

INDIANA LTAP ROAD SCHOLAR CORE COURSE #10 **CULVERT DRAINAGE**

Presented by Thomas T. Burke, Jr., PhD, PE Luke J. Sherry, PE, CFM Christopher B. Burke Engineering, Ltd.

OBJECTIVES

- Review culvert shapes, end sections, and materials
- Types of culvert flow conditions
- Steps to determine culvert size
 - HY-8
- Examine culvert material and shape selection

CULVERT FLOW

Conditions

- Full flow (flow under pressure)
- Partially full (free surface)
- Combination

Flow is dependent upon:

- Inlet geometry
- Roughness
- Slope
- Pipe Diameter

- Length
- Headwater (approach) or tailwater conditions

CULVERT SHAPES AND MATERIALS

Typical Materials:

- Corrugated Metal Pipe
- Concrete
- Polyvinyl Chloride (PVC) Pipe
- High-Density Polyethylene
- Ductile Iron Pipe (DIP)
- Clay

CONCRETE

Concrete Arch

Triple Concrete Circular

Tripe Reinforced Concrete Box Culverts (RCBCs)

PLASTIC & METAL

High-Density Polyethylene (HDPE)

Corrugated Metal Circular

Corrugated Metal Arch

ROUGHNESS COEFFICIENTS

n = Manning's roughness coefficient

Type of Conduit	Wall Description	Manning's <i>n</i>
Concrete Pipe	Smooth Interior	0.012
Concrete Box	Smooth Walls	0.012- 0.015
	2.75 in. x 0.5 in Corrugations	0.024
	6 in. x 1 in. corrugations	0.022-0.025
Corrugated Metal Pipe or Arch,	5 in. x 1 in. corrugations	0.025-0.026
Annular or Helical Pipe	3 in. x 1 in. corrugations	0.027-0.028
	6 in. x 2 in. structural plate	0.033-0.035
	9.25 in. x 2.5 in. structural plate	0.033-0.037
Spiral Rib Metal Pipe	Semi-Smooth Interior	<mark>0.015</mark>
Thermoplastic/HDPE Pipe	Smooth Interior	0.012
Cured in Place Liner (CIPP)	Smooth Interior	0.012

Source: InDOT Design Manual

END SECTIONS

ENTRANCE LOSS COEFFICIENTS

End-Treatment Type	Entrance Type	K _E
Grated Box End Section, Type 1	Concrete Pipe, headwall with square edge	0.5
Grated Box End Section, Type 2	Concrete Pipe, headwall with square edge	0.5
Multiple-Pipes Concrete Anchor	Concrete Pipe, projecting from fill, square cut end	0.5
Multiple-Pipes Concrete Anchor	Corrugated Metal Pipe, Projecting from fill	0.9
Metal Pipe End Section	Corrugated Metal Pipe, end section conforming to fill slope	0.5
Precast-Concrete End Section	Concrete Pipe, end section conforming to fill slope	0.5
Safety Metal End Section	Corrugated Metal Pipe, mitered to conform to fill slope	0.7

	-	
Safety Metal End Section	Corrugated Metal Pipe, end section conforming to fill slope	0.5
Safety Metal End Section	Corrugated Metal Pipe, mitered to conform to fill slope	0.7
Safety Metal End Section	Corrugated Metal Pipe, end section conforming to fill slope	0.5
Single-Pipe Concrete Anchor	Corrugated Metal Pipe, projecting from fill	0.9
Single-Pipe Concrete Anchor	Concrete Pipe, projecting from fill, square cut end	0.5
Single-Pipe Concrete Anchor	Corrugated Metal Pipe-Arch, projecting from fill	0.9
Multiple-Pipe Concrete Anchor	Concrete Pipe-Arch, projecting from fill, square cut end	0.5
Multiple-Pipe Concrete Anchor	Corrugated Metal Pipe-Arch, projecting from fill	0.9

ENTRANCE-LOSS COEFFICIENT, K_E, FOR STANDARD INDOT CULVERT

Source: InDOT Design Manual

D_o = Outside Diameter of structure

Erosion-Protection Method	Velocity, v (ft/s)
Revetment Riprap	≤ 6.5
Class 1 Riprap	6.5 < v < 10
Class 2 Riprap	$10 \le v \le 13$
Energy Dissipator	> 13

Source: InDOT Design Manual

CULVERT HYDRAULICS

- Flow conditions vary from culvert to culvert
- Flow conditions vary over time
- May flow full or partially full
- Flow control types
 - Inlet
 - Outlet

HEADWATER AND TAILWATER

- Headwater (HW) Depth of upstream water surface measured from invert of culvert entrance
 - Should not exceed edge of roadway shoulder elevation to allow for freeboard
 - Should not be so high as to cause flooding upstream
- Tailwater (TW) Depth of downstream water surface measured from invert of culvert outlet
 - For stream crossings, usually determined by backwater calculations through hydraulic modeling
 - H = Difference in elevation
 of upstream pool level and
 the water surface at the
 culvert outlet

•

•

INLET CONTROL

- Culvert inlet controls (or limits) the flow
- More difficult for flow to get through the entrance of the culvert than it is to flow through the remainder of the culvert

INLET CONTROL - A

- Pipe flow is partially full
- Outlet not submerged

INLET CONTROL - B

- Inlet not submerged
- Outlet submerged

INLET CONTROL - C

- Pipe is flowing partially full
- Inlet submerged

OUTLET CONTROL

- Culvert barrel capacity or outlet controls (or limits) the flow
- More difficult for flow to negotiate length of culvert than it is to get through the inlet (entrance)

OUTLET CONTROL - A

- Pressure flow
- Full Flow
- Inlet and outlet submerged

OUTLET CONTROL - B

- Submerged inlet
- Outlet not submerged
- Outlet velocities usually high

OUTLET CONTROL - C

- Submerged inlet
- Outlet not submerged
- Low TW

OUTLET CONTROL - D

- Inlet not submerged
- Outlet not submerged

CULVERT PERFORMANCE FACTORS

Factor	Inlet Control	Outlet Control
Headwater Elevation	Х	Х
Inlet Area	Х	Х
Inlet Edge Configuration	Х	Х
Inlet Shape	Х	Х
Pipe Roughness		Х
Pipe Area		Х
Pipe Shape		Х
Pipe Length		Х
Pipe Slope		Х
Tailwater Elevation		Х

CULVERT DESIGN STEPS

- 1. Summarize known data: Flowrate (Q) in cfs, target upstream water surface elevation
- 2. Choose the culvert dimensions (diameter, length)
- 3. Assume inlet control
- 4. Use chart to calculate the upstream total head (HW) for the design flowrate using design table
- 5. Repeat step 3 until the upstream head (HW) satisfies design specifications
- 6. Use design chart to calculate the head loss (H) from inlet to outlet for the design flowrate
- 7. Calculate the upstream total head (HW = H + TW)
- 8. Compare the inlet and outlet control results
 - The higher headwater governs and indicates the flow control (inlet or outlet control)

EXAMPLE CALCULATION

INLET CONTROL RESULTS

Culvert Diameter , D = 42" (3.5 feet)

Q=120 cfs

 $HW = (HW/D) \times D$ (ft)

- 1. Square edge with headwall
 - HW/D = 2.5
 - = 2.5 x 3.5 ft
 - HW = 8.8 ft

EXAMPLE CALCULATION

INLET CONTROL VS. OUTLET CONTROL RESULTS

Culvert Diameter , D = 42" (3.5 feet) Q=120 cfs L = 50 feet TW = 4.3 feet

HW = 7.6 ft

INLET CONTROL

OUTLET CONTROL

 $HW = (HW/D) \times D$ (ft)

- 1. Square edge with headwall
 - HW = 8.8' ft

CONCLUSION: 8.8 ft > 7.6 ft inlet controlled, use inlet control answer

- Federal Highway Administration culvert analysis program
- Yields headwater rating curve (elevation, Q relationship)
- Parameters:
 - Enter design Q
 - Culvert length
 - Culvert shape and roughness
 - Entrance type
 - Overtop elevation (road profile)
 - Additional inputs:
 - Tailwater rating curve

HY-8 EXAMPLE PROBLEM #1

Use HY-8 to determine the size of a culvert required for a proposed road crossing. The local ordinance specifies that culverts be sized to pass the 100-year peak flowrate and also provide two feet of freeboard.

The design information for this site is summarized by the following:

- HYDROLOGY
 - 100-Year Peak Flowrate is 65 cfs (Based on WinTR-20 Hydrologic Model of Tributary Area)
- SITE DATA
 - ► Upstream invert elevation = 661.15 ft.
 - Downstream invert elevation = 659.00 ft.
 - Culvert length = 120 ft.
 - Culvert will project from headwall
 - No depression at conventional-type inlet

HY-8 EXAMPLE PROBLEM #1 (CONTINUED)

► WATERWAY DATA

Input existing channel information to model tailwater conditions acting on the culvert.

► ROADWAY DATA

Roadway overtopping elevation is 667.0 (Determined from proposed roadway profile).

Proposed roadway is 80 feet wide.

HY-8 EXAMPLE PROBLEM #1 (CONTINUED)

HY-8: CREATING A NEW PROJECT

🚔 HY-8
<u>File D</u> isplay <u>C</u> ulvert <u>W</u> indow <u>H</u> elp
📄 🖆 🚽 🕜 🕴 U.S. Customary Units 🔹 🕴 Outlet Control: Profiles 🔹 🕴 🥰 📰 🧐 🗹 🖹 📔 🕒 🔍 🦉 🏠 🏗 😰 🖆
Project Explorer 🗆 🗙
Project Starting Options Create a new project Use map feature to locate culvert crossings Add a culvert crossing Open an existing file Browse for file (.hv/9) Browse for old HV-8 input file (.INP) Continue
Ready

HY-8 Introduction Screen

HY-8: INPUT OF ROADWAY/CULVERT DATA

Use the "Culvert Crossing Data" icon to enter the roadway/culvert information.

HY-8: INPUT OF CULVERT DATA

Crossing Data - Crossing 1

Roadway			
ter	Value		Units
CHARGE DATA			
ge Method	Minimum, Design, and Maximum	-	
n Flow	0.000		cfs
Flow	0.000		cfs
m Flow	0.000		cfs
LWATER DATA			
l Type	Rectangular Channel	-	Í
Width	0.000		ft
l Slope	0.0000		ft/ft
g's n (channel)	0.000		
l Invert Elevation	0.000	ft	
Curve	View		
ADWAY DATA			
ay Profile Shape	Constant Roadway Elevation	-	
adway Station	0.000		ft
ength	0.000		ft
levation	0.000		ft
ay Surface	Paved	-	
dth	0.000		ft
	Roadway ter CHARGE DATA ge Method n Flow Flow m Flow LWATER DATA d Type Width d Slope g's n (channel) d Invert Elevation Curve ADWAY DATA ay Profile Shape badway Station ength levation ay Surface dth	Roadway ter Value CHARGE DATA Minimum, Design, and Maximum n Flow 0.000 Flow 0.000 m Flow 0.000 tLWATER DATA Rectangular Channel Vidth 0.000 Slope 0.0000 g's n (channel) 0.000 Virve View ADWAY DATA View ADWAY DATA 0.000 ength 0.000 levation 0.000 ay Profile Shape Constant Roadway Elevation o.000 0.000 ength 0.000 ength 0.000	Roadway ter Value CHARGE DATA

Culvert Properties Culvert 1 Add Culvert Duplicate Culvert Delete Culvert Value Parameter Units Δ. CULVERT DATA Culvert 1 Name Circular Shape • Concrete ₹. 🕜 Material Diameter 0.000 ft Embedment Depth 0.000 in Manning's n 0.012 Straight Culvert Type Ŧ Inlet Configuration Square Edge with Headwall • Inlet Depression? No • (2) SITE DATA Site Data Input Option Culvert Invert Data Ŧ Inlet Station 0.000 ft Inlet Elevation 0.000 ft ft Outlet Station 0.000 Outlet Elevation ft 0.000 v Energy Dissipation Analyze Crossing OK Cancel

 \times

HY-8 Crossing Data Screen

HY-8: INPUT OF DISCHARGE DATA

Crossing Data - Crossing 1

Crossing Properties			Culvert Properties			
Name: Roadway			Culvert 1	Add Culvert		
		La				
Parameter	Value	Un		Duplicate Culvert		
O DISCHARGE DATA				Delete Culvert		
Discharge Method	Minimum, Design, and Maximum	-		Delete Cuivert		
Minimum Flow	0.000	cfs	Parameter	Value	Units	
Design Flow	65.000	cfs	CULVERT DATA			-
Maximum Flow	125.000	cfs	Name	Culvert 1		
TAILWATER DATA			Shape	Circular	-	
Channel Type	Rectangular Channel	-	Material		- -	
Bottom Width	0.000	ft	Diameter	0.000	 	
Channel Slope	0.0000	ft/	Embedment Depth	0.000	in	
Manning's n (channel)	0.000		Manning's n	0.012		
Channel Invert Elevation	0.000	ft	Culturert Type	Straight	-	
Rating Curve	View			Suagric	-	
ROADWAY DATA				Square Euge with Headwall	• -	
Roadway Profile Shape	Constant Roadway Elevation	-		No	<u> </u>	
First Roadway Station	0.000	ft	STE DATA		_1	
Crest Length	0.000	ft	Site Data Input Option	Cuivert Invert Data	<u> </u>	
Crest Elevation	0.000	ft	Inlet Station	0.000	π	
Roadway Surface	Paved	-	Inlet Elevation	0.000	ft	
Top Width	0.000	ft	Outlet Station	0.000	ft	
			Outlet Elevation	0.000	ft	×
Help Click on any	icon for help on a specific topic	Low Flo	AOP Energy Dissipation	Analyze Crossing OK		ancel
chart of any		2011110	energy encoperion	Unit, we around a contract of the		

Input of Discharge Data – Enter the design and maximum flow.

Х

HY-8: INPUT OF TAILWATER DATA

Crossing Data - Crossing 1

Help

Name: Roadway			Culvert 1
Parameter	Value	Units	
OISCHARGE DATA			
Discharge Method	Minimum, Design, and Maximum	-	
Minimum Flow	0.000	cfs	Parameter
Design Flow	65.000	cfs	
Maximum Flow	125.000	cfs	Name
🕜 TAILWATER DATA			Shape
Channel Type	Rectangular Channel		Material
Bottom Width	Rectangular Channel	ft	Diameter
Channel Slope	Trapezoidal Channel Triangular Channel	ft/ft	2 Embedm
Manning's n (channel)	Irregular Channel		Manning's n
Channel Invert Elevation	Enter Rating Curve	ft	Oulvert 1
Rating Curve	View		2 Inlet Cor
🕜 ROADWAY DATA			2 Inlet Der
Roadway Profile Shape	Constant Roadway Elevation	•	SITE DA
First Roadway Station	0.000	ft	Site Data Inc
Crest Length	0.000	ft	Inlet Station
Crest Elevation	0.000	ft	Inlet Elevation
Roadway Surface	Paved	•	Outlet Statio
Top Width	0.000	ft	Outlet Elevat

Click on any (2) icon for help on a specific topic

× Add Culvert Duplicate Culvert Delete Culvert Value Units ~ Culvert 1 Circular Ŧ • Concrete ft 0.000 0.000 oth in 0.012 Straight • • • Square Edge with Headwall tion No n? Culvert Invert Data Ŧ ion 0.000 ft ft 0.000 ft 0.000 ft 0.000 v

Analyze Crossing

OK

Cancel

Input of Tailwater Data – Note that we will input site-specific channel Information to model tailwater conditions for this example.

AOP

Low Flow

Energy Dissipation

HY-8: INPUT OF TAILWATER DATA

Crossing Data - Crossing	1		Irreg	gular Ta	ilwater Chanr	nel –	-	Х	_	_		×
Crossing Properties Name: Roadway			E	'ailwate Browse f	r File for existing .TW	/ file	Import		1			
Parameter	Value Minimum, Design, and Maximum 0.000 65.000	Unit Cfs		ailwate Slope of Number rregular	r Channel tailwater chanr of cross-sec po Channel Cross	nel: 0.00 nints: 8	05 f	t/ft]	l	Units	^
Maximum Flow	125.000	cfs		No. 1	Station (ft)	Elevation (ft) Manning n 0.0500	١				
Channel Type Bottom Width	Rectangular Channel	A		2	4.000	664.000	0.0500			• •		
Channel Slope	Trapezoidal Channel Triangular Channel	ft/ft		3 4	12.000	659.000	0.0500			f	ît n	
Channel Invert Elevation	Irregular Channel Enter Rating Curve Enter Constant Tailwater Elevation	ft		5 6	16.000 18.000	659.000 661.000	0.0350		-	•		
Roadway Data	view			7 8	25.000	664.000 666.000	0.0500		vall	• •		
Roadway Profile Shape First Roadway Station	0.000	ft		-						•		
Crest Length Crest Elevation	0.000	ft ft						L		f	t t	
Roadway Surface Top Width	Paved	ft								f	t t	
Help Click on any	icon for help on a specific topic	w Elow		Plo	ot	OK	Cano	el	OK		63	ncel
Click of ally	rearrier nep on a specific topic	WI IOW		, icip		- Ort			UK		Ca	

Input of Tailwater Data – Channel Geometry Based on Topography

HY-8: INPUT OF ROADWAY DATA

Crossing Data - Crossing 1

- 🗆 X

					Culvert Properties			
Name: F	Roadway				Culvert 1	Add Culvert		
Paramete	er	Value		Units		Duplicate Culvert		
DISC	CHARGE DATA							
Discharge	e Method	Minimum, Design, and Maximum	-			Delete Culvert		
Minimum	Flow	0.000		cfs				
Design Fl	low	65.000		cfs	Parameter	Value	Units	
Maximum	1 Flow	125.000		cfs	CULVERT DATA			
	WATER DATA				Name	Culvert 1		
Channel	Туре	Irregular Channel	-		Snape		1	
Irregular	Channel	Define			Material Diameter			
Rating C	urve	View			Diameter Death	0.000	n.	
	DWAY DATA				Managina's a	0.000	in	
Roadway	y Profile Shape	Constant Roadway Elevation	-		Manning sin	0.012		
First Roa	dway Station	0.000	1	ft	Univertitype	Straight		
Crest Ler	ngth	40.000	t	ft	V Inlet Configuration	Square Eoge with Headwall		
Crest Ele	vation	667.000	t	ft		N0		
Roadway	y Surface	Paved	-		Cita Data Jacut Oatian	Column Invent Data		
Top Widt	th	80.000	-	ft	Site Data Input Option			
					Injet Station	0.000	π Δ	
					Injet Elevation	0.000	π Δ	
					Outlet Station	0.000	n	
					Outlet Elevation	0.000	π	
Help	Click on any	🕖 icon for help on a specific topic	Low	Flow AOF	Energy Dissipation	Analyze Crossing OK		Cance

width of roadway, and type of surface.

39

HY-8: INPUT OF ROADWAY DATA

HY-8 uses the weir equation to calculate flow over a roadway.

When the user specifies a constant roadway elevation with a specified crest length (L), HY-8 will calculate the flow using the rectangular weir equation ($Q = C_d * L * H^{3/2}$). If input discharge coefficient is selected, the user will enter a discharge coefficient between 2.5 and 3.095.

For a user-defined (irregular) roadway, HY-8 calculates a weighted average of the L and H terms in the weir equation:

HY-8: INPUT OF CULVERT DATA Image: Crossing Data - Crossing 1

Crossing Properties			Culvert Properties			
Name: Roadway			Culvert 1	Add Culvert		
Parameter	Value	Units		Duplicate Culvert		
O DISCHARGE DATA				Delete Culvert		
Discharge Method	Minimum, Design, and Maximum	-		Delete Cuivert		
Minimum Flow	0.000	cfs	Parameter	Value	Units	~
Design Flow	65.000	cfs	CULVERT DATA			_
Maximum Flow	125.000	cfs	Name	Culvert 1		
TAILWATER DATA			Shape	Circular	•	
Channel Type	Irregular Channel	-	Material			
Irregular Channel	Define		Diameter	3 000	e e	
Rating Curve	View		Embedment Depth	0.000	in	
ROADWAY DATA			Manning's n	0.013		
Roadway Profile Shape	Constant Roadway Elevation	-	Culvert Type	Straight	-	
First Roadway Station	0.000	ft		Square Edge with Headwall	-	
Crest Length	40.000	ft	Inlet Configuration	No.	-	
Crest Elevation	667.000	ft		NO	•	
Roadway Surface	Paved	-	Cite Data Jack Option	Column Invest Data	_	
Top Width	80.000	ft	Site Data Input Option	Cuivert Invert Data	•	
			Inlet Station	0.000	π	
			Inlet Elevation	0.000	ft	
			Outlet Station	0.000	ft	
			Outlet Elevation	0.000	ft	~
Help Click on any	🕐 icon for help on a specific topic	Low Flow	AOP Energy Dissipation	Analyze Crossing OK	С	ancel

Input of Culvert Data – Note that a 36-inch (3-foot) diameter culvert was used.

HY-8: INPUT OF SITE DATA

Crossing Data - Crossing 1

crossing properties			Culvert Properties	
Name: Roadway			Culvert 1	Add Culvert
Parameter	Value	Units		Duplicate Culvert
🕜 DISCHARGE DATA				
Discharge Method	Minimum, Design, and Maximum	•		Delete Culvert
Minimum Flow	0.000	cfs	Parameter	Value
Design Flow	65.000	cfs	Name	Oulvert 1
Maximum Flow	125.000	cfs	Shane	Circular
🕜 TAILWATER DATA			Material	Concrete
Channel Type	Irregular Channel	-	Diameter	3 000
Irregular Channel	Define		Embodmont Donth	0.000
Rating Curve	View		Manaina's a	0.000
🕜 ROADWAY DATA			Manning sin	Ctraight
Roadway Profile Shape	Constant Roadway Elevation	•	Univertitype	Straight Seugra Edge with Haad
First Roadway Station	0.000	ft	Inlet Configuration	Square Euge with Head
Crest Length	40.000	ft	CITE DATA	
Crest Elevation	667.000	ft	Cite Date Jacob Californi	C. Jure M. Traum & Darks
Roadway Surface	Paved	-	Site Data Input Option	Culvert Invert Data
Top Width	80.000	ft	Inlet Station	0.000
			Inlet Elevation	661.150
			Outlet Station	120.000
			Outlet Elevation	659.000
			Number of Barrels	1

Input of Site Data – Culvert length, inverts, and number of barrels.

- 🗆 X

Units

▼ ft in

•

Ŧ

ft ft ft ~

v

Cancel

HY-8: RUNNING THE CULVERT ANALYSIS

🖀 HY-8 - [Error]
Eile Display Culvert Window Help
📔 🗋 🧉 🕘 🛞 🛛 U.S. Customary Units 💌 🕴 Dutlet Control: Profiles 💌 📄 🍑 🖬 🔡 🛃 🛃 🔛 😂 🚺 🔛 🚵
Project Explorer Project Explorer Project Implement <
Applying the active subject and expension table

The "Run Analysis" icon on the toolbar performs the culvert analysis.

HY-8: VIEWING THE OUTPUT

Summary of Flows at Crossing - Roadway

– 🗆 X

Headwater	Total	Culvert 1	Roadway	Iterations		
Elevation (ft)	Discharge (cfs)	Discharge (cfs)	Discharge (cfs)			
661.15	0.00	0.00	0.00	1		
662.69	12.50	12.50	0.00	1		
663.53	25.00	25.00	0.00	1		
664.27	37.50	37.50	0.00	1		
665.12	50.00	50.00	0.00	1		
666.22	62.50	62.50	0.00	1		
666.47	65.00	65.00	0.00	1		
667.25	87.50	/2.21	15.25	6		
667.37	100.00	73.19	26.76	5		
667.47	112.50	74.02	38.38	4		
667.56	125.00	74.78	50.18	4		
667.00	69.97	69.97	0.00	Overtopping		
Display					Geometry	Plot
Crossing	Summary Table				Inlet Elevation: 661.15 ft	Crossing Rating Curve
O Culvert S	ummary Table	Culvert 1		\sim	Outlet Elevation: 659.00 ft	
	rface Profiles				Culvert Length: 120.02 ft	Culvert Performance Curve
O Water Su					Culuark Classes 0.0170	Coloris di Water Des Cla
O Water Su	alet Teble				Convert piobe: 0.01/a	Selected Water Profile
O Water Su	Inlet Table				Inlet Crest: 0.00 ft	Selected Water Profile
 Water Su Tapered I Customize 	Inlet Table ed Table	Options			Inlet Crest: 0.00 ft Inlet Throat: 0.00 ft	Water Surface Profile Data
 Water Su Tapered I Customize 	Inlet Table ed Table	Options			Inlet Crest; 0.00 ft Inlet Throat; 0.00 ft Outlet Control: Profiles	Water Surface Profile Data
Water Su Tapered 1 Customize	Inlet Table ed Table	Options			Culvert Slope: 0.0179 Inlet Crest: 0.00 ft Inlet Throat: 0.00 ft Outlet Control: Profiles	Water Surface Profile Data
Water Su Tapered 1 O Customize	Inlet Table ed Table	Options			Inlet Crest: 0.00 ft Inlet Throat: 0.00 ft Outlet Control: Profiles	Water Surface Profile Data
O Water Su O Tapered I O Customize Help	Inlet Table ed Table Flow Types.	Options	t Data E	inergy Dissipation	Curvert Stope: 0.0179 Inlet Crest: 0.00 ft Inlet Throat: 0.00 ft Outlet Control: Profiles AOP Low Flow Export	Water Surface Profile Data Water Surface Profile Data ort Report Adobe PDF (*.pdf) Close

Output for Example #1 – Does the proposed culvert meet the design requirements?

HY-8: VIEWING THE OUTPUT

Crossing Data - Roadway

Parameter	Value	Units		Duplicate Culvert	
O DISCHARGE DATA				Delete Culvert	
Discharge Method	Minimum, Design, and Maximum	-		Delete Culvert	
Minimum Flow	0.000	cfs	Parameter	Value	
Design Flow	65.000	cfs	O CULVERT DATA		
Maximum Flow	125.000	cfs	Name	Culvert 1	
TAILWATER DATA			Shape	Circular	-
Channel Type	Irregular Channel	-	 Material 	Concrete	Ŧ
Irregular Channel	Define		Diameter	4.000	٦
Rating Curve	View		() Embedment Depth	0.000	
🕜 ROADWAY DATA			Manning's n	0.013	
Roadway Profile Shape	Constant Roadway Elevation	-	O Culvert Type	Straight	-
First Roadway Station	0.000	ft	Inlet Configuration	Square Edge with Headwall	Ŧ
Crest Length	40.000	ft	Inlet Depression?	No	Ŧ
Crest Elevation	667.000	ft	SITE DATA	-	
Roadway Surface	Paved	-	Site Data Input Option	Culvert Invert Data	-
Top Width	80.000	ft	Inlet Station	0.000	
			Inlet Elevation	661.150	
			Outlet Station	120.000	
			Outlet Elevation	659.000	

Upsizing the culvert is an option to meet requirements.

HY-8: VIEWING THE OUTPUT

Summary of Flows at Crossing - Roadway

- 🗆 🗙

levation (ft)	Total Discharge (cfs)	Culvert 1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations			
661.15	0.00	0.00	0.00	1			
662.54	12.50	12.50	0.00	1			
663.17	25.00	25.00	0.00	1			
663.77	37.50	37.50	0.00	1			
664.28	50.00	50.00	0.00	1			
664.75	62.50	62.50	0.00	1			
664.84	65.00	65.00	0.00	1			
665.75	87.50	07.30	0.00	1			
666.32	100.00	100.00	0.00	1			
666.97	112.50	112.50	0.00	1			
667.18	125.00	116.22	8.66	7			
667.00	113.11	113.11	0.00	Overtopping			
isplay					Geometry		Plot
Crossing S	Summary Table				Inlet Elevation;	661.15 ft	Crossing Rating Curve
Culvert Su	ummary Table	Culvert 1		\sim	Outlet Elevation;	659.00 ft	
Water Sur	face Profiles				Culvert Length:	120.02 ft	Culvert Performance Curve
					Culvert Slope;	0.0179	Selected Water Profile
) Tapered I	nlet Table		_		Inlet Crest:	0.00 ft	
) Customize	d Table	Options			Inlet Throat;	0.00 ft	Water Surface Profile Data
					Outlet Control:	Profiles	

Output for Example #1 – Note that the headwater elevation at the design flowrate (664.84 ft) is 2.16 feet below the roadway overtopping (667.0 ft).

HY-8: CREATING A REPORT

HY-8: VIEWING THE REPORT

Headwater Elevation (ft)	Total Discharge (cfs)	Culvert 1 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
661.15	0.00	0.00	0.00	1
662.54	12.50	12.50	0.00	1
663.17	25.00	25.00	0.00	1
663.77	37.50	37.50	0.00	1
664.28	50.00	50.00	0.00	1
664.75	62.50	62.50	0.00	1
664.84	65.00	65.00	0.00	1
665.75	87.50	87.50	0.00	1
666.32	100.00	100.00	0.00	1
666.97	112.50	112.50	0.00	1
667.18	125.00	116.22	8.66	7
667.00	113.11	113.11	0.00	Overtopping

CULVERT DESIGN

- Criteria to keep in mind:
 - Return Period
 - Interstate –100-year
 - Primary 25-year
 - Secondary 10-year

Functional Classification	Allowable Backwater	Roadway Serviceability	Allowable Velocity
Freeway	Q_{100}	Q_{100}	Q50
Non-Freeway \geq 4 Lanes	Q100	Q100	Q50
Two-Lane Facility			
$AADT \ge 3000$	Q100	Q100	Q_{50}
$3000 > AADT \geq 1000$	Q100	Q_{25}	Q_{25}
AADT < 1000	Q100	Q10	Q10
Drive	Q_{100}	Q10	Q_{10}

Note: The design-storm frequency for a culvert-extension structure is identical to that for a new culvert structure. Traffic volume is for a 20-year projection.

DESIGN-STORM FREQUENCY, CULVERT

Source: InDOT Design Manual

- While design criteria may be a 10-year return period, keep in mind potential impacts to adjacent or upstream structures that may warrant an increase to the system capacity
- Minimum cleaning velocity: 3 ft/sec
- Minimum freeboard requirements

CULVERT SHAPE SELECTION

- Criteria to keep in mind:
 - Minimum pipe size
 - Site / location restrictions what fits?
 What about installation?
 - County / community ordinance guidelines
 - Cost

Structure Application	Minimum Circular- Pipe Size	Minimum Deformed- Pipe Area		
Drive	15 in.	1.1 ft ²		
Mainline or Public-Road Approach (2 lanes)	15 in.	1.1 ft ²		
Mainline or Public-Road Approach (≥ 3 Lanes)	36 in.	6.7 ft ²		

MINIMUM PIPE-CULVERT SIZE

Source: InDOT Design Manual

CULVERT MATERIAL SELECTION

- General criteria:
 - Loading / cover over the pipe
 - Minimum cover is typically 2 feet; however, check applicable regulations
 - Boone County, IN requires 3 feet for culverts within ROW
 - Purpose
 - Drain tile versus highway crossing
 - County / community ordinance guidelines
 - Are plastic pipes allowed?
 - Is concrete required?
 - Cost

INSTALLATION

- Plan and specifications signed by a Licensed PE
- Permits
- Best Management Practices (BMPs)
- Inlet and outlet protection
- Bedding materials
- Backfill
- Inspection

REFERENCES

- LTAP Stormwater Drainage Manual
- InDOT Design Manual
- HY-8 Users Manual (FHWA)

QUESTIONS

