obtained from DCP is larger than from LWD.

FWD tests were conducted on top of the pavement in
2005, in the spring (05/26/2015) and in the summer (08/
04/2015), and at exactly the same locations as the tests
performed earlier on top of the subgrade. Tests were
done at points close to the rail to investigate the effect
of lateral confinement. The subgrade moduli, from the
FWD measurements, are plotted in Figure 2.8 together

with the values obtained from the tests performed on
top of the subgrade. Consistent with the findings at the
US 31 site (Figure 2.5), testing on the pavement results
is more uniform results, which supports the notion of
increased consistency due to confinement, and perhaps
due to effects of traffic (loading) history at the site, as
well as changes in moisture content of the subgrade. As
average, the moduli obtained from the tests in August
are larger than those obtained in May, which is thought
to be associated with a smaller water content of the
subgrade in the summer than in the spring. Also, it can
be noticed that the differences between the results
obtained at the center of the site and at the edge, close
to the railing, are not large, arguably within soil
variability, which seems to indicate that there is no

Figure 2.7 EFWD, ELWD, EDCP and water content of the subgrade at the SR 37 site.

Figure 2.8 Comparison of EFWD of the subgrade from FWD tests performed on top of the subgrade and on top of the pavement,
SR 37.
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substantial difference in confinement between the two
locations.

2.3 Site on SR 641

The site was located on SR 641 in Terre Haute, Vigo
County, Indiana. Figure 2.9 is a photograph of the site
where the tests were performed.

The results of the FWD, LWD, DCP, and nuclear
gauge tests, conducted on September 18, 2014, are
plotted in Figure 2.10. The EFWD values ranged from
8 MPa to 15 MPa and were lower than at the previous
two sites (US 31 and SR 37). One of the reasons for the
lower values was the higher water content at the site,
which at most locations was about 4% higher than the
optimum. The ELWD was quite uniform, with values in
the range of 5 MPa to 28 MPa. The modulus computed
from DCP was very small. As shown in Figure 2.10, the
estimated modulus values were below 20 MPa, which is
too low. The high water content of the soil due to heavy

rain before the tests was thought to be the cause for the
low values.

2.4 Site on Ramp A

The site was located on Ramp A in Terre Haute,
Vigo County, Indiana. Figure 2.11 provides a view of
the site.

The field testing included FWD, LWD, and DCP
tests and was conducted on June 2, 2015. Figure 2.12
plots the stiffness moduli obtained from FWD, LWD,
and DCP tests, in-situ water content, and optimum
water content. The FWD modulus ranged from 15 MPa
to 25 MPa, except for one outlier (No. 11). The ELWD

values were fairly uniform and ranged from 9 MPa
to 23 MPa. The EDCP values were between 55 MPa to
70 MPa. They are higher than at SR 641, although the
soils at SR 641 and Ramp A are analogous, i.e., they
are both A-6; this may be due to the different water
content at the two sites, with the one in SR 641 with

Figure 2.9 View of the SR 641 site.

Figure 2.10 EFWD, ELWD, EDCP and water content at the SR 641 site.

Figure 2.11 View of Ramp A site.
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Figure 2.12 EFWD, ELWD, EDCP and water content of the subgrade at Ramp A.

higher water content due to heavy rain in the days
preceding testing. The in-situ water content (11.3%) of
Ramp A site was similar to the optimum water content
(12.3%). The modulus obtained from FWD and from
LWD tests were similar, which was not the case in pre-
vious sites. Estimates from DCP yielded higher modu-
lus than from the other two tests, which is also the case
at all other sites.

3. LABORATORY TESTS

Laboratory tests were performed on the soil samples
collected at each of the 11 locations at the four sites (US
31, SR 37, SR 641, and Ramp A). The following tests
were conducted: Soil Characterization (sieving, hydro-
meter, compaction and Atterberg limit tests) and resilient
modulus tests.

Table 3.1 provides a summary of the properties of
the soils such as percentage of fines, Atterberg limits,
in-situ water content, maximum dry unit weight, and
soil classification. Based on AASHTO M 145-91
(2012), the subgrade at US 31 is classified as A-4, at
SR 37 as A-7-6, and at SR 641 and Ramp A, as A-6.
The details of the tests and the results can be found in
Appendix Chapter 4.

The resilient modulus tests were performed to
determine the stiffness of the soils in accordance to

AASHTO T 307-99 (2007). Eleven tests were done at
each site, each test on the soil samples taken at each one
of the eleven stations. This was done to assess the
variability of the results and provide a direct compar-
ison between the laboratory results and the results from
the field tests, since each would correspond to the exact
same location.

Table 3.2 lists the average, minimum, and maximum
values of the resilient modulus tests. The average MR is:
45.1 MPa or 6.5 ksi at US 31; 92.1 MPa or 13.4 ksi
at SR 37; 81 MPa or 11.8 ksi at SR 641; and 64.3 MPa
or 9.3 ksi at Ramp A. There are some differences along
each site, although soil properties (passing #200, LL,
PL, PI, max. dry unit weight, and optimum water con-
tent) do not show variability. The differences between
max. MR and min. MR were 55.9 MPa (8.1 ksi) for US
31 soils, 43.9 MPa (6.4 ksi) for SR 37 soils, 54.4 MPa
(7.9 ksi) for SR 641 soils, and 26.6 MPa (3.8 ksi) for
Ramp A soils.

Representative results of the resilient modulus tests
are plotted in Figure 3.1. The trend for all subgrade
soils (US 31, SR 37, SR 641 and Ramp A sites) is
similar: there is no clear effect of deviator stress, nor of
confining stress. There are a few exceptions that show a
somewhat deviator stress dependency, but most of the
results are not affected by deviator stress. All the resilient
modulus test results are included in Appendix Chapter 4.

TABLE 3.1
Characterization and classification of the subgrade soils

Site #200 Passing (%) Liquid Limit (%) Plastic Limit (%) Plastic Index

Optimum Water

Content (%)

Max. Dry Unit
3Weight (kN/m )

AASHTO

Classification

US 31

SR 37

SR 641

Ramp A

58

88

83

72

18.6

41.4

31.2

29.0

10

17.7

13.8

15.0

8.5

23.8

19.4

14.0

9

16,20

14,16

12,13

21.0

17.0

18.0

18.7

A-4

A-7-6

A-6

A-6
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TABLE 3.2
Average, max. and min. values of the resilient modulus at US 31, SR 37, SR 641, and Ramp A

US 31 SR 37 SR 641 Ramp A

Average (MPa)

Min. (MPa)

Max. (MPa)

45.1

23.5

79.4

92.1

71.2

115.1

81.2

51.1

105.5

64.3

54.4

81.0

Figure 3.1 Select resilient modulus test results at US 31, SR 37, SR 641, and Ramp A. (Figure continued next page.)
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Figure 3.1 (Continued)

4. ANALYSIS OF TEST RESULTS

There are a number of proposals in the litera-
ture for MR models for cohesive soils. Most models
depend on the bulk stress, the deviator stress, and
the confining stress. The universal model (Uzan, 1985)
and the Octahedral stress model (NCHRP, 2004)
are well known. However, the resilient modulus test
results from the four selected sites (see Section 3)

do not show stress-dependent behavior, not only
on confining stress, but also on deviator stress. For
this study, a stress-independent model seems to apply.
That is,

MR~k1pa

where, k1 5 regression coefficient; pa 5 atmospheric
pressure.

8 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/08



An attempt has been made to obtain insight into the
regression coefficient as a function of a number of soil
parameters such as optimum water content, maximum
dry unit weight, percentage soil passing #200 sieve,
and Atterberg limits, which are classified as important
input variables (Drumm, Boateng-Poku, & Pierce, 1990;

George, Bajracharya, & Stubstad, 2004). In general,
there is a poor correlation between soil properties
and resilient modulus, with values of the R2 index as
low as 0.14.

The MR values from the laboratory are compared
with those estimated from FWD, LWD, and DCP tests.

Figure 4.1 Range of resilient modulus values (US 31 site). (Figure continued next page.)
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Figure 4.1 (Continued)
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The code ELMOD 5 is used to obtain the soil stiffness
from FWD tests, the Boussinesq’s equation is utilized
to calculate the soil stiffness from the LWD tests, and
the Salgado and Yoon’s (2003) relationship to interpret
the DCP results. The values of the resilient modulus
obtained in the laboratory show variations based on
location, i.e., from test point to test point, and on
confinement and deviator stress, albeit there was no
strong relation, as discussed. Figure 4.1a includes all the
laboratory tests on US 31. To facilitate comparisons,
the laboratory tests are grouped into a band that
includes all the results that fall into the 5% and 95%

percentile, as depicted in Figure 4.1b. This is plotted,
for the rest of the discussion, as the band of results
where the MR falls; see Figure 4.1c.

Figure 4.2 shows a comparison between the MR

measured in the laboratory and estimated from FWD,
LWD, and DCP tests on A-4 soils (US 31). The hori-
zontal axis represents the test location at the site while
the vertical axis provides the values of the resilient
modulus in MPa (left) or ksi (right). As one can see,
estimates from DCP results overestimate the stiffness
of the soil. This is also the case with the values from
FWD when obtained from tests conducted on top of
the subgrade. Results from LWD and from FWD
conducted on top of the pavement provide accep-
table estimates, with somewhat better results from
the FWD.

Figure 4.3 shows a comparison between the MR

measured in the laboratory and estimated from FWD,
LWD, and DCP tests on A-7-6 soils (SR 37). None
of the estimates using measurements from LWD, DCP
or FWD tested directly on the subgrade provide

acceptable values. Results from FWD tests performed
on the pavement give a better approximation of the
resilient modulus obtained in the laboratory, in parti-
cular from the test conducted in the summer. The FWD
measurements made in the spring also provide accep-
table results, albeit on the low side. As mentioned
earlier, the smaller values of the FWD modulus in May
are likely associated with a higher water content of the
subgrade due to rain.

Figure 4.4 shows a comparison between the MR

measured in the laboratory and estimated from FWD,
LWD, and DCP tests on A-6 soils (SR 641 site). Similar
to the observations made for the A-7-6 soils in Figure
4.3, none of the estimates from the field tests, including
the FWD performed directly on the subgrade provide
good estimates. They are all too low.

Figure 4.5 is analogous to the previous figures.
It presents a comparison between the MR measured in
the laboratory and estimated from FWD, LWD, and
DCP tests on Ramp A, where the soils are classified as
A-6 (similar to the SR 641 site with resilient modulus
values shown in Figure 4.4). The LWD and the FWD
results are similar to each other, but they are too low.
The DCP modulus coincides well with the modulus
obtained in the laboratory. Note that this is quite
different from what was found in SR 641, which has a
similar soil.

Figure 4.6 provides a comparison of the resilient modu-
lus obtained in the laboratory following AASHTO T 307-
99 (2007) and from FWD tests. For the comparison,
the average values of the laboratory test results are
used (see discussion in Section 4). In the figure, hollow
symbols are used for the FWD modulus obtained from



tests done directly on top of the subgrade and solid
symbols from tests on top of the pavement.

The FWD results on the subgrade soils (hollow
symbols) seem to be randomly scattered and do not

show a clear trend, nor there seems to be a rela-
tion between these values and the resilient modulus
from the laboratory tests. In contrast, the modu-
lus obtained from FWD tests performed on top of

Figure 4.2 Comparison between the resilient modulus measured in the laboratory and obtained from FWD, LWD, and DCP tests
on A-4 soils (US 31 site).

Figure 4.3 Comparison between the resilient modulus measured in the laboratory and obtained from FWD, LWD, and DCP tests
on A-7-6 soils (SR 37 site).
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the pavement do compare well with the laboratory
measurements. Note that this is the case for all eleven

points at each of the two sites where the test could be
completed.

Figure 4.4 Comparison between the resilient modulus measured in the laboratory and obtained from FWD, LWD, and DCP tests
on A-6 soils (SR 641 site).

Figure 4.5 Comparison between the resilient modulus measured in the laboratory and from FWD, LWD, and DCP tests on A-6
soils (Ramp A site).
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Figure 4.6 Resilient modulus. Comparison between results from laboratory and FWD tests.
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5. DATA COLLECTION FROM INDOT

Given the need to collect and analyze additional data
to support the observations in Figure 4.6, it was decided
to expand the scope of the project and mine the data
repository of INDOT to obtain additional geotechnical
and pavement information that could be used to further
investigate relations between field FWD and laboratory
resilient modulus tests.

Mr. Nayyar Siddiki provided resilient modulus data,
obtained from laboratory tests, that included: resilient
modulus at 6 psi deviator stress and 2 psi confining
stress at optimum moisture content; location based on
road number and county; soil classification; and Pro-
ctor tests results. Dr. Yigong Ji provided FWD data
since 2008 that included: location based on road num-
ber and RP number; deflection data; and FWD modu-
lus calculated using ELMOD 5.

The resilient modulus and the FWD data were
obtained independently of each other; that is, the test
location and time do not match. The first step consisted
of pairing the data, as best as possible, based primarily
on location.

To facilitate pairing the two sets of data, the com-
mercial software ArcMap, a GIS based code, was used.
The locations of the resilient modulus and FWD tests

were digitized and included in the software, as shown in
Figure 5.1.

The locations of the soil samples used to obtain the
resilient modulus in the laboratory are approximate.
They are given in terms of the road number on a County.
Therefore, MR data are assumed representative of the
entire road, which may carry a significant uncertainty,
as the values are compared with the stiffness obtained
from FWD, where the location is well specified.

Using ArcMap has distinctive advantages for the
project, as the software allows users to classify the
data into ‘‘layers’’: three layers for the resilient modu-
lus, each for a particular type of soil, namely A-7-6,
A-6 and A-4, and one for the FWD. The layers are
color-coded and can be activated or deactivated, thus
facilitating the spatial visualization of the data into
different categories.

The data, as displayed into ArcMap, from the field,
FWD, and laboratory, MR, is paired by location.
Clearly, given the uncertainties discussed, mostly from
the MR location, it is not possible to unequivocally
establish one-to-one relations. Instead, the data is
classified into three tiers. If the MR data has only one
type of soil at a given road and only one FWD data
point exists, the data is classified as tier one. If the MR

data has only one type of soil but multiple FWD data



exist, at the same location, the data falls into tier two.
If the MR data includes multiple types of soils, the data
are categorized as tier three regardless of the number of
FWD data.

Thirteen data points fall into tier one, which is the
tier thought to be the most reliable for comparison
purposes. The tier one data is plotted in Figure 5.2a,
which shows a good correlation between the resilient
and the FWD modulus, and similar to the observations
made during phase one of the project (see Figure 4.6,

reproduced here as Figure 5.2b, which also includes the
data from Figure 5.2a).

Tier two includes 37 data points and tier three 118
data points. The comparison between MR and FWD data,
classified as tier two and three, is shown in Figure 5.3a
and Figure 5.3b, respectively. Tier two and tier three
do not show a strong correlation between MR and
FWD. This is somewhat expected due to the higher
uncertainty associated with how the values of MR and
FWD have been matched.

Figure 5.1 Location of collected resilient modulus and FWD data in ArcMap.
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Figure 5.2 Comparison between MR and FWD for tier one data.
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Figure 5.3 Comparison between MR and FWD for tier two and tier three data.
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6. ANALYSIS OF COLLECTED DATA

Resilient modulus data and FWD data have been
collected from INDOT databases (see preceding Sec-
tion and Appendix Chapter 6 for more details). Two
sets of data were collected: resilient modulus from
the Geotechnical Engineering Division and FWD
from the Pavement Division. The two independent data
sets were paired based on location and classified into
three tiers.

As shown in Figure 5.2b, the data categorized into
tier one shows a meaningful correlation between MR

and FWD, which supports the results from phase one
of the project. Tier two and tier three data do not show
strong correlations due to the uncertainty associated
with location and type of soil. As a consequence, it was
decided to further investigate tier one data only.

ELMOD5, the code used by INDOT to interpret
the results from FWD tests, uses a three-layer pave-
ment model. This is thought to be a limitation, since
pavements are built with several layers, and so more
precise interpretation of the FWD results could possibly
be attained using models that allow for a larger num-
ber of pavement layers. In discussions with Dr. Orr,
it was decided to use the code MODTAG (Borter &
Irwin, 2006), in conjunction with ELMOD. MODTAG
is a back-calculation program developed by VDOT
(Virginia Department of Transportation) and Cornell
University. MODTAG uses an iterative deflection basin
fit method that adjusts the moduli of pavement layers
until the calculated deflection matches the measured
deflection basin. Further, ELMOD5 assumes that the
stiffness of the pavement layers decreases with depth,
which may or may not be always the case. This limi-
tation does not exist with MODTAG.

First, outcomes from US 31 and SR 37 were anal-
yzed because of the high quality of the data and
pavement layer information. Results of a three-layer
analysis using MODTAG were compared with the
results using ELMOD5, also using a three-layer model.
This was done to identify any differences between the two
codes when all input parameters and problem definition
are identical. The results are shown in Figure 6.1a. Data
points obtained with ELMOD5 are plotted using black
symbols and data points using MODTAG are plotted
with white symbols. The results from MODTAG are
similar to the results from ELMOD5, since both results
are distributed around the 1:1 reference line. Figure 6.1b
shows similar outcomes, but using a three-layer model
with MODTAG for US 31 (US 31 has three layers:
asphalt surface, base and subgrade) and a four-layer
model for SR 37 (SR 37 has four layers: asphalt surface,
base, subbase and subgrade). Included in the figure are
the results from ELMOD5 to compare with the results
from MODTAG. The FWD moduli calculated with
MODTAG are relatively lower than those calculated
with ELMOD5. The MR or FWD modulus using
ELMOD5 is roughly 1.6 times higher than the FWD
results obtained using MODTAG. Additional calculations

were done increasing the number of layers. Figure 6.1c
shows the results using MODTAG with a four-layer
pavement for US 31, by adding a natural subgrade layer,
and a five-layer pavement for SR 37, also by adding a
natural subgrade layer.

Figure 6.1 indicates that by just adding layers to the
model, the variability/scatter of the results increases.
This is somehow an unexpected result, as a better, more
precise description of the pavement, should improve the
accuracy and quality of the interpretation. To investi-
gate the issue, manual backcalculation was performed,
taking advantage of the expertise of Dr. Orr. The details
of the analyses can be found in Appendix Chapter 8.

For the MODTAG analysis, five-layer models
were adopted, i.e., 40 AC, 60 granular base, 140 upper
subgrade, 480 middle subgrade and infinite subgrade
for US 31; and 40 AC, 60 AC base, 140 lime treated, 120

upper subgrade and infinite subgrade for SR 37. The code
CHEVLAY (Irwin, 1994), a multi layered elastic program,
was used to further investigate the results. The details of
CHEVLAY analysis can be found in Appendix Chapter 8.

Results from MODTAG and ELMOD5 are com-
pared in Figure 6.2. Figure 6.2a is a comparison
between MODTAG and ELMOD5, for US 31, and
Figure 6.2b for SR 37. Data points obtained with
ELMOD5 are plotted using black symbols and data
points using MODTAG are plotted with white symbols
(Figure 6.2). Utilizing the analysis resources provided
by CHEVLAY, US 31 results from MODTAG are
in good agreement with results from ELMOD5, except
for few outliers. However, there are disparities between
the two results for SR 37, as shown in Figure 6.2b.
ELMOD5 results are, generally, 2.2 times higher than
MODTAG. The disparity is likely due to errors in
pavement thickness or data input; more specifically, the
analysis seemed to indicate that the actual thicknesses
of the pavement layers might be different that those of
design (used by ELMOD5).

In addition to data collected from US 31 and SR 37,
additional information was gathered, as discussed, from
the INDOT database. With help from Dr. Jusang Lee,
the pavement information for tier one data was obtai-
ned from ProjectWise. ProjectWise is a program used to
store data from INDOT projects. Unfortunately, not
all desired information from the thirteen sites in tier
one was available. The pavement layer thickness was
found for only two sites, namely SR 60 and SR 46; see
Table 6.1 and Table 6.2. FWD deflection files (.F25) for
the two sites were found with the help of Dr. Seonghwan
Cho. Backcalculation of FWD results for SR 60 was not
successful. The FWD raw data file (.F25) for the site
might have been corrupted and thus produced errors
during backcalculation.

The analysis of SR 46 was conducted with MODTAG,
with a four-layer pavement, i.e., 4.50 AC, 5.50 granular
base, 140 upper subgrade, and infinite subgrade. Note that
a 4.50 surface layer was used because the upper two layers
were too thin to be differentiated in the calculations.
The results from MODTAG are compared with the
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Figure 6.1 MODTAG vs. ELMOD5. Comparison between results from MR and FWD tests. (Figure continued next page.)
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Figure 6.1 (Continued)
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results from ELMOD in Figure 6.3. The figure shows
that the FWD modulus obtained from MODTAG
is 3.7 times larger than from ELMOD and that the
FWD modulus from MODTAG is 5.7 times higher

than the MR obtained in the laboratory. The discre-
pancies are thought to be associated with inaccurate
pavement information such as pavement condition and/
or layer thicknesses.



Figure 6.2 Comparison between results from MODTAG and ELMOD5.
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TABLE 6.1
Pavement layer information from ProjectWise for SR 60

Road Layer Material Thickness (inches)

SR 60 Surface

Base

Subgrade

HMA

HMA

Type IB

3.5

6.5

14

TABLE 6.2
Pavement layer information from ProjectWise for SR 46

Road Layer Material Thickness (inches)

SR 46 Surface

Interface

Base

Subgrade

HMA

HMA

HMA

Type IB

1.5

3

5.5

14

Figure 6.3 MODTAG vs. ELMOD5. Comparison between results from MODTAG and ELMOD5 for SR 46.
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7. CONCLUSIONS AND IMPLEMENTATION

Since INDOT adopted the Mechanistic-Empirical
Pavement Design Guide (MEPDG) at the beginning of
2009, obtaining accurate and representative values of
the resilient modulus needed for the design has proven

to be difficult. This is particularly the case when design-
ing the reconstruction of the pavement of existing
roads. The reason is the need to direct sampling of the
subgrade soil and access to the equipment required to
perform the resilient modulus tests in the laboratory
following the standard AASHTO T-307-99 (2007).



The problem is compounded by the length of the pro-
ject, as it requires a large number of representative soil
samples. An alternative, which would be efficient and
cost effective, is to obtain the resilient modulus from
indirect, non-destructive tests. The goal of the project is
to assess the potential of the following tests to estimate
the resilient modulus of the subgrade: Falling Weight
Deflectometer, FWD, Light Weight Deflectometer,
LWD, and Dynamic Cone Penetrometer, DCP.

The following types of subgrade were specifically
targeted for the project: untreated soils type A-6 and
A-7-6. This objective has proven challenging; first,
because these soils are usually chemically treated to
improve their stability and engineering properties and
so it has not been easy to identify the right project; and
second, because the actual type of soil placed in-situ
may not fit into these categories. In addition, coordina-
tion with the job contractor, subcontractor, and tech-
nical personnel from INDOT and others to access the
site and perform all the tests at the same time has been
challenging. In other occasions, the weather or equip-
ment availability or equipment trouble have delayed
the work. Fortunately, four sites had been available for
testing, thanks to the work and help of INDOT per-
sonnel. The first site was on US 31 around Kokomo,
Indiana. The soil is classified as A-4, according to
AASHTO, with 58% passing No. 200 sieve and PI,
Plastic Index, 8.5%. The second site was on SR 37
around Paoli, Indiana. The soil is defined as A-7-6, with
88% of soil passing the No. 200 sieve and PI 5 23.8%.
The third site was on SR 641 at Terre Haute. The soil is
classified as A-6 according to AASHTO with 89%
passing #200 sieve and PI 5 20.2%. The last site was
Ramp line A connecting SR 641 and SR 46 at Terre
Haute. The soil has 72% of passing #200, and 30.6%

PI, so it is classified as A-6.

FWD, LWD, and DCP tests were performed on the
four selected sites. A representative 90 m long section at
each site was chosen. In each section, eleven points at 9 m
intervals were identified to run the three tests. After pave-
ment construction, FWD tests were conducted on US 31
and SR 37. In addition, at each of the eleven points on
each site, in-situ water content, optimum moisture con-
tent, maximum dry unit weight, granulometry, Atterberg
limits and resilient modulus tests were performed.

The scope of the project was expanded to further
investigate relations between field FWD and laboratory
resilient modulus tests using the data repository of
INDOT to obtain additional geotechnical and pave-
ment information. The ARC GIS program was used to
visualize MR and FWD data so that the two indepen-
dent data sets were paired. The data collected was clas-
sified into three tier categories, based on the degree of
uncertainty associated with the data, which originated
mostly from difficulties in determining whether the data
paired originated at the same location. Tier one data,
having the highest confidence in how the data was
paired, showed good agreement between FWD and MR,
similar to the results from the first phase of the project.
Tier two and tier three data did not show a strong cor-

relation due to the higher uncertainty associated with
how the data points were paired.

Based on the results from all the field and laboratory
tests, the following conclusions can be reached:

1. The subgrade modulus obtained from FWD tests con-
ducted on top of the pavement compares very well with
the resilient modulus of the subgrade, i.e., MR 5 EFWD.

2. Results from FWD tests conducted directly on top of
the subgrade are not reliable, likely due to the lack of
confinement of the soil.

3. The stiffness obtained from LWD tests performed on top
of the subgrade does not compare well with the resilient
modulus of the soil obtained in the laboratory. The values
obtained from LWD are too low.

4. There is not a good relation between the soil stiffness
obtained from DCP and from the laboratory using the
correlation by Salgado and Yoon (2003), which was
deemed appropriate in this study.

5. While LWD and DCP have not provided acceptable
estimates of soil stiffness, they can be used to estimate
quality consistency of the subgrade. The research has
shown that the field measurements using either method
are sensitive to the quality of the construction and can be
used to identify those areas with lower quality than others.

6. When good quality FWD data is obtained, its results, in
terms of stiffness of the subgrade, can be used to estimate
the resilient modulus, MR, of the subgrade. If the data
were collected using good quality assurance and quality
control (QA/QC), then the backcalculation results would
be able to be used to determine the modulus for design.

7. Good quality FWD data requires a strong complete FWD
testing protocol. The LTPP protocol is recommended for
research level work, with a small modification for pro-
duction level testing. There are also other very good pro-
tocols available that INDOT could explore for their use.

8. Good quality FWD data can only be achieved when
pavement layer thickness is accurate. Using construction
plans and overall specifications may not be sufficient. If
good as-built drawings showing thickness are available,
then they may be used. If not, ground penetrating radar
(GPR) or other non-destructive tests may be performed
in conjunction with the FWD tests to determine the geo-
metry of the pavement.

9. The correlations proposed between FWD and MR are
based on limited, yet highly reliable, data from the tests
on top of pavement. It would be desirable to extend the
database used in the project to further confirm such an
important conclusion. This could be done by identifying
sites under construction where a test campaign similar to
that completed under phase one of the project could be
conducted.
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APPENDIX

A.1. INTRODUCTION AND
PROBLEM STATEMENT

1.1 Introduction

Since the AASHTO (1986) Guide for Design of
Pavement Structures recommended highway agencies
to use a resilient modulus (MR) obtained from a repea-
ted triaxial test for the design of subgrades, many
researchers have made a significant effort to obtain more
accurate, straightforward, and reasonable MR values
that are representative of the field conditions.

INDOT adopted the Mechanistic-Empirical Pave-
ment Design Guide (MEPDG) beginning on January 1,
2009. This is a new design guide based on the FHWA
Long Term Pavement Performance (LTPP) field study
for more than 20 years. The new pavement design pro-
cedures and pavement design input parameters included
in the guide differ from those in the AASHTO (1993)
Pavement Design Guide, which was based on the
AASHTO Road Test conducted in the 1950s. The new
input parameters are based on a more realistic method
that determines how the designed pavement will per-
form, month-by-month, during its design life. As a result,
the new pavement design guide requires pavement design
input parameters that are more accurate, representing
actual conditions in the field, and other tests input
parameters that are sensitive to the performance of
the pavement during its design life.

This new pavement design procedure requires
specific input parameters that will determine the
outcomes of the designs; that is, it will judge whether
performance criteria set by INDOT ‘‘pass’’ or ‘‘fail.’’
There are a few parameters in the design procedure
that are highly sensitive to the performance prediction of
pavement during the design process. One such parameter
is the soil resilient modulus. In the new pavement design,
there is no issue related to the resilient modulus becaus
soil information can be easily obtained from the soil
exploration report. In addition, soil tests of a new
pavement or pavement reconstruction project that have
been conducted in a laboratory offer more appropriate
results to be used as input parameters for a pavement
design. However, for a pavement rehabilitation project,
soil information is rather difficult to obtain. Soil coring is
needed to determine the soil laboratory testing para-
meters. In addition, the number of pavement rehabilita-
tion projects has outpaced the ability of INDOT to
provide soil information.

In most pavement rehabilitation projects, the project
length is typically large. It is extremely expensive to
explore the complete soil subgrade strength character-
istics along the mainline pavement. Another disadvan-
tage of field soil sampling is the fact that, in a pavement
rehabilitation project, the subgrade soil has been
‘‘naturally’’ compacted by passing traffic for a long
time. Therefore, soil sampling (disturbed samples)
from the field that is remolded in the lab does not

e

offer a true representation of the strength character-
istics of the soil.

The soil strength characteristics, such as the resili-
ent modulus, may be measured using non-destructive
testing equipment. Equipment such as the Light Weight
Deflectometer (LWD), or Falling Weight Deflecto-
meter (FWD) may be utilized to determine the in-situ
resilient modulus for pavement design. The resilient
modulus values from this non-destructive testing may
be used as an input parameter in the MEPDG for
designing pavement rehabilitation projects. MEPDG
users could potentially select whether to input the soil
resilient modulus from the lab or directly from the
results of the LWD or FWD. Another major advantage
of such equipment is that it can test hundreds of loca-
tions that cover the whole pavement rehabilitation pro-
ject in a short period of time.

1.2 Problem Statement

The resilient modulus is thought to represent reali-
stically the behavior of the soil when subjected to repea-
ted traffic loadings, and so it is one of the most critical
parameters for the design of the subgrade.

Since the AASHTO (1986) Guide for Design of Pave-
ment Structures recommended the use of MR for pave-
ment design, several research projects on the resilient
modulus of subgrade soils have been completed under
the Joint Transportation Research Program (JTRP),
such as Lee, Bohra, Altschaeffl, and White (1993),
FHWA/INDOT/JTRP-92/23, and Kim and Siddiki
(2006). From those JTRP projects, Lee et al. (1993)
suggested correlations between the resilient modulus
and the unconfined compressive strength of Indiana
soils. Kim and Siddiki (2006) suggested predictive models
of the resilient modulus based on soil properties and
unconfined compression tests. The models require twelve
different soil parameters, namely the optimum moisture
content, natural moisture content, MCR (Moisture Con-
tent Ratio 5 Moisture Content / Optimum Moisture
Content), MDD (Maximum Dry Density), DD (Dry
Density), SATU (Degree of saturation), %Compaction,
%Sand (percentage of sand in the soil obtained from the
Particle size distribution curve), %Silt (percentage of silt
in the soil, from the Particle size distribution curve),
%Clay (percentage of clay, also from the Particle size
distribution curve), liquid limit, and plasticity index.
It has to be realized, that significant time and effort is
required to obtain all the parameters. Therefore, there is
a need to have models with a minimum number of para-
meters that can estimate the resilient modulus.

The resilient modulus test requires a specialized and
expensive equipment, and the test itself needs a lot of
time and effort. These limitations have led researches
to develop alternative methods to estimate the resilient
modulus using non-destructive tests such as FWD,
LWD, and DCP. The tests are fast and easy and, as a
result, are widely used for compaction control in the
US. In Indiana, DCP and LWD are recommended for
compaction control of subgrade soils and aggregates.
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However, limited work has been conducted to relate
MR and DCP for Indiana soils (for example, Salgado &
Yoon, 2003). Clearly, robust and credible correlations
between MR and FWD, LWD, and DCP are needed for
Indiana soils.

A.2. RESEARCH OBJECTIVES

The objectives of this research project are geared
toward determining a practical solution for pavement
design procedures to effectively determine the soil resi-
lient modulus for rehabilitation projects. The ultimate
goal of the research is to create guidelines for selecting
values of soil subgrade stiffness, targeting specifically
untreated subgrade soils type A-6 and A-7-6. The fol-
lowing are the milestones to achieving this end goal:

1. Review the state of stress-strain in laboratory resilient
modulus testing and field FWD, LWD, and DCP tests.

2. Review conversion factors/models between FWD, LWD,
and DCP and laboratory resilient modulus.

3. Provide recommendations for obtaining the subgrade
resilient modulus for pavement rehabilitation projects.

A.3. FIELD TESTS ON INDIANA SOILS

3.1 Introduction

A key parameter for a pavement foundation is the
resilient modulus (MR). The resilient modulus can be
determined directly through a laboratory test. How-
ever, the test is sophisticated and requires significant
time and resources such as testing equipment and a
number of representative soil samples collected from
the field. Considering time and cost, it is desirable to
develop approximate methods to estimate MR using
field tests such as FWD, LWD, and DCP. A number of
correlations already exist between the tests (Abu-
Farakh, Nazzal, Alshibli, & Seyman, 2005; Fleming,
Frost, & Rogers, 2000; Nazzal, Abu-Farsakh, Alshibli,
& Mohammad, 2007; Siekmeier et al., 2009; Yoon et al.,
2003), but it is not clear how credible or accurate the
estimates obtained from those correlations are, and in
particular for those soils found in Indiana.

In this chapter, the results from the field tests con-
ducted at four sites in Indiana are presented and
discussed.

3.2 Site selection

The site location was selected based on following
criteria: types of soils, compacted subgrade with natural
soils that are not chemically modified, and testing
availability. This project targets fine-grained soils such
as A-6 and A-7-6 type soils, as well as untreated sub-
grade. Available site area based on schedules of projects
is required to fit the designed testing plan (details des-
cribed in Appendix Section 3.3); the site needs 90 m
(300 ft) long for 11 stations of the field testing, and
demands flat subgrade to obtain the results of FWD
and LWD. In addition, availability of FWD testing

equipment and weather condition are considered for
site selection.

The location of the four field testing sites selected
is shown in Figure A.3.1. The projects chosen were:
(1) US 31 in Kokomo, (2) SR 37 in Paoli, (3) SR 641 in
Terre Haute, (4) Ramp line A connecting SR 641 and
SR 46 in Terre Haute. At each of the four sites, the soil
properties were determined using the laboratory tests
described in Appendix Chapter 4. Based on the labora-
tory test results (summarized in Table A.4.5), the soil
samples collected at each site were classified according to
AASHTO M 145-91 (2012). The soil samples from US 31
were classified as A-4, from SR 641 and Ramp A as A-6,
and the soil samples from SR 37 were classified as A-7-6.

3.3 Test Methods

FWD, LWD, and DCP tests were performed to
evaluate the stiffness of in-situ soils directly. A 90 m
(300 ft) length section at each site was selected and
11 test points were marked at 9 m (30 ft) intervals where
the tests were performed (see Figure A.3.2). All of the
eleven points are labeled with numbers 1 to 11, which will
be used to identify the soil samples at a site, e.g. US31_1.

Figure A.3.1 Location of the four test sites.
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All the field tests were conducted at the same location
to reduce material variability and obtain meaningful
comparisons between the resilient moduli estimated from
the tests and that obtained in the laboratory. At a given
location, all of the three tests were done adjacent to each
other to avoid site disturbance; all of the tests were done
within a radius of 0.3 m (1 ft). In addition, sand cone
tests and nuclear gauge tests were performed to measure
unit weight and water content of the in-situ soils.

3.3.1 Falling Weight Deflectometer (FWD) Test

The Falling Weight Deflectometer (FWD) is one
of the most commonly used tools for non-destructive
evaluation of pavement layers. Typically, FWD is
comprised of a loading system, several sensors, and a
towing equipment.

Eleven FWD tests were performed at 9 m intervals at
each site. The Dynast 8000 FWD Test System was used
for FWD tests. The radius of the loading plate was
15 cm, and nine sensors aligned with the center of the
loading plate measured the deflection of the soil. The
forces generated by the FWD were 25 to 40 kN (2500 to
9000 lbs).

There has been a difficulty to find a correction factor
between the laboratory resilient modulus and the back-
calculated modulus from FWD. The correction factor is
introduced to adjust the difference between laboratory
MR and the back-calculated stiffness from FWD.
Previous studies have shown a variety of the ratio of
MR/EFWD; the ratio of MR/EFWD can be regarded as a
correction factor for FWD, because a correction factor
‘‘C’’ for FWD can be expressed in a generalized form as:

C~
MR

EFWD

It has been reported that the ratio of MR/EFWD

varied from 0.1 to 3.5 (Von Quintus & Killingsworth,
1998) based on the LTPP program database. Ping,
Yang, and Gao (2002) reported the ratio is 0.6, and
Rahim and George (2003) reported the ratio of MR/EFWD

ranged from 0.82 to 2.0 with an average value of 1.4.
Dawson et al. (2009) showed the ratio of MR/EFWD is 1.0.

3.3.2 Light Weight Deflectometer (LWD) Test

The Light Weight Deflectometer (LWD) test is desig-
ned to estimate MR of the in-situ soils. LWD is also

known as Portable Falling Weight Deflectometer
(PFWD) or Light Falling Weight Deflectometer
(LFWD). LWD consists of a 10 kg loading device and
measuring sensor (accelerometer or geophone) attached
to a loading plate. With the deflection from the LWD
test, ELWD is calculated using the Boussinesq’s elastic
equation.

ELWD~
As(1{v2)r

d
~

AFpeak(1{v2)

pdr

where, s is the applied stress; n is the Poisson’s ratio;
Fpeak is the applied peak force; d is the peak deflection
(mm); and A is the contact stress distribution parameter
(p/2 for rigid plate and 2 for flexible plate).

Eleven LWD tests were performed at 9 m intervals
at each site to obtain the in-situ MR of the subgrade,
in accordance to ASTM E2583-07 (2011). The Zorn
Instruments ZFG 2000 was used for the LWD tests.
The device has a 10 kg hammer and 30 cm diameter
loading plate and generates 7.07 kN of peak force.

Fleming et al. (2000) and Nazzal et al. (2007) repor-
ted that the LWD correlates well with the FWD.

EFWD 5 1.031 ELWD (Fleming et al., 2000)
EFWD 5 0.964 ELWD (Nazzal et al., 2007)

3.3.3 Dynamic Cone Penetration (DCP) Test

The Dynamic Cone Penetration (DCP) test provides
the penetration resistance of in-situ materials. The DCP
is composed of a 8 kg drop hammer with 575 mm of
drop height and a 16 mm diameter steel drive rod, with
either a replaceable point tip or a disposable cone tip.
Results of the DCP test are expressed, as a function
of depth, in the form of penetration per blow (mm/
blow), which is the Dynamic Cone Penetration Index
(DCPI).

Eleven DCP tests were performed at 9 m intervals at
each site to estimate the MR of the in-situ subgrade
materials. The test procedure followed ASTM D6951-
03 (2015). DCP blows were recorded for a 300 mm
penetration into the soil, and the DCPI was obtained.
The relationship provided by Salgado and Yoon (2003)
between EDCP and DCPI is adopted for this study, since
the relationship was obtained from Indiana soils.

EDCP 5 -3279 DCPI + 114100 (kPa)
Many correlations between the MR and DCP index

have been developed (George & Uddin, 2000; Hassan,
1996; Herath, 2005; Mohammad, 2007).

Figure A.3.2 Schematic of selected section and a test location.
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EDCP (psi) 5 7013 – 2040 ln(DCPI) Hassan et al.
(1996)

EDCP (MPa) 5 532.1 (DCPI)-0.492 George and
Uddin (2000)

EDCP (MPa) 5 16.28 + 928.24/(DCPI) Herath et al.
(2005)

3.3.4 Sand Cone Test

The sand cone test determines the density and unit
weight of in-situ soils using a sand cone apparatus. The
sand cone density apparatus consists of a sand con-
tainer, sand cone and base plate. Typically, standard
Ottawa sand is used to calculate the volume of the hole.

The test was used on SR 37 site, where five sand cone
tests were completed to measure the dry unit weight and
water content of the in-situ soils, in accordance with
ASTM D1556-07 (2007).

3.3.5 Nuclear Gauge Test

The nuclear gauge test measures density and
moisture of in-situ soils using nuclear equipment, with
low-level radiation. The density of the material can be
measured by direct transmission, backscatter, or back-
scatter/air-gap ratio methods. The water content can be
determined by backscatter mode irrespective of the
mode being used for density.

Eleven nuclear gauge tests were performed at 9 m
intervals on US 31, SR 641 and Ramp A site to estimate
the dry unit weight and water content of the in-situ
soils. The procedure followed ASTM D6938-10 (2010).

3.4 Field Tests on Fine-Grained Materials (A-4, A-6, and
A-7-6) and Discussion

A total of four sites are selected; US 31 site for A-4
soils, SR 641 and Ramp line A sites for A-6 soils, and
SR 37 site for A-7-6 soils.

3.4.1 Site on US 31

The site was selected at US 31 in Kokomo, Howard
County, Indiana. See Figure A.3.3. The subgrade soils
were silty soils with 58% passing the No. 200 sieve. The
Plasticity Index (PI) of the soil was 8.6% with 18.9%
Liquid Limit (LL) and 10.2% Plastic Limit (PL).
According to AASHTO classification, the subgrade
materials at this site were classified as A-4, based on
the soil grain distribution and the soil index properties.
The dry unit weight and the water content of the in-situ
soils were 20.6 kN/m3 and 7.4%, respectively, measured
by nuclear gauge. The maximum dry unit weight was
20.6 kN/m3 and the optimum water content was around
9.3% (see Figure A.4.2), based on the Proctor test
(ASTM D698-12, 2012). In-situ water contents at the
US 31 site and optimum water content obtained from
Proctor tests are shown in the Table A.3.1. The water
contents at the site were a little lower than the optimum
water content (9.3%).

On August 23, 2013, field tests, FWD, LWD, DCP
and nuclear tests were conducted on the subgrade of the
US 31 site. Results from the FWD tests are shown in
Table A.3.2, which includes the applied load, the
deflection measured and the estimated modulus. The
modulus from the FWD test (EFWD) is computed using
the software ELMOD 5. The values of EFWD vary from
36 MPa to 134 MPa.

The deflection and estimated modulus from the
LWD tests on subgrades soils are listed in Table A.3.3.
ELWD is calculated using the Boussinesq’s equation.
The values of ELWD range from 37 to 90 MPa.

The results of the DCP tests are listed in Table A.3.4.
The values of the DCPI obtained range from 4.6 mm/
blow to 7.9 mm/blow.

Figure A.3.4 shows the estimated moduli from FWD,
LWD, and DCP, and includes in-situ water content and
optimum water content. Some of similarities and dif-
ferences are observed in the figure. EFWD computed by
ELMOD 5 is highly variable, while ELWDs and EDCPs
are relatively consistent. Also, the stiffness obtained
from DCP is consistently higher than that obtained
from LWD.

On May 13, 2014, FWD tests were conducted at
the same location, but on top of the pavement, and
after the site was open to public. The results are listed
in Table A.3.5. The FWD modulus of the subgrade
computed from tests done on top of the subgrade
(Table A.3.2) and computed from tests on top of the
pavement (Table A.3.5) are plotted in Figure A.3.5. The
figure shows a reduction of the subgrade modulus when
using the results of the test on top of the pavement and
uniform results. We hypothesize that this is due to two
issues: one is the increased in confinement to the soil
provided by the pavement, which provides more con-
sistent results; the other is due to the loading of the
subgrade due to traffic and the possible changes of
moisture content of the subgrade while in service.

3.4.2 Site on SR 37

The site was located on SR 37 in Mitchell, Lawrence
County, Indiana, and consisted of a road-widening
project (see Figure A.3.6).

Figure A.3.3 Photograph of the US 31 site.
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TABLE A.3.1
In-situ water content and optimum water content at US 31

1 2 3 4 5 6 7 8 9 10

win-situ (%)

wopt (%)

7.9

9.5

8.4

9.2

7.4

9.1

7.1

9.4

6.5

9.1

7.4

9.3

7.1

9.6

7.2

9.4

6.7

9.1

7.5

9.4

7.8

9.4

11

11

TABLE A.3.2
Summary of FWD tests on the subgrade at the US 31 site

1 2 3 4 5 6 7 8 9 10

Load applied (kN) 38.33 37.46 34.44 34.59 32.30 30.16 30.31 30.60 36.78 38.14 37.41

Deflection (mm) 1.46 1.17 1.69 1.94 2.34 3.25 3.03 3.25 1.65 1.22 1.51

Modulus (MPa) 106.90 134.33 87.81 64.20 55.96 36.31 41.15 39.42 93.82 132.76 104.66

1

TABLE A.3.3
Summary of LWD tests on the subgrade at the US 31 site

1 2 3 4 5 6 7 8 9 10

Deflection (mm) 0.518 0.446 0.378 0.441 0.480 0.608 0.350 0.376 0.311 0.248 0.293

Modulus (MPa) 43.42 50.42 59.54 51.03 46.92 37.03 64.24 59.80 72.36 90.62 76.72

1

11

TABLE A.3.4
Blows of DCP tests and the DCPI on the subgrade at the US 31 site

1 2 3 4 5 6 7 8 9 10

No. of blows (300 mm penetration) 51 53 53 48 38 42 48 65 56 56 57

DCPI (mm/blow) 5.88 5.66 5.66 6.25 7.89 7.14 6.25 4.62 5.36 5.36 5.26

Figure A.3.4 EFWD, ELWD, EDCP and water content on US 31.
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The subgrade soils were clayey soils with 88% passing
the No. 200 sieve. The Plasticity Index (PI) of the sub-
grade soil was 23.7% with 41.3% Liquid Limit (LL) and
17.6% Plastic Limit (PL). According to AASHTO, the
subgrade materials were classified as A-7-6. The dry unit

weight and the water content of the in-situ soils were
16.4 kN/m3 and 19.2%, respectively, measured with the
sand cone test. The maximum dry unit weight was 17.2
kN/m3 and the optimum water content was around
17.8%, based on the Proctor test (ASTM D698-12, 2012).



On September 23, 2013, field tests including FWD,
LWD, DCP and sand cone tests were conducted on the
subgrade of the SR 37 site.

The applied load, deflection, and the estimated
modulus obtained from the FWD tests are listed in
Table A.3.6. The values of EFWD vary from 31 MPa to
111 MPa. The LWD test results are summarized in
Table A.3.7. ELWDs are uniform and range from 15
MPa to 31 MPa. The results of the DCP tests are lis-
ted in Table A.3.8, with DCPI values ranging from
15 mm/blow to 27 mm/blow. In-situ water content and

optimum water content are summarized in Table A.3.9.
The water content was close to the optimum, except at
No. 5 location.

Figure A.3.7 plots the estimated moduli from FWD,
LWD, and DCP tests, in-situ water content and opti-
mum water content of the subgrade. The soil is classi-
fied as A-7-6 according to AASHTO. The values of
EFWD have a significant variation, while ELWD and
EDCP results are relatively uniform, which is similar to
what was observed at US 31 (Figure A.3.4). Also, as
with the previous site, the moduli obtained from DCP is
larger than from LWD.

FWD tests were conducted on top of the pavement
in the spring of 2005 (05/26/2015) and summer (08/04/
2015) at exactly the same locations. Additional tests
were performed on points close to the rail to investigate
the effect of the lateral confinement on the results. The
subgrade moduli, from the FWD measurements, are
listed in Table A.3.10 and are displayed in Figure A.3.8,
together with the values obtained from the tests per-
formed on top of the subgrade. Consistent with the
findings at the US 31 site (Figure A.3.5), testing on the
pavement results is more uniform results, which sup-
ports the notion of the effects of confinement on the soil
resulting in increased consistency of the results, and
changes in modulus values associated with the traffic
(loading) history of the site, as well as changes in mois-
ture content of the subgrade. For example, as average,

TABLE A.3.5
Summary of FWD tests on pavement structure of US 31 site

1 2 3 4 5 6 7 8 9 10

Modulus (MPa) 43.07 51.32 41.02 42.64 223.19 25.61 47.04 60.47 58.86 39.98 47.58

11

Figure A.3.5 Comparison of EFWD of the subgrade, from FWD tests on top of the subgrade and on top of the pavement, US 31.

Figure A.3.6 View of SR 37 site.
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the moduli obtained from the tests in August are larger
than those obtained in May, which is thought to be
associated with a smaller water content of the sub-
grade in the summer than in the spring. Also, it can
be noticed, that the differences between the results

obtained at the center of the site and at the edge, close
to the railing, are not very different, arguably within
soil variability, which seems to indicate that there is no
substantial difference in confinement between the two
locations.

TABLE A.3.6
Summary of FWD tests on subgrade of SR 37 site

1 2 3 4 5 6 7 8 9 10 11

Load applied (kN)

Deflection (mm)

Modulus (MPa)

23.79

3.26

31.25

29.58

3.25

38.81

29.43

2.57

39.70

27.73

2.19

54.00

32.01

1.87

75.84

31.18

1.82

82.29

34.88

1.20

134.89

33.28

1.56

98.79

34.20

1.40

110.98

27.53

2.55

41.74

28.75

2.51

39.94

TABLE A.3.7
Summary of LWD tests on subgrade of SR 37 site

1 2 3 4 5 6 7 8 9 10 11

Deflection (mm)

Modulus (MPa)

1.370

16.43

1.037

21.71

1.160

19.40

0.890

25.29

1.290

17.45

1.093

20.58

0.717

31.40

1.027

21.92

1.047

21.50

1.443

15.59

1.027

21.92

TABLE A.3.8
Blows of DCP tests and the DCPI on subgrade of SR 37 site

1 2 3 4 5 6 7 8 9 10 11

No. of blows (300 mm penetration)

DCPI (mm/Blow)

19

15.8

20

15.0

15

20.0

12

25.0

13

23.1

16

18.8

13

23.1

11

27.3

16

18.8

15

20.0

13

23.1

TABLE A.3.9
In-situ water contents and the optimum water contents on SR 37

1 2 3 4 5 6 7 8 9 10 11

win-situ (%)

wopt (%)

16.8

15.9

16.5

22.7

18.5

19.0

18.6

18.3

31.3

16.2

18.0

15.3

17.8

16.8

20.6

17.6

15.9

17.7

16.7

18.0

17.3

17.8

Figure A.3.7 EFWD, ELWD, EDCP and water content of the subgrade at the SR 37 site.
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3.4.3 Site on SR 641

The site was located on SR 641 in Terre Haute, Vigo
County, Indiana. Figure A.3.9 is a photograph of the
site where the tests were performed. The subgrade soils
were clayey soils with 88% passing the No. 200 sieve.
The Plasticity Index (PI) was 18.4%, with 34.8% Liquid
Limit (LL) and 16.4% Plastic Limit (PL). According to
AASHTO classification, the subgrade materials were
classified as A-6, given the soil size distribution and
index properties. The dry unit weight and the water
content of the soils were 17.6 kN/m3 and 19.6%, respec-
tively, measured with the nuclear gauge. The maximum
dry unit weight was 17.9 kN/m3 and the optimum water
content was around 15.1%, both obtained from the
Proctor test (ASTM D698-12, 2012).

The results of the FWD tests, conducted on Sep-
tember 18, 2014, are listed in Table A.3.11. ELMOD 5
was used to calculate the FWD modulus (EFWD). The
EFWD values range from 8 MPa to 15 MPa and are
lower than at the previous two sites (US 31 and SR 37).
One of the reasons for the lower values is the higher
water content of the site, which at most locations was
about 4% higher than the optimum (Table A.3.12).
The results of LWD tests are listed in Table A.3.13.

The LWD modulus (ELWD) was calculated using the
Boussinesq’s equation. The ELWD was quite uniform,
with values in the range of 5 MPa to 28 MPa. The
results of DCP tests are listed in Table A.3.14. The
values are in a range of 27 mm/blow to 60 mm/blow.
This range is also higher than at the other two sites (US
31 and SR 37), which may be caused, as explained, by
the high water content.

TABLE A.3.10
Summary of FWD tests performed on top of the pavement at the SR 37 site

1 2 3 4 5 6 7 8 9 10 1

Modulus (MPa) (05/2015)

Modulus (MPa) (08/2015)

Modulus close to rails

(MPa) (08/2015)

93.39

88.83

102.34

127.45

120.50

119.67

122.97

113.86

119.36

107.57

83.87

80.19

58.74

67.38

76.43

60.87

94.98

108.33

55.10

68.13

75.07

52.39

90.04

62.94

46.59

63.24

48.70

79.18

92.71

110.04

81.98

96.47

88.30

1

Figure A.3.8 Comparison of EFWD of the subgrade from FWD tests performed on top of the subgrade and on top of the
pavement. SR 37.

Figure A.3.9 View of the SR 641 site.
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Figure A.3.10 plots the moduli obtained from FWD,
LWD, and DCP tests, the in-situ water content, and
the optimum water contents. The soils at SR 641 are

classified as A-6 according to AASHTO. Most esti-
mated modulus values were below 20 MPa, which is
too low. As mentioned, the high water content due to

TABLE A.3.11
Summary of FWD tests on subgrade of SR 641 site

1 2 3 4 5 6 7 8 9 10 1

Load applied (kN) 8.27 6.03 7.39 7.10 8.71 7.54 12.06 9.15 8.46 8.51 6.42

Deflection (mm) 2.31 2.19 2.22 2.20 2.37 2.24 2.31 2.35 2.26 2.27 2.23

Modulus (MPa) 13.67 7.99 9.97 10.82 10.99 10.40 15.76 11.77 10.51 12.98 8.00

1

TABLE A.3.12
In-situ water contents and the optimum water contents on SR 641

1 2 3 4 5 6 7 8 9 10

win-situ (%) 18.3 19.6 15.3 19.8 19.4 18.2 23.1 21.9 20.8 17.1 22.2

wopt (%) 15.6 14.6 14.3 13.6 14.9 15.0 15.6 15.9 15.6 15.2 15.7

11

TABLE A.3.13
Summary of LWD tests on subgrade of SR 641 site

1 2 3 4 5 6 7 8 9 10

Deflection (mm) 4.43 3.19 3.68 3.46 2.32 3.80 1.06 1.32 0.82 2.81 4.62

Modulus (MPa) 5.08 7.05 6.11 6.50 9.70 5.93 21.16 17.09 27.56 8.01 4.87

11

TABLE A.3.14
Blows of DCP tests and the DCPI on subgrade of SR 641 site

1 2 3 4 5 6 7 8 9 10 1

No. of blows (300 mm penetration)

DCPI (mm/Blow)

7

42.9

8

37.5

6

50.0

6

50.0

8

37.5

8

37.5

10

30

11

27.3

9

33.3

6

50.0

5

60.0

1

Figure A.3.10 EFWD, ELWD, EDCP and water content at the SR 641 site.
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heavy rain before the tests may be the cause for the
low values.

3.4.4 Site on Ramp A

The site was located on Ramp A in Terre Haute,
Vigo County, Indiana. Figure A.3.11 provides a view of
the site. The subgrade soils were clayey soils with 72%

passing the No. 200 sieve. The Plasticity Index (PI) was
14%, the Liquid Limit (LL) 29% and the Plastic Limit
(PL) 15%. The subgrade soils are classified as A-6,
based on the soil grain distribution and index proper-
ties. The dry unit weight and the water content of the
in-situ soils were 19.6 kN/m3 and 11.3%, respectively,
measured with the nuclear gauge. The maximum dry
unit weight was 18.7 kN/m3 and the optimum water

content 12.3%, from the Proctor test (ASTM D698-12,
2012).

The field testing was conducted on June 2, 2015.
The results of the FWD tests are listed in Table A.3.15.
The modulus from the FWD tests is calculated using
ELMOD 5. The values range from 15 MPa to 25 MPa,
except for one outlier (No. 11). Deflections and esti-
mated modulus from LWD tests are shown in Table
A.3.16. As before, the Boussinesq’s solution is used to
calculate the modulus (ELWD). The ELWD values are
fairly uniform and range from 9 MPa to 23 MPa. The
DCPI and blow counts from DCP tests are listed in
Table A.3.17. The values range from 13 mm/blow to
20 mm/blow. They are higher than at SR 641, although
the soils at SR 641 and Ramp A are analogous, i.e. they
are both A-6; this may be due to the different water

Figure A.3.11 View of Ramp A site.

TABLE A.3.15
Summary of FWD tests on subgrade of Ramp A site

1 2 3 4 5 6 7 8 9 10

Load applied (kN)

Deflection (mm)

Modulus (MPa)

21.70

3.28

16.66

24.86

3.28

22.92

22.77

3.28

19.07

25.10

2.39

25.50

22.48

3.28

20.20

23.98

3.28

17.77

26.61

3.28

21.59

25.49

3.28

20.99

21.36

3.15

22.80

23.79

3.11

15.08

32.55

1.55

69.70

11

TABLE A.3.16
Summary of LWD tests on subgrade of Ramp A site

1 2 3 4 5 6 7 8 9 10

Deflection (mm) 1.56 1.07 1.22 0.97 1.40 1.17 0.96 1.47 2.46 1.42 1.04

Modulus (MPa) 14.40 21.03 18.40 23.20 16.11 19.18 23.44 15.34 9.15 15.89 21.71

11

TABLE A.3.17
Blows of DCP tests and the DCPI on subgrade of Ramp A site

1 2 3 4 5 6 7 8 9 10

No. of blows (300 mm penetration) 19 22 22 23 20 17 20 20 15 23 19

DCPI (mm/Blow) 15.8 13.6 13.6 13.0 15.0 17.6 15.0 15.0 20.0 13.0 15.8

11
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content of the two sites, with the one in SR 641 with
higher water content due to heavy rain in the days
preceding testing. The in-situ water contents and the
optimum water content from Proctor tests are sum-
marized in Table A.3.18. The in-situ water content
(11.3%) was similar to the optimum water content
(12.3%). It needs to be mentioned that roughly the two
top centimeters of the subgrade were wet; the in-situ
water content, however, was obtained at roughly 30
centimeters below the surface.

Figure A.3.12 plots the stiffness moduli obtained
from FWD, LWD, and DCP tests, in-situ water con-
tents, and optimum water contents, at Ramp A. The
modulus obtained from FWD and from LWD tests
are similar, which is not the case in previous sites.
Estimates from DCP yield higher modulus than from
the other two tests, which is also the case in all other
sites.

A.4. LABORATORY TESTING

Laboratory tests have been performed on the
soil samples collected at the four sites (US 31, SR 37,
SR 641, and Ramp A). The following tests are con-
ducted: Soil Characterization (sieving, hydrometer,
compaction and Atterberg limit tests) and resilient
modulus tests.

4.1 Soil Characterization

4.1.1 Grain Size Distribution

All the collected soils were subjected to wet sieving
according to the ASTM C136-14 (2015) standard test
procedure. After sieving, representative samples were
chosen for the hydrometer test (ASTM D422-63, 2007).
Figure A.4.1 shows the grain size distribution of repre-
sentative soils at each site. As results, 42% of sand, 42%

of silt, and 16% of clay comprise US 31 subgrade. SR
37 subgrade consists of 11% of sand, 42% of silt, and
47% of clay. SR 641 subgrade is composed of 66% of
silt, and 22% of clay. Ramp A subgrade has 28% of
sand, 51% of silt, and 21% of clay. US 31 subgrade
has relatively higher ratio of sand than the other three
sites; therefore, percent finer at #200 is lower than the
other subgrades. SR 641 subgrade has higher ratio of
silt and the US 31 subgrade and SR 37 subgrade have
the same percentage of silt. SR 37 subgrade includes
higher ratio of clay while US 31 and SR 37 subgrades
are similar.

4.1.2 Compaction Tests

Proctor tests were performed to determine the opti-
mum moisture content at which a given soil reaches its
maximum dry density, for a given compaction effort.

TABLE A.3.18
In-situ water contents and the optimum water contents on Ramp A

1 2 3 4 5 6 7 8 9 10

win-situ (%)

wopt (%)

10.5

12.7

10.8

12.6

10.9

11.3

11.4

12.2

13.8

11.9

10.3

12.7

11.2

12.0

10.7

13.0

12.4

12.1

11.0

12.0

11.7

12.6

11

Figure A.3.12 EFWD, ELWD, EDCP and water content of the subgrade at Ramp A.
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They were done according to ASTM D698-12 (2012)
and AASHTO T 99 (2011).

The Proctor test results of the US 31 soils are plotted
in Figure A.4.2. As one can see, all eleven tests are
similar. The maximum dry unit weight was 20.6 kN/m3

(131.3 lb/ft3) and the optimum moisture content was
9.3%. Figure A.4.3 shows the results of the compaction
test of SR 37 soils; the maximum dry unit weight was
17.2 kN/m3 (109.2 lb/ft3) and the optimum moisture
content 17.8%. SR 37 soils showed differences in the
results depending on the location of the soil samples.
Clearly, the soil at station 2 is quite different from the
rest and shows smaller maximum dry density at much
higher optimum water content. Compaction tests of SR
641 soils are shown in Figure A.4.4. The maximum dry
unit weight of SR 641 soils was 17.9 kN/m3 (113.7 lb/ft3)
and the optimum moisture content was 15.1%. The simi-
larity of the results points to similar soils along the site.
For Ramp A soils, the maximum dry unit weight was
17.2 kN/m3 (109.2 lb/ft3) and the optimum moisture
content 17.8%. Figure A.4.5 plots the Proctor test results
of Ramp A soils. The maximum dry unit weight was
18.7 kN/m3 (119.2 lb/ft3) and the optimum moisture con-
tent was 12.3%. The results show very little variability.

4.1.3 Atterberg Limit Tests

Atterberg limit tests were performed on all the soil
samples. Both the liquid limit and the plastic limit tests
were conducted according to the AASHTO T 89-10
(2011) standard test procedure. The test results at each
station, for all four sites, are given in Tables A.4.1 to 4.4.

Average values for US 31 soils are 18.7% for liquid
limit, LL, 10.1% for plastic limit, PL, and 8.6% for

plasticity index, PI. SR 37 soils have 40.6% liquid limit,
18.4% plastic limit and 22.2% plasticity index (see
Table A.4.2). SR 641 soil samples had 34.8%, 16.4%,
and 18.4% LL, PL and PI respectively. Ramp A sub-
grade soils had average values of LL, PL, and PI
29.1%, 15.0%, and 14.0%, respectively.

4.1.4 Soil Classification According to AASHTO M 145-
91 (2012)

Table A.4.5 provides a summary of selected proper-
ties of the soils collected such as percentage of fines,
Atterberg limits, in-situ water content, maximum dry
unit weight and soil classification. Based on AASHTO
M 145-91 (2012), the subgrade at US 31 is classified
as A-4, at SR 37 as A-7-6, and at SR 641 and Ramp A,
as A-6.

4.2 Resilient Modulus Tests

The 1986 AASHTO guide for the design of flexible
pavements requires the input value of the resilient modu-
lus (MR) for the subgrade soils. MR has been used to
capture the behavior of subgrade soils, which is non-
linear and time-dependent under traffic loading. For
the design of both flexible and rigid pavements, having
accurate and representative values of MR is essential.

MR is obtained by repeated loading in triaxial tests,
and is obtained from the following equation:

MR~
sd

er

where sd is the cyclic deviator stress; and er is the reco-
verable axial strain.

Figure A.4.1 Grain size distribution of soil samples from US 31, SR 37, SR 641, and Ramp A sites.
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AASHTO T 307-99 (2007) describes the current
standard test method to determine the resilient mod-
ulus. In AASHTO T 307-99 (2007), a series of repeated
deviator stresses (2, 4, 6, 8, 10 psi) and confining stres-
ses (6, 4, 2 psi) simulate traffic conditions. It requires
500 to 1000 load applications with 6 psi of confining
stress and 4 psi of deviator stress. Table A.4.6 provides
the loading sequence that must be followed for each test.

The resilient modulus tests have been performed to
determine the stiffness of the soils collected at US 31,
SR 37, SR 641 and Ramp A sites, in accordance to
AASHTO T 307-99 (2007). Eleven tests are done at
each site, each test on the soil samples taken at each one

of the eleven stations. This is done to assess the variability
of the results and to provide a direct comparison between
the laboratory results and the results from the field tests,
since each would correspond to the exact same location.

Figure A.4.6 plots the resilient modulus of the US 31
subgrade soils. The eleven soil samples were taken from
the site at 9 m intervals, as explained in Appendix Chap-
ter 3. There are some differences of the MR values along
the site, although soil properties (passing #200, LL,
PL, PI, Max. dry unit weight, and optimum water con-
tent) do not show much variability. The MR of No.3,
No.4, No.8, No.9 soils is roughly 40 MPa, while the MR

of No.2 soil is around 80 MPa. Most of the results show

Figure A.4.2 Proctor test results of US 31 subgrade soils.

Figure A.4.3 Proctor test results of SR 37 subgrade soils.
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Figure A.4.4 Proctor test results of SR 641 subgrade soils.

Figure A.4.5 Proctor test results of Ramp A subgrade soils.

TABLE A.4.1
Atterberg limits: US 31 subgrade

Soil Sample US 31_1 US 31_2 US 31_3 US 31_4 US 31_5 US 31_6 US 31_7 US 31_8 US 31_9 US 31_10 US 31_11

LL

PL

PI

18.9

10.7

8.2

20.1

10.8

9.3

18.2

9.3

8.9

17.1

9.3

7.8

18.1

10.2

7.9

19.9

10.3

9.6

19.4

9.4

10.0

18.9

11.1

7.8

18.4

10.4

8.0

19.1

10.6

8.5

18.7

9.8

8.9
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TABLE A.4.2
Atterberg limits: SR 37 subgrade

Soil Sample SR 37_1 SR 37_2 SR 37_3 SR 37_4 SR 37_5 SR 37_6 SR 37_7 SR 37_8 SR 37_9 SR 37_10 SR 37_11

LL

PL

PI

39.5

15.0

24.5

40.1

15.1

25.0

45.9

20.5

25.4

51.5

27.7

23.7

34.9

15.4

19.5

33.5

16.0

17.5

39.0

18.2

20.8

41.8

17.5

24.3

38.1

16.7

21.4

39.4

16.5

22.9

39.6

16.4

23.2

TABLE A.4.3
Atterberg limits: SR 641 subgrade

Soil Sample SR 641_1 SR 641_2 SR 641_3 SR 641_4 SR 641_5 SR 641_6 SR 641_7 SR 641_8 SR 641_9 SR 641_10 SR 641_11

LL

PL

PI

33.1

15.3

17.8

32.8

16.8

16.0

33.2

13.8

19.4

33.1

17.6

15.5

33.7

16.2

17.5

34.9

15.8

19.1

36.4

16.1

20.3

36.2

15.2

21.0

37.6

18.2

19.4

36.5

17.7

18.8

35.8

18.1

17.7

TABLE A.4.4
Atterberg limits: Ramp A subgrade

Soil Sample RampA_1 RampA_2 RampA_3 RampA_4 RampA_5 RampA_6 RampA_7 RampA_8 RampA_9 RampA_10 RampA_11

LL

PL

PI

30.1

15.0

15.1

28.8

15.1

13.8

28.3

14.6

13.7

28.7

14.6

14.0

29.6

15.3

14.3

29.2

15.6

13.6

29.1

15.3

13.9

29.3

15.0

14.3

29.1

14.8

14.3

28.0

14.4

13.5

29.5

15.4

14.1

TABLE A.4.5
Characterization test results and classification of the subgrade soils

Site #200 Passing (%) Liquid Limit (%) Plastic Limit (%) Plastic Index

Water

Contentopt (%)

Max. Dry Unit
3Weight (kN/m )

AASHTO

Classification

US 31

SR 37

SR 641

Ramp A

58

88

83

72

18.6

41.4

31.2

29.0

10

17.7

13.8

15.0

8.5

23.8

19.4

14.0

9

16,20

14,16

12,13

21.0

17.0

18.0

18.7

A-4

A-7-6

A-6

A-6

TABLE A.4.6
The resilient modulus test procedure (AASHTO T 307-99, 2007)

Confining Pressure, s3 Max. Axial Stress, smax Cyclic Stress, scyclic Constant Stress, 0.1 smax

Sequence No. kPa psi kPa psi kPa psi kPa psi No. of Load Applications

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

41.4

41.4

41.4

41.4

41.4

41.4

27.6

27.6

27.6

27.6

27.6

13.8

13.8

13.8

13.8

13.8

6

6

6

6

6

6

4

4

4

4

4

2

2

2

2

2

27.6

13.8

27.6

41.4

55.2

68.9

13.8

27.6

41.4

55.2

68.9

13.8

27.6

41.4

55.2

68.9

4

2

4

6

8

10

2

4

6

8

10

2

4

6

8

10

24.8

12.4

24.8

37.3

49.7

62.0

12.4

24.8

37.3

49.7

62.0

12.4

24.8

37.3

49.7

62.0

3.6

1.8

3.6

5.4

7.2

9.0

1.8

3.6

5.4

7.2

9.0

1.8

3.6

5.4

7.2

9.0

2.8

1.4

2.8

4.1

5.5

6.9

1.4

2.8

4.1

5.5

6.9

1.4

2.8

4.1

5.5

6.9

0.4

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

500-1000

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100
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that the confining stress and the deviator stress have
a minor influence on MR, except perhaps at locations
No. 2 and No.11.

The MR test results of SR 37 soils are shown in
Figure A.4.7. Similar to US 31 soils, the differences in
MR among the soil samples are small. The resilient
modulus ranges from 60 MPa (8.7ksi) to 135 MPa
(19.6ksi). Most of the results show that confining stress
and deviator stress have a minor influence on MR.
There are exceptions: No.2 and No.8 soils show an
increase of MR with the increase of deviator stress,
while it decreases with the increase of deviator stress for
No. 3 and No. 11 soils.

The resilient modulus for SR 641 soils are plot-
ted in Figure A.4.8. The values are between 45 MPa
(6.5 ksi) and 125 MPa (18.1 ksi). As with the other
cases, there are differences; for example the resilient
modulus of No.2, No.5, and No.6 soil samples are
50,70 MPa, which are lower than the other soils.
These differences are associated with soil/site varia-
bility even though the soil properties (passing #200,
LL, PL, PI, the Max. dry unit weight, and the optimum
water content) are fairly uniform. Consistent with the
trends observed at the other sites, the resilient modulus
does not show a strong dependence on confinement or
deviator stress.

Figure A.4.6 Resilient modulus test results of US 31 soils. (Figure continued next page.)

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/08 39



Figure A.4.6 (Continued)
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The results of the resilient modulus test for Ramp
A soils are shown in Figure A.4.9. The MR values
are within a range of 45 MPa (6.5 ksi) and 90 MPa
(13.0 ksi). MR of No. 3 soil is about 80 MPa, which
is somewhat higher than the rest, but the difference

is small. Most of the MR values of Ramp A soils
are around 60 MPa (8.7 ksi). Similar to the other soils
from the other sites (US 31, SR 37, and SR 641 sites),
there is no clear effect of deviator stress, nor of con-
fining stress.



Figure A.4.7 The resilient modulus test results of SR 37 soils. (Figure continued next page.)
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Figure A.4.7 (Continued)

42 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/08



Figure A.4.8 The resilient modulus test results of SR 641 soils. (Figure continued next page.)
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Figure A.4.8 (Continued)

44 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/08



Figure A.4.9 The resilient modulus test results of Ramp A soils. (Figure continued next page.)
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Figure A.4.9 (Continued)
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A.5. ANALYSIS OF TEST RESULTS

Four sites (US 31, SR 37, SR 641, and Ramp A) were
selected to run field tests and collect soils samples for
laboratory testing. Field testing and lab testing have
been conducted to find physical and mechanical pro-
perties of the soil samples.

In this chapter, a correlation model between MR

and soil properties is attempted such that appropriate
MR values can be predicted using statistical processes
using regression analysis. Existing correlations between
MR and FWD, LWD, and DCP tests are discussed by
comparing the MR in the laboratory with estimates from
correlations with field tests.

5.1 Regression Analysis

There are a number of proposals for MR models for
cohesive soils. Uzan (1985) proposed the following model,
which is known as the universal model:

MR~k1pa

sb

pa

� �k2
sd

pa

� �k3

where, k1, k2, k3 5 regression coefficients; sb 5 the sum
of the principal stresses 5 bulk stress; sd 5 deviator
stress; pa 5 atmospheric pressure.

In 1987, a constitutive model was presented by
Lade and Nelson (1987) that supported Uzan’s
model. The model was based on the assumption
that the modulus was a function of the first and the
second invariants of the deviatoric stress tensor, for
granular materials. Uzan and Scullion (1990) sug-
gested that the model could be used for all types of
soils.

Thompson and Robnett (1979) proposed the arith-
metic model, which was used in the ILLI-PAVE pro-
gram. The model states that:

MR~k2zk3(k1{sd), if k1wsd

MR~k2zk4(k1{sd), if k1vsd

where, k1, k2, k3, k4 5 material and physical property
parameters; sd 5 deviatoric stress.

In the MEPDG, the Octahedral stress model (NCHRP,
2004) is recommended:

MR~k1pa
sb

pa

� �k2 toct

pa

z1

� �k3

where, k1, k2, k3, 5 material and physical property
parameters; toct 5 octahedral stress; pa 5 atmospheric
pressure.

Most proposed models depend on the bulk stress, the
deviator stress, and the confining stress. However, the
resilient modulus test results from the four selected sites
(see Chapter 4) do not show stress-dependent behavior,
not only on confining stress, but also on deviator stress.

For this study, a stress-independent model seem to apply.
That is,

MR~k1pa

where, k1 5 regression coefficient; pa 5 atmospheric
pressure.

The regression coefficient k1 is found using linear
regression for the following parameters: optimum
water content, maximum dry unit weight, percen-
tage soil passing #200 sieve, and Atterberg limits.
These physical soil properties have been mentioned
as important input variables (Drumm, Boateng-
Poku, & Pierce, 1990; George, Bajracharya, &
Stubstad, 2004).The measured MR and the predicted
MR are plotted in Figure A.5.1, Figure A.5.2, and
Figure A.5.3 for the different soil types. For the
measured MR (obtained in the laboratory following
AASHTO T 307-99, 2007), the average value is taken
as representative of each soil sample. For the regres-
sion analysis, the SAS program is used. Table A.5.1
lists the relations obtained.

Figures A.5.1, A.5.2, and A.5.3 show a comparison
between the measured and the predicted MR values
using the regression model in Table A.5.1. In general,
there is a poor correlation between soil properties and
resilient modulus, as indicated by the low values of the
R2 index that ranges from 0.14 to 0.74.

5.2 Correlation between Soil Moduli Obtained from
Laboratory Resilient Modulus Tests and from FWD,
LWD and DCP Field Tests

MR values from the laboratory are compared with
those estimated from FWD, LWD, and DCP tests
performed in the field. ELMOD 5 is used to obtain the
soil stiffness from FWD tests, the Boussinesq’s equation
for the LWD tests, and Salgado and Yoon’s (2003)
relationship to interpret the DCP results.

The values of the resilient modulus from the labo-
ratory tests show some variation based on location,
i.e. from test point to test point, and based on con-
finement and deviator stress, albeit there was no strong
relation, as discussed. Figure A.5.4a includes all the
laboratory tests on US 31. To facilitate comparisons,
the laboratory tests are group into a band that
includes all the results that fall into the 5% and 95%

range, as depicted in Figure A.5.4b. This is plotted,
for the rest of the discussion, as a band of results; see
Figure A.5.4c.

Figure A.5.5 shows a comparison between the MR

measured in the laboratory and estimated from FWD,
LWD, and DCP tests on A-4 soils (US 31). The hori-
zontal axis represents the test location at the site while
the vertical axis provides the values of the resilient
modulus in MPa (left) or ksi (right). As one can see,
estimates from DCP results overestimate the stiffness
of the soil. This is also the case with the values
from FWD when obtained from tests conducted on top
of the subgrade. Results from LWD and from FWD
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Figure A.5.1 Measured MR vs Predicted MR for A-4 soils (US 31).

Figure A.5.2 Measured MR vs Predicted MR for A-6 soils (SR 641 and Ramp A).
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conducted on top of the pavement provide accep-
table estimates, with somewhat better results from
the FWD.

Figure A.5.6 shows a comparison between the MR

measured in the laboratory and estimated from FWD,
LWD, and DCP tests on A-7-6 soils (SR 37). None of
the estimates using measurements from LWD, DCP or
FWD tested directly on the subgrade provide accep-
table values. Results from FWD tests performed on the
pavement give a better approximation of the resilient
modulus obtained in the laboratory, in particular from
the test conducted in the summer. The FWD measure-
ments made in the spring also provide acceptable
results, albeit on the low side. As mentioned earlier, the
smaller values of the FWD modulus in May are likely
associated with a higher water content of the subgrade
due to rain.

Figure A.5.7 shows a comparison between the MR

measured in the laboratory and estimated from
FWD, LWD, and DCP tests on A-6 soils (SR 641
site). Similar to the observations made for the A-7-6
soils in Figure A.5.6, none of the estimates from
the field tests, including the FWD performed directly
on the subgrade provide good estimates. They are all
too low.

Figure A.5.8 is analogous to the previous figures.
It presents a comparison between the MR measured in
the laboratory and estimated from FWD, LWD, and
DCP tests on Ramp A site, where the soils are classified
as A-6 (similar to SR 641 site with resilient modulus
values shown in Figure A.5.7). The LWD results and
the FWD results are similar to each other, but they are
too low. The DCP modulus coincides well with the
modulus obtained in the laboratory. Note that this is

Figure A.5.3 Measured MR vs Predicted MR for A-7-6 soils (SR 37).

TABLE A.5.1
Regression coefficient, k1, for each site.

A-4 soils (US 31) 2k1 5 7.15315 + 0.124506OMC - 0.452796Max.cd + 0.225166LL + 0.015756PL - 0.050636%200 R 5 0.59

A-6 soils (SR 641) k1 5 11.30669 – 0.153886OMC – 0.441566Max.cd + 0.015266LL – 0.037066PL – 0.002716%200 R2 5 0.14

A-6 soils (Ramp A) 2k1 5 1.69335 – 0.070036OMC + 0.051246Max.cd – 0.004426LL – 0.131796PL – 0.013136%200 R 5 0.74

A-7-6 soils (SR 37) 2k1 5 27.33899 - 0.332876OMC – 1.157476Max.cd - 0.043946LL + 0.038686PL - 0.004826%200 R 5 0.24
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Figure A.5.4 Range of resilient modulus values. (Figure continued next page.)
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Figure A.5.4 (Continued)

Figure A.5.5 Comparison between the resilient modulus measured in the laboratory and obtained from FWD, LWD, and DCP
tests on A-4 soils (US 31 site).
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quite different from what was found in SR 641, which is
similar soil.

Figure A.5.9 provides a comparison of the resil-
ient modulus obtained in the laboratory following

AASHTO T 307-99 (2007) and from FWD tests. For
the comparison, the average values of the laboratory
test results are used (see discussion in Appendix Chap-
ter 5). In the figure, hollow symbols are used for the

Figure A.5.6 Comparison between the resilient modulus measured in the laboratory and obtained from FWD, LWD, and DCP
tests on A-7-6 soils (SR 37 site).

Figure A.5.7 Comparison between the resilient modulus measured in the laboratory and obtained from FWD, LWD, and DCP
tests on A-6 soils (SR 641 site).
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Figure A.5.8 Comparison between the resilient modulus measured in the laboratory and from FWD, LWD, and DCP tests on A-
6 soils (Ramp A site).

Figure A.5.9 Resilient modulus. Comparison between results from laboratory and FWD tests.
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FWD modulus obtained from tests done directly on top
of the subgrade and solid symbols from tests on top of
the pavement.

The FWD results from subgrade soils (hollow
symbols) seem to be randomly scattered and do not
show a clear trend, nor there seems to be a relation
between these values and the resilient modulus from
laboratory tests. In contrast, the modulus obtained
from FWD tests performed on top of the pavement do
compare well with the laboratory measurements. Note
that this is the case for all eleven points at each of the
two sites where the test could be completed.

A.6. CONCLUSIONS AND IMPLEMENTATION

There is the need to collect and analyze additional
data to support the conclusions regarding possible
correlations between FWD and resilient modulus data
collected (US 31 and SR 37). It was decided to expand
the scope of the project and mine the data repository of
INDOT to obtain additional geotechnical and pave-
ment information that could use to further investigate
relations between field FWD and laboratory resilient
modulus tests. This appendix chapter describes the
activities undertaken for data collection and analysis.

6.1 Collected Data from INDOT

Mr. Nayyar Siddiki provided resilient modulus data,
obtained from laboratory tests, that include: resilient
modulus at 6 psi deviator stress and 2 psi confining
stress at optimum moisture content; location based on
road number and county; soil classification; and
Proctor tests results. Dr. Yigong Ji provided FWD
data since 2008 that includes: location based on road
number and RP number; deflection data; and FWD
modulus calculated using ELMOD5.

6.2 Data Visualization

The resilient modulus and the FWD data were
obtained independently of each other; that is, the test
location and time do not match. The first step consisted
of pairing the data, as best as possible, based primarily
on location.

There were two issues regarding the comparison of
the MR data with the FWD data collected from the
INDOT database. The first issue was the location. The
MR data included broad location information, i.e., road
number and County, while the FWD data had specific
location information, given by road and RP numbers.
The second issue was the soil type. The FWD data did
not include soil type, while the MR data did.

To facilitate pairing the two sets of data, the
commercial software ArcMap, a GIS based code, was
used. The locations of the resilient modulus and FWD
tests were digitized and included in the software, as
shown in Figure A.6.1.

The locations of the soil samples used to obtain the
resilient modulus in the laboratory are approximate.

They are given in terms of the road number on a
County. Therefore, MR data are assumed representative
of the entire road, which may carry a significant
uncertainty, as the values are compared with the
stiffness obtained from FWD, where the location is
well specified. Figure A.6.2 shows an example of a
digitized road associated with a particular MR data on
ArcMap. The soil sample was collected from an
unspecified location in I-65, in Marion County.

Similar plots are produced for the FWD data, as
shown in Figure A.6.3. As mentioned, the FWD data
contains relatively specific information of its location,
which is given by road number and RP number, e.g.,
I-65 from RP-100+00 to RP-107+60.

Using ArcMap has distinctive advantages for the
project, as the software allows to classify the data into
‘‘layers’’; that is into groups of data with similar
characteristics. It also allows the display of data
associated with a particular feature by clicking on the
feature. For example, Figure A.6.1 shows the different
layers defined: three layers for the resilient modulus,
each for a particular type of soil, namely A-7-6, A-6
and A-4, and one for the FWD. The layers are color-
coded and can be activated or deactivated, thus
facilitating the spatial visualization of the data into
different categories. By clicking on a particular road
segment, which comprises the start and end of the RPs,
a pop-up window displays a table that contains the
modulus, in psi, from the FWD database, road number
and county. See Figure A.6.4. Analogous information
is displayed for the road segments associated with the
laboratory resilient modulus, where the pop-up window
contains the MR value, in psi, road number, County,
and soil type.

6.3 Data Classification

The data, as displayed into ArcMap, from the field,
FWD, and laboratory, MR, is paired by location.
Clearly, given the uncertainties discussed, mostly from
the MR location, it is not possible to unequivocally
establish one-to-one relations. Instead, the data is
classified into three tiers. If the MR data has only one
type of soil at a given road and only one FWD data
point exists, the data is classified as tier one. If the MR

data has only one type of soil but multiple FWD data
exist, at the same location, the data falls into tier two. If
the MR data includes multiple types of soils, the data
are categorized as tier three regardless of the number of
FWD data.

Thirteen data points fall into tier one, which is the
tier thought to be the most reliable for comparison
purposes. The tier one data is plotted in Figure A.6.5a,
which shows a good correlation between the resilient
and the FWD modulus, and similar to the observations
made during phase one of the project (see Figure A.5.9,
reproduced here as Figure A.6.5b, which also includes
the data from Figure A.6.5a).

Tier two includes 37 data points and tier three 118
data points. The comparison between MR and FWD
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data, classified as tier two and three, is shown in Figure
A.6.6 and Figure A.6.7, respectively. Tier two and tier
three do not show a strong correlation between MR and

FWD. This is somewhat expected due to the higher
uncertainty associated with how the values of MR and
FWD have been matched.

Figure A.6.1 Location of collected resilient modulus and FWD data in ArcMap.
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Figure A.6.2 An example of digitized MR data(A-4) in Marion County.
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Figure A.6.3 An example of digitized FWD data in Marion County.
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Figure A.6.4 An example of pop-up windows for FWD data in Marion County.

58 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2018/08



Figure A.6.5 Comparison between MR and FWD for tier one data.
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Figure A.6.6 Comparison between MR and FWD for tier two data.
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A.7. ANALYSIS OF COLLECTED DATA

Resilient modulus data and FWD data have been
collected from INDOT databases. Two sets of data
were collected: resilient modulus from the Geotechnical
Engineering Division and FWD from the Pavement
Division. The two independent data sets were paired
based on location and classified into three tiers.

As shown in this section, the data categorized into
tier one shows a meaningful correlation between MR

and FWD, which supports the results from phase one of
the project. Tier two and tier three data do not show
strong correlations due to the uncertainty associated
with location and type of soil. As a consequence, it was
decided to further investigate tier one data only.

In this appendix chapter, correlations between FWD
and MR data are discussed.

7.1 Analysis of FWD Results

ELMOD5, the code used by INDOT to interpret the
results from FWD tests, uses a three-layer model. This
is thought to be a limitation, since pavements are built
with several layers, and so more precise interpretation
of the FWD results could possibly be attained using

models that allow for a larger number of pavement
layers. In discussions with Dr. Orr, it was decided to use
the code MODTAG (Borter & Irwin, 2006), in conjunc-
tion with ELMOD. MODTAG is a back-calculation
program developed by VDOT (Virginia Department of
Transportation) and Cornell University. MODTAG
uses an iterative deflection basin fit method that adjusts
the moduli of pavement layers until the calculated
deflection matches the measured deflection basin. Fur-
ther, ELMOD5 assumes that the stiffness of the
pavement layers decreases with depth, which may or
may not be always the case. This limitation does not
exist with MODTAG.

First, outcomes from US 31 and SR 37 were
analyzed because of the high quality of the data and
pavement layer information. Results of a three-layer
analysis using MODTAG were compared with the
results using ELMOD5, also using a three-layer model.
This was done to identify any differences between the
two codes when all input parameters and problem defini-
tion are identical. The results are shown in Figure A.7.1a.
Data points obtained with ELMOD5 are plotted using
black symbols and data points using MODTAG are
plotted with white symbols. The results from MODTAG
are similar to the results from ELMOD5, since both

Figure A.6.7 Comparison between MR and FWD for tier three data.
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Figure A.7.1 MODTAG vs. ELMOD5. Comparison between results from MR and FWD tests. (Figure continued next page.)
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Figure A.7.1 (Continued)
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results are distributed around the 1:1 reference line.
Figure A.7.1b shows similar outcomes, but using a
three-layer model with MODTAG for US 31 (US 31
has three layers: asphalt surface, base and subgrade)
and a four-layer model for SR 37 (SR 37 has four
layers: asphalt surface, base, subbase and subgrade).
Included in the figure are the results from ELMOD5
to compare with the results from MODTAG. The
FWD moduli calculated with MODTAG are relatively
lower than those calculated with ELMOD5. The
MR or FWD modulus using ELMOD5 is roughly 1.6
times higher than the FWD results obtained using
MODTAG. Additional calculations were done increas-
ing the number of layers. Figure A.7.1c shows the
results using MODTAG with a four-layer pavement
for US 31, by adding a natural subgrade layer, and a
five-layer pavement for SR 37, also by adding a natural
subgrade layer.

Figure A.7.1 indicates that by just adding layers to
the model, the variability/scatter of the results increase.
This is somehow an unexpected result, as a better, more
precise description of the pavement, should improve the
accuracy and quality of the interpretation. To investi-
gate the issue, manual backcalculation was perfor-
med, taking advantage of the expertise of Dr. Orr.
The details of the following analysis can be found in
Appendix Chapter 9.

For the MODTAG analysis, five-layer models
were adopted, i.e., 40 AC, 60 granular base, 140 upper

subgrade, 480 middle subgrade and infinite subgrade for
US 31; and 40 AC, 60 AC base, 140 lime treated, 120

upper subgrade and infinite subgrade for SR 37. The
code CHEVLAY (Irwin, 1994a), a multi layered elastic
program was used to further investigate the results.
CHEVLAY calculates deflections, for the information
given such as loads and pavement thickness, based on
elasticity theory. The calculated deflections were com-
pared with the actual deflections measured with the
FWD sensors. Using CHEVLAY, the errors associated
with sensors or associated with pavement thickness can
be identified. An example of the results obtained from
CHEVLAY is shown in Figure A.7.2. The figure shows
that the differences between measured and calculated
deflections are large for the four sensors close to the
center of the test. The differences may be due to errors
in pavement thickness or assigned sensors. Identifica-
tion of the source of the errors was attempted through
a parametric analysis where input was systemati-
cally changed until the errors were sufficiently small.
The thicknesses of the middle subgrade for US 31 and
the upper subgrade for SR 37 were decided using
CHEVLAY. Note that a sensor at -12 inches from the
loading plate was not used for FWD backcalculation
using MODTAG, since readings from sensors at equal
distances from the center can skew the results.

Results from MODTAG and ELMOD5 are com-
pared in Figure A.7.3. Figure A.7.3a is a comparison
between MODTAG and ELMOD5, for US 31, and



Figure A.7.3b for SR 37. Data points obtained with
ELMOD5 are plotted using black symbols and data
points using MODTAG are plotted with white symbols
(Figure A.7.3). Utilizing the analysis resources provided
by CHEVLAY, US 31 results from MODTAG are
in good agreement with results from ELMOD5, except
for few outliers, However, there are disparities between
the two results for SR 37, as shown in Figure A.7.3b.
ELMOD5 results are, generally, 2.2 times higher than
MODTAG. The disparity is likely due to errors in
pavement thickness or data input; more specifically, the
analysis seemed to indicate that the actual thicknesses
of the pavement layers might be different that those of
design (used by ELMOD5).

In addition to data collected from US 31 and SR 37,
for this project, additional information was gathered, as
discussed, from INDOT database. With help from Dr.
Jusang Lee, the pavement information for tier one data
was obtained from ProjectWise. ProjectWise is a pro-
gram used to store data from INDOT projects. Unfor-
tunately, not all desired information from the thirteen
sites in tier one was available. The pavement layer

thickness was found for only two sites, namely SR 60
and SR 46; see Table A.7.1 and Table A.7.2. FWD
deflection files (.F25) for the two sites were found with
the help of Dr. Seonghwan Cho.

Backcalculation of FWD results for SR 60 was not
successful. The FWD raw data file (.F25) for the site
might be have been corrupted and thus produced errors
during backcalculation.

The analysis of SR 46 was conducted with
MODTAG, with a four-layer pavement, i.e., 4.50 AC,
5.50 granular base, 140 upper subgrade, and infinite sub-
grade. Note that a 4.50 surface layer was used because
the upper two layers were too thin to be differentiated
in the calculations. The results from MODTAG are
compared with the results from ELMOD in Figure
A.7.4. The figure shows that the FWD modulus
obtained from MODTAG is 3.7 times larger than from
ELMOD and that the FWD modulus from MODTAG
is 5.7 times higher than the MR obtained in the labo-
ratory. The discrepancies are thought to be associated
with inaccurate pavement information such as pave-
ment condition and/or layer thicknesses.

Figure A.7.2 Example of CHEVLAY calculation for US 31.
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Figure A.7.3 Comparison between results from MODTAG and ELMOD5.
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TABLE A.7.1
Pavement layer information from ProjectWise for SR 60

Road Layer Material Thickness (inches)

SR 60 Surface

Base

Subgrade

HMA

HMA

Type IB

3.5

6.5

14

TABLE A.7.2
Pavement layer information from ProjectWise for SR 46

Road Layer Material Thickness (inches)

SR 46 Surface

Interface

Base

Subgrade

HMA

HMA

HMA

Type IB

1.5

3

5.5

14

Figure A.7.4 MODTAG vs. ELMOD5. Comparison between results from MODTAG and ELMOD5 for SR 46.
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A.8. REVIEW OF DATA FROM INDOT BY
DR. DAVID ORR

8.1 Project Scope

The objective of the project is to find a practical solution
for INDOT pavement design procedures to effectively
determine the soil resilient modulus and propose guidelines
for selecting values of soil subgrade stiffness. The propo-
sed work for this study is comprised of four main tasks:

1. Selection of sites to conduct field tests;

2. Field tests at selected sites that include Falling Weight
Deflectometer (FWD), Lightweight Deflectometer (LWD),
and Dynamic Cone Penetration (DCP);

3. Laboratory Resilient Modulus tests of soil samples obtai-
ned at the locations where field tests are conducted; and

4. Analysis of data, documentation and final report.

8.2 Outline of Work

This report outlines the work done by David Orr,
PE, PhD, Cornell University Local Roads Program
(Cornell) to analyze the data provided to Purdue
University (Purdue) by the Indiana Department of
Transportation (INDOT). During this project, regular
conference calls were held between Dr. Antonio Bobet
and Sung Soo Park, Purdue, to discuss the project and
share results.

Cornell reviewed the data collected by INDOT and
Purdue for data quality. The goal was to determine
if the relationships between the laboratory and field
data collections were valid and the conclusions were
supported by the data. In addition, Cornell reviewed
the FWD testing protocol and the actual data for
possible improvements in field testing procedures.

Cornell and Purdue reviewed the reports already
provided to INDOT and it was decided to concentrate
first on work done on US 31 and SR 37. Cornell
reviewed the data as shown below.

There were many issues trying to backcalculate the
data, but some correlation could be found.

Towards the end of the project, Purdue was able
to obtain data from two additional points. Purdue did
backcalculation using ELMOD (REF) and Cornell
used MODCOMP (Irwin, 2001). Both programs are
widely used and considered very effective if used with
proper data and pavement model set up (Koon Meng,
1988; Tam & Brown, 1988).

8.3 US 31

The site was located in Kokomo, Howard County,
Indiana. See Figure A.8.1. A total of 11 points were
tested using Dynatest FWD 8002-222.

The FWD testing protocol, according to a review of the
data file from the FWD, was as shown in Table A.8.1.
The actual protocol and target weight is not known.

The FWD sensor spacings are 0, -12, 8, 12, 18, 24, 36,
48, and 60 inches.

There was no information on seating drops available.

The Long-Term Pavement Performance Study pro-
tocol recommends at least 3 seating drops and 3 repli-
cates at each height to reduce the errors due to seating
and random error inherent in FWD testing (FHWA,
2000). Also, the FWD needs to be calibrated on a regu-
lar basis using the most current AASHTO Protocol
(Irwin, Orr, & Atkins, 2010). INDOT has a proven
record of keeping their FWDs in good condition and
calibrating them on a regular basis.

The pavement structure used was provided to Purdue
by INDOT and is shown in Table A.8.2.

Analysis Steps

1. Initial analysis. For this entire project, the analy-
ses were done using MODTAG (Borter & Irwin, 2006)
for batch work and MODCOMP (Irwin, 2001) for
individual points. Some manual backcalculation was
done using CHEVLAY or BISAR as applicable (Irwin,
1994a; Van Cauwelaert, Alexander, White, & Barker,
1988).

For the analysis, sensor 2 was removed (at -12 inches
according to file) from FWD dataset so there were
8 sensors in the evaluation. Sensor 2 was remove since

Figure A.8.1 Photograph of the US 31 site.

TABLE A.8.1
FWD set up for testing at US 31

Drop Height Target Weight Number of Drops

1

2

3

,6,000

,9,000

,12,000

1

1

1

TABLE A.8.2
US 31 pavement thickness as provided by Indiana DOT (INDOT)

Pavement Layer Material Thickness (inches)

Surface Asphalt Concrete 4

Base Unbound Aggregate 6

Subgrade n.a.
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the sensor was behind the load plate at -12 inches. Ano-
ther sensor at 12 inches was used in the analysis. The
behind sensors may actually induce errors, especially if
there is large spatial variability. Any repeated distances
typically skew the results. It is recommended that, for
asphalt concrete testing, a sensor be at 72 inches rather
than -12 inches. The sensor would better be able to
detect deep subgrade issues.

The pavement model split the subgrade unto an
upper and lower portion. The upper portion is the
critical one for comparison as the materials tested in
the lab come from this layer, but the pavement
engineer needs to review both layers to be sure there
is not a compensating layer effect. The upper sub-
grade is the portion that changes seasonally due to
moisture, frost or other climatic effects (Orr & Irwin,
2005). If nothing else is known, the upper subgrade
can be set to at least twice the thickness of the layer
above or the thickness that would account for the
average depth of frost.

2. Set up model with. MODTAG uses an algorithm
developed by Irwin to determine the approximate depth
to bedrock (Irwin, 2002). If the depth to bedrock is
at least 300 inches, then it will have almost no effect on
the backcalculation results. For US 31, the depth to
bedrock was 300 inches or more and was ignored in the
calculations. (See Table A.8.3.)

MODTAG was used to analyze the highest drop
height data using a four-layer model. There were
several concerns with the four-layer model. A review
of the data showed large variation in the surface
moduli so BISAR was used to look at possible chan-
ges in slip in between the layers in the pavement.
BISAR allows the user to set the slip level between
the layers. The moduli were manually backcalcu-
lated. In the end, the differences in the critical strain
due to change slip between the asphalt and base

layers only made differences of less than 10% in all
but the extreme cases and the most common diffe-
rence was less than 5%.

A fifth layer was added making the subgrade a
3-layer system. A 5-layer model worked, but had sen-
sitivity issues with some of the layers. MODCOMP
assigns the sensors manually, but if the layers are too
thin, the assigned sensor may lead to an insensitive
layer. Assigning sensors may not resolve the issue,
but in this case, the final model manually assigned
the sensors to the layers in the model as shown in
Table A.8.4.

The final results from MODCOMP backcalculation
are shown in Figure A.8.2.

These results, other than the point at station 61, were
very similar to the ELMOD data.

8.4 SR 37

A review of SR 37 was not as successful. The SR
37 site is shown in Figure A.8.3. The initial model used
the layers as given to Purdue by INDOT and shown in
Table A.8.5. The backcalculation results were not
adequate with root-mean-square (RMS) errors of over
30% at every station, even using a 6-layer model with
2 layers for the asphalt and 2 for the subgrade. The
RMS error for backcalculation should be less than 5%

for production data and less than 2% for research qua-
lity work (FHWA, 1995, 2000; Irwin, 1994b).

The SLIC transform is an analysis of the FWD
data that can be quickly used to determine if there are
issues with the FWD data (Stubstad, Irwin, Lukanen,
& Clevenson, 2000). The FWD data are plotted in a
sigmoid transformation and should plot as a smooth
curve in the transformed space. An anomaly can occur
due to a bad sensor, a sensor not at the position recor-
ded in the FWD data, or due to cracks and defects in
the pavement.

Pavement Layer Material Thickness (inches) Assumed Poisson’s Ratio (m)

Surface

Base

Upper Subgrade

Lower Subgrade

Asphalt Concrete

Unbound Aggregate

4

6

14

‘

0.35

0.40

0.45

0.45

TABLE A.8.3
US 31 pavement thickness used in initial model
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TABLE A.8.4
US 31 pavement thickness used in 5-layer model

Pavement Layer Material Thickness (inches) Assumed Poisson’s Ratio (m) Assigned Sensor

Surface Asphalt Concrete 4 0.35 1

Base Unbound Aggregate 6 0.40 2

Upper Subgrade 14 0.45 4

Middle Subgrade 24 0.45 6

Lower Subgrade ‘ 0.45 8



Figure A.8.4 shows the SLIC transform for the raw
data from MODTAG. Note that the software does
not supply units, but they are not easily interpretable.
The x-axis would be log(radial distance) and the y-axis
would be log(-log(deflection of center sensor/sensor
deflection)) and have no units.

On initial review, the issue could be sensor 2 or 3
not falling on a nice smooth curve. A more detailed
review of the data shows an anomaly that might indi-
cate sensor 2 was out of position by an inch or more.

Figure A.8.5 shows the SLIC plot if sensor 2 is at
7 inches rather than at the 8 inches listed in the raw data.

This smother curve illustrates both the power of
the SLIC transform and the need to have good QA/
QC procedures for testing. It cannot be known what
the actual spacing of the sensors is in this case. If the
FWD operator noted an anomaly in the data while
testing, a quick measurement of the sensor spacing
could have been done to confirm if the problem was
sensor spacing, a possible bad sensor, or just an odd
site that due to cracks or subsurface issues does not
follow the typical expectation of deflections versus
distance.

The model used is shown in Table A.8.6. The pave-
ment analysis was redone assuming sensor 2 was at
7 inches rather than 8 inches. This improved the results
some, but still did not provide completely satisfactory
answers. The RMS errors were still well above 10%.

Since there were only 11 points, the data was man-
ually backcalculated to see if the values could be
improved. Manual backcalculation uses the data from
MODCOMP as the starting seed and the same sensor
assignments. An INDOT engineer told Purdue, ‘‘We do
soil treatment if road length is at least 800 ft and width
is 8 ft and above. Chemical mod thickness may be either
14 in or 8 [in]. Sub grade Type 1A is not in spec book
and we use Type 1B.’’ The section was reviewed with

Figure A.8.2 US 31 MODCOMP 5-layer model.

TABLE A.8.5
SR 37 pavement thickness as provided by Indiana DOT (INDOT)

Pavement Layer Material Thickness (inches)

Surface

Base

Subgrade

Asphalt Concrete

Lime stabilized

10

14

n.a.

Figure A.8.3 View of SR 37 site.
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both a 14 inch and an 8 inch thickness to see the overall
effects on the upper subgrade; the layer being compared
to the laboratory tests.

Manual backcalculation was more successful with
a relatively low RMS error and fairly consistent results
as shown in Table A.8.7. Manual backcalculation used

Figure A.8.4 SR 37 SLIC transform plot from MOGTAG.

Figure A.8.5 SR 37 SLIC transform with Sensor 2 at 7 inches.

TABLE A.8.6
SR 37 pavement thickness model used in backcalculation

Pavement Layer Material Thickness (inches) Assumed Poisson’s Ratio (m)

1

2

3

4

5

Asphalt Concrete

Asphalt Concrete

Lime stabilized

Upper subgrade

Lower subgrade

4

6

14 or 8

12

‘

0.35

0.35

0.35

0.42

0.45
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CHEVLAY as the engine and is essentially a non-
automated analysis similar to MODCOMP. It is not
possible to know why the data would not backcalculate
automatically, but the pavement thickness or model
inputs are likely to be a culprit.

Also, the average values were put back into the
pavement model and the critical strains at the bottom
of the asphalt and top of the subgrade were determined
using CHEVLAY (Irwin, 1994a). The results are shown
in Table A.8.8. The critical strain is in the surface and
changes by -3.78% depending upon the thickness of
the lime-stabilized base layer. The lifespan in millions
of ESALs changes by over 25% (25.6%). Getting the
correct thickness in the pavement model is critical.

Layer 4 is the subgrade layer, which is the upper sub-
grade. The correlation with ELMOD is not great, but

this could be a compensating layer effect. Figure A.8.6
shows the moduli of the unbound layers. Note that
the lime layer has a much lower value in the man-
ual backcalculation versus the upper subgrade. It is
possible the two values are actually going up and
down in sympathetic values, making any correlation
difficult.

8.5 SR 46

Purdue obtained project level testing from SR 46.
Table A.8.9 shows the thickness of the pavement
according to INDOT. The FWD data was imported
into MODTAG and analyzed. Table A.8.10 shows the
model used in the backcalculation. Note that the upper
two layers of asphalt were combined into a single layer.

TABLE A.8.7
Manual backcalculation of SR 37 using CHEVLAY

Station RMSE (%)

Moduli in psi

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

0

10

19

28

37

47

55

64

74

83

92

Average

Std. Dev

0

10

19

28

37

47

55

64

74

83

92

Average

Std. Dev

80 Lime Layer

1.90

1.78

1.98

1.96

2.58

2.57

2.66

2.07

3.69

3.44

1.62

2.4

0.7

285,000

375,000

425,000

485,000

420,000

350,000

370,000

310,000

365,000

308,000

275,000

360,727

64,767

235,000

140,000

100,000

110,000

110,000

90,000

95,000

102,000

120,000

210,000

110,000

129,273

48,299

24,000

14,000

8,500

11,000

10,000

11,000

12,500

18,000

25,000

38,000

33,500

18,682

10,093

39,000

40,000

42,000

47,000

100,000

95,000

67,000

60,000

82,000

72,000

55,000

63,545

21,732

23,000

25,800

23,500

25,000

25,000

25,700

24,000

24,700

28,200

29,000

21,600

25,045

2,151

140 Lime Layer

1.59

1.83

2.34

1.85

4.21

3.22

2.45

1.74

3.30

1.80

2.37

2.4

0.8

285,000

375,000

350,000

490,000

350,000

350,000

370,000

315,000

355,000

300,000

275,000

346,818

58,407

235,000

170,000

110,000

105,000

110,000

105,000

95,000

102,000

120,000

180,000

131,000

133,000

43,802

23,000

16,000

12,500

14,500

15,000

14,000

16,500

21,000

30,000

42,000

35,500

21,818

9,867

39,000

48,000

35,000

47,000

90,000

95,000

67,000

65,000

70,000

72,000

42,000

60,909

20,339

22,700

26,000

23,700

25,200

23,500

25,250

23,200

24,500

28,100

28,900

21,400

24,768

2,259

TABLE A.8.8
Critical strains and ESAL lifespan average backcalculated values SR 37

Strains

Base Layer Thickness Surface Subgrade Life (million-ESALs)

80 150.05 -134.47 6.88

140 144.38 -101.54 8.64
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Such thin layers are hard to differentiate in back-
calculation.

All of the data were backcalculated even though
an anomaly was noted at station 43+05 for the west-
bound data set used. The comments in the FWD file
were reviewed, but the note said no cracks. This kind of
anomaly is usually associated with a crack when it only
occurs in an isolated point or two. As expected, the
results for that point are unacceptable with an RMS
error of over 30% (31.08%) and were removed from the
data pool for final analysis.

After culling obviously incorrect data, the final
results were aggregated for the east and west bound

data sets. Incorrect data (see Figure A.8.7) are asphalt
concrete moduli above 1,000,000 psi and subgrade moduli
above 100,000 psi. Table A.8.11 shows the average data
for the WB pavement section.

8.6 Conclusions

Overall, the work shows that when there are
good understanding of the site conditions and layer
thicknesses, backcalculation (field) matches closely
with the resilient module (field). If the data were
collected using good quality assurance and quality
control (QA/QC), then the backcalculation results

Figure A.8.6 Moduli of unbound layers, SR 37.

TABLE A.8.9
SR 46 pavement thickness as provided by Indiana DOT (INDOT)

Pavement Layer Material Thickness (inches)

Surface

Surface

Surface

Base

Subgrade

Asphalt Concrete

Asphalt Concrete

Asphalt Concrete

Type IB

1.5

3

5.5

14

n.a.

TABLE A.8.10
SR 46 pavement thickness model used in backcalculation

Pavement Layer Material Thickness (inches) Assumed Poisson’s Ratio (m)

1 Asphalt Concrete 4.5 0.35

2 Asphalt Concrete 5.5 0.35

3 Lime stabilized 14 0.35

4 Upper subgrade 24 0.42

5 Lower subgrade Computed to hard bottom 0.45

6 Hard Bottom 0.2
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would be able to be used to determine the modulus
for design.

However, there are many issues that need to be
reviewed in the testing protocol to make this feasible.
First, there needs to be a strong complete FWD test-
ing protocol. The LTPP protocol is recommended
for research level work, with a small modification
for production level testing. (FHWA, 2000) The num-
ber of drops is increased from the current INDOT
protocol, but the total time of testing is still domi-
nated by the time to move between the stations. If
INDOT prefers, there are very good protocols avai-
lable from other agencies including Colorado, Virginia,
and Federal Lands Highways (Hossain, Bendana, &
Yang, 1995).

A recommended FWD setup and testing protocol is
listed below.

FWD Equipment Setup

This setup assumes a DYNATEST FWD with nine
geophones. Setup of the FWD equipment for testing
consists of setting up: the geophones at the proper
distances, the weight drop heights to obtain the target
load levels, and the computer software to obtain the
data in the proper format and perform needed data
checks.

Computer Software

The data obtained uses the following units and for-
mats for the data.

Units – metric Distance – meters
Pressure – kPa Load – kN
Deflections – microns (m)

Research data must be valid and accurate. For the
deflection data, the FWD software uses up to five qua-
lity control checks as the data are collected. The checks
to be used are listed below. Details on handling data
failing any quality control checks are described in the
LTPP Manual for Falling Weight Deflectometer Mea-
surements: Operational Field Guidelines (FHWA, 2000).

N Roll-off (Roll Off) – Enabled or Smart

N Decreasing (Decrease) – Enabled or Smart

N Out of Range (Overflow) – Enabled or Smart

N Load Variation (Repeatability) – Enabled or Smart
The tolerance range for load is set at:

X+ 0:18 kNz0:02X or X+ 40 lbsz0:02Xð Þ ð Þ
N Deflection Variation (Repeatability) – Enabled or Smart

The tolerance range for deflections is set at:

X+ 2 micronsz0:01X or X+ 0:08 milsz0:01Xð Þ ð Þ

where X = average normalized deflection for all drops at
that height

Figure A.8.7 SLIC anomaly at WB Station 43+05.

TABLE A.8.11
Moduli statistics SR 46 westbound

RMS

Moduli in psi

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Average 0.979 410,418 265,708 24,923 24,590 14,670 500,000

Std. Dev 0.772 148,221 139,983 22,182 19,453 5,784 —
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In addition to the data checks, the following options
were set within the field software.

N Sampling window – 60 mSec

N Smoothing – off

N Preserve temperatures – off

N Automated prompts – Surface temperature (if no infrared

device on FWD)

Deflection Sensor Spacing

Deflection sensors are placed at the following
spacing in U.S. Customary units close to the mea-
surements:

0, 8, 12, 18, 24, 36, 48, 60, 72 (all distances in inches).

Drop Heights

The drop heights are set up to produce the loads
shown in Table A.8.12 when the FWD is properly
warmed-up. The FWD should be warmed-up at a
location outside the experimental section.

Prior to performing FWD measurements on a test
section, the load levels from the drop height setting are
verified as part of warm up.

Loading Sequence

The loading sequence consist of a total of seventeen
drops for research and twelve for production level
work. The first three drops are seating drops from drop
height 3 and are not stored. The complete load-deflec-
tion time history (60 m-sec) is recorded for the last drop
at the forth drop height for research work. Table A.8.13
summarizes the loading sequence.

These drops are needed to test for linearity in the
subgrade soil and reduce overall error by performing
extra drops at each drop height.

FWD Data and Backup Procedures

FWD operators also have the responsibility to
safeguard the FWD data files by keeping copies of the
data in more than one location. All deflection data files
should be backed up before leaving the site.

Layer Thickness

Layer thickness is the other field issue that should
be resolved to obtained high quality data. Using
construction plans and overall specifications is not
enough. Error due to failure to have proper thickness
can exceed 30% in some cases. (Irwin, Yang, &
Stubstad, 1988) Generally, the maximum error in the
thickness should be about one-quarter the thickness of
the layer; ¡1 inch for asphalt layers, ¡3 inches for
unbound base layers, and ¡6 inches for upper sub-
grade layers. The less error in thickness, the less error
in the backcalculation analysis.

If good as-built drawings showing thickness are
available, then they may be used. If not, ground pene-
trating radar (GPR) tests of the project with cores or
test pits to provide ground truth are recommended.

A.9. CONCLUSIONS AND IMPLEMENTATION

Since INDOT adopted the Mechanistic-Empirical
Pavement Design Guide (MEPDG) at the beginning of
2009, obtaining accurate and representative values of
the resilient modulus needed for the design has proven
to be difficult. This is the particularly the case when
designing the reconstruction of the pavement of existing
roads. The reason is the need to direct sampling of the
subgrade soil and access to the equipment required to
perform the resilient modulus tests in the laboratory
following the standard AASHTO T-307-99 (2007).
The problem is compounded by the length of the
project, as it requires a large number of representative

TABLE A.8.12
FWD load configuration

Height Target Load (pounds ¡ 10%)

1

2

3

4

6,000

9,000

12,000

16,000

TABLE A.8.13
FWD loading sequence

Height Number of Drops (Research) Number of Drops (Production) Store Peak Deflection

3 3 3 No

1 4 0 Yes

2 4 3 Yes

3 4 3 Yes

4 4 3 Yes (store time history for last drop in set with research data)
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soil samples. An alternative that would be efficient
and cost effective is to obtain the resilient modulus
from indirect, non-destructive tests. The goal of the
project is to assess the potential of the following
tests to estimate the resilient modulus of the sub-
grade: Falling Weight Deflectometer, FWD, Light
Weight Deflectometer, LWD, and Dynamic Cone Pene-
trometer, DCP.

The following types of subgrade were specifically
targeted for the project: untreated soils type A-6 and
A-7-6. This objective has proven challenging; first,
because these soils are usually chemically treated to
improve their stability and engineering properties and
so it has not been easy to identify the right project; and
second, because the actual type of soil placed in-situ
may not fit into these categories. In addition, coordina-
tion with the job contractor, subcontractor, and tech-
nical personnel from INDOT and others to access the
site and perform all the tests at the same time has been
challenging. In other occasions, the weather or equip-
ment availability or equipment trouble have delayed
the work. Fortunately, four sites had been available for
testing, thanks to the work and help of INDOT per-
sonnel. The first site was on US 31 around Kokomo,
Indiana. The soil is classified as A-4, according to
AASHTO, with 58% passing No. 200 sieve and PI,
Plastic Index, 8.5%. The second site was on SR 37
around Paoli, Indiana. The soil is defined as A-7-6, with
88% of soil passing the No. 200 sieve and PI 5 23.8%.
The third site was on SR 641 at Terre Haute. The soil is
classified as A-6 according to AASHTO with 89%

passing #200 sieve and PI 5 20.2%. The last site was
Ramp line A connecting SR 641 and SR 46 at Terre
Haute. The soil has 72% of passing #200, and 30.6%

PI, so it is classified as A-6.

FWD, LWD, and DCP tests were performed on the
four selected sites. A representative 90 m long section
at each site was chosen. In each section, eleven points
at 9 m intervals were identified to run the three tests.
After pavement construction, FWD tests were con-
ducted on US 31 and SR 37. In addition, at each of the
eleven points on each site, in-situ water content,
optimum moisture content, maximum dry unit weight,
granulometry, Atterberg limits and resilient modulus
tests were performed.

The scope of the project was expanded to further
investigate relations between field FWD and laboratory
resilient modulus tests using the data repository of
INDOT to obtain additional geotechnical and pave-
ment information. The ARC GIS program was used to
visualize MR and FWD data so that the two indepen-
dent data sets were paired. The data collected was
classified into three tier categories, based on the degree
of uncertainty associated with the data, which origi-
nated mostly from difficulties in determining whether
the data paired originated at the same location. Tier
one data, having the highest confidence in how the data
was paired, showed good agreement between FWD and
MR, similar to the results from the first phase of the
project. Tier two and three data did not show a strong

correlation due to the higher uncertainty associated
with how the data points were paired.

Based on the results from all the field and laboratory
tests, the following conclusions can be reached:

1. The subgrade modulus obtained from FWD tests con-
ducted on top of the pavement compares very well with
the resilient modulus of the subgrade, i.e. MR 5 EFWD.

2. Results from FWD tests conducted directly on top of the
subgrade are not reliable, likely due to the lack of con-
finement of the soil.

3. The stiffness obtained from LWD tests performed on top
of the subgrade does not compare well with the resilient
modulus of the soil obtained in the laboratory. The values
obtained from LWD are too low.

4. There is not a good relation between the soil stiffness
obtained from DCP and from the laboratory using the
correlation by Salgado and Yoon (2003), which was
deemed appropriate in this study.

5. While LWD and DCP have not provided acceptable
estimates of soil stiffness, they can be used to estimate
quality consistency of the subgrade. The research has
shown that the field measurements using either method
are sensitive to the quality of the construction and can
be used to identify those areas with lower quality than
others.

6. When good quality FWD data is obtained, its results, in
terms of stiffness of the subgrade, can be used to estimate
the resilient modulus, MR, of the subgrade. If the data
were collected using good quality assurance and quality
control (QA/QC), then the backcalculation results would
be able to be used to determine the modulus for design.

7. Good quality FWD data requires a strong complete
FWD testing protocol. The LTPP protocol is recom-
mended for research level work, with a small modifica-
tion for production level testing. There are however very
good protocols available that INDOT could explore
for their use.

8. Good quality FWD data can only be achieved when
pavement layer thickness is accurate. Using construction
plans and overall specifications may not be sufficient. If
good as-built drawings showing thickness are available,
then they may be used. If not, ground penetrating radar
(GPR) or other non-destructive tests may be performed
in conjunction with the FWD tests to determine the
geometry of the pavement.

9. The correlations proposed between FWD and MR are
based on limited, yet highly reliable, data. It would be
desirable to extend the database used in the project to
further confirm such an important conclusion. This
could be done by identifying sites under construction
where a campaign of tests similar to those completed
under phase one of the project could be conducted.
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