PavementDesigner.org

PavementDesigner: A New Web-Based Pavement Design Tool

105th Purdue Road School West Lafayette, IN March 6, 2019

Eric Ferrebee, P.E. Director of Technical Services American Concrete Pavement Association

PavementDesigner

Home

0

0

PavementDesigner Project Leaders

- Industry Team Partners
 - Wayne Adaska, P.E.
 - Portland Cement Association
 - Brian Killingsworth, P.E.
 - National Ready Mix Concrete Association
- Additional Support
 - Jim Mack, P.E. (CEMEX)
 - Feng Mu, PhD, P.E. (PNA Construction Technologies)
 - Randy Riley, P.E. & Jim Powell, P.E.
 - ACPA State/Chapter Associations

Overview and Background

- ACPA, NRMCA, and PCA partnership, with a contribution from the RCC Council to develop a website application to design cement-based solutions for:
 - Municipal Streets and Local Roads
 - Parking Lots
 - Intermodal/Industrial Facilities
- Design guidance and tools for:
 - Jointed-Plain Concrete Pavements
 - Continuously Reinforce Concrete Pavement
 - Concrete Overlays
 - Composite Pavements
 - Roller Compacted Concrete
 - Cement Modified Soils
 - Cement-Treated Base
 - Full-Depth Reclamation

Bringing Online the Best of the Best Available Design Tools

Background and Overview –

- Primary audience is city, county, and consultant engineers who design pavements
- Secondary audience is professors and students
- Unifies design methods, providing promoters with a single source to direct target audience to for consistent answers
- Fills a design void for some products
- Web-based platform, appealing to existing and future generations of design engineers...
- ...with broad industry partner support!
- **FREE** and easily accessible!

PCA America's Cement Manufacturers

PARKING LOTS

Old Ways of Designing Parking Lots

- AASHTO 93
- ACI 330R-08 & 330R-18
 - Guide for Concrete Parking Lots
- StreetPave

Reported by ACI Committee 330

American Concrete Institute®

ACI 330

Table 3.1—Subgrade soil types and approximate support values (Portland Cement Association 1984a,b; American Concrete Pavement Association 1982)

Type of soil	Support	k, psi/in.	CBR	R	SSV
Fine-grained soils in which silt and clay-size particles predominate	Low	75 to 120	2.5 to 3.5	10 to 22	2.3 to 3.1
Sands and sand-gravel mixtures with moderate amounts of silt and clay	Medium	130 to 170	4.5 to 7.5	29 to 41	3.5 to 4.9
Sand and sand-gravel mixtures relatively free of plastic fines	High	180 to 220	8.5 to 12	45 to 52	5.3 to 6.1

BR - California bearing ratio; R - resistance value; and SSV - soil support value. 1 psi - 0.0069 MPa, and 1 psi/in. - 0.27 MPa/m.

Table 3.2—Modulus of subgrade reaction k

Subgrade k		Sub-base	thickness	
value, psi/in.	4 in.	6 in.	9 in.	12 in.
		Granular aggi	regate subbase	
50	65	75	85	110
100	130	140	160	190
200	220	230	270	320
300	320	330	370	430
		Cement-trea	ated subbase	
.50	170	230	310	390
100	280	400	.520	640
200	470	640	830	_
		Other treat	ed subbase	
.50	85	115	170	215
100	175	210	270	325
200	280	315	360	400
300	350	385	420	490

*For subbase applied over different subgrades, psi/in. (Portland Cement Association 1984a,b; Federal Aviation Administration 1978). Note: 1 in. – 25.4 mm, and 1 psi/in. – 0.27 MPa/m.

le 3.4—Twenty-year design thickness recommendations, in. (no dowels)

		k = 50) psi/in. (C	BR = 50; I	R = 86)	k = 400) psi/in. (C	BR = 38; <i>I</i>	R = 80)	k = 30	0 psi/in. (O	BR =26; <i>I</i>	R=67)
_	MOR, psi:	650	600	550	500	650	600	550	500	650	600	550	.500
	A (ADTT =1)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.5
_	A (ADTT = 10)	4.0	4.0	4.0	4.5	4.0	4.0	4.5	4.5	4.0	4.5	4.5	4.5
_	B (ADTT = 25)	4.0	4.5	4.5	5.0	4.5	4.5	5.0	5.5	4.5	4.5	5.0	5.5
- ffic	B (ADTT = 300)	5.0	5.0	5.5	5.5	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0
– pory	C (ADTT = 100)	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0
-	C (ADTT = 300)	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0	5.5	6.0	6.0	6.5
_	C (ADTT = 700)	5.5	5.5	6.0	6.0	5.5	5.5	6.0	6.5	5.5	6.0	6.5	6.5
—	$D(ADTT = 700)^{\dagger}$	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
		k = 200) psi/in. (C	BR = 10; I	R = 48)	k = 10	0 psi/in. (0	CBR = 3; R	? = 18)	<u>k</u> = 5	0 psi/in. (O	BR = 2; h	(= 5)
	MOR, psi:	650	600	550	.500	650	600	550	500	650	600	550	.500
1	A (ADTT=1)	4.0	4.0	4.0	4.5	4.0	4.5	4.5	5.0	4.5	5.0	5.0	5.5
	A (ADTT = 10)	4.5	4.5	5.0	5.0	4.5	5.0	5.0	5.5	5.0	5.5	5.5	6.0
	B (ADTT = 25)	5.0	5.0	5.5	6.0	5.5	5.5	6.0	6.0	6.0	6.0	6.5	7.0
Traffic	B (ADTT = 300)	5.5	5.5	6.0	6.5	6.0	6.0	6.5	7.0	6.5	7.0	7.0	7.5
category	C (ADTT = 100)	5.5	6.0	6.0	6.5	6.0	6.5	6.5	7.0	6.5	7.0	7.5	7.5
	C (ADTT = 300)	6.0	6.0	6.5	6.5	6.5	6.5	7.0	7.5	7.0	7.5	7.5	8.0
	C (ADTT = 700)	6.0	6.5	6.5	7.0	6.5	7.0	7.0	7.5	7.0	7.5	8.0	8.5
	$D (ADTT = 700)^{\dagger}$	7.0	7.0	7.0	7.0	8.0	8.0	8.0	8.0	9.0	9.0	9.0	9.0

*ADTT – average daily truck traffic. Trucks are defined as vehicles with at least six wheels; excludes panel trucks, pickup trucks, and other four-wheel vehicles. Refer to Appendix A. k – modulus of subgrade reaction; CBR – California bearing ratio; R – resistance value; and MOR – modulus of rupture.

Parking Lot Design

- ACI 330R-08 Guide based on StreetPave (PD's predecessor) design runs
- StreetPave is another accepted design methodology for Parking Lots
- New guide (ACI 330-R18) is based off PD design runs

Parking Lot Design with PavementDesigner

- PavementDesigner's

 Parking design uses a
 slightly modified version of
 the Street's Module for the
 sake of simplicity
 - Allows for various design lives, reliabilities, and percent slabs cracked at the end of the design life

Parking Lot Design with PavementDesigner

- Design a bus terminal (ACI Spectrum-C) that serves
 ~50 buses a day
- Assume 20 year design life
- Existing subgrade is clay

MUNICIPAL STREETS & LOCAL ROADS

Municipal Street Design with PavementDesigner

- Overlays
 - Bonded and Unbonded
 - On Asphalt and Concrete
- Full-Depth Concrete
 JPCP
 - RCC
 - CRCP
- Composite Pavements

Other Ways of Designing Municipal Streets

- AASHTO 93
- Pavement ME
- ACI 325.12R-02
 - Guide for Design of Jointed Concrete Pavements for Streets and Local Roads
- StreetPave

AASHTO 93

- Wholly empirical AASHO Road Test
- Limited inference space:
 - Materials
 - Structural sections
 - Soils
 - Traffic

PERCENT SURVIVING WITH PSI ABOVE 2.5

Don't Just Take My Word...

<u></u>	United States General Accounting Office
GAO	Report to the Secretary of Transportation
November 1997	TRANSPORTATION INFRASTRUCTURE
	Highway Pavement Design Guide Is Outdated
	THE STREET STREET

"The current design guide and its predecessors were largely based on design equations empirically derived from the observations AASHTO's predecessor made during road performance tests completed in 1959-60. Several transportation experts have criticized the empirical data thus derived as outdated and inadequate for today's highway system. In addition, a March 1994 DOT Office of Inspector General report concluded that the design guide was outdated and that pavement design information it relied on could not be supported and validated with systematic comparisons to actual experience or research." ... this is why Pavement ME exists!

GAO/RCED-98-9

AASHTOWare Pavement ME Design

• ×

Reliability

Limit

- Developed for Highways
 - NOT street, road, parking lot, etc.
- Complex
- Expensive

Recent Files

- Projects

E A Project 1

Traffic

DX AASHTO DARWin-ME Version 1.0 Build 1.0.18 (Date: 8/31/2011)

Project1:Project Project1:Traffic

New Pavement

Jointed Plain Concrete F 💌

General Information

Design type

Pavement type

New Open SaveAs

Save SaveAl Close Exit. Run Batch Import Export Undo Redo Help

Performance Criteria

JPCP Calibration – **BIG INF. SPACE!**

AASHTO 93 vs. ME

OUTPUTS, OUTPUTS, OUTPUTS!!!

Design Outputs

Distress Prediction Summary

Distress Type

Criterion

Satisfied?

Pass

Pass

Pass

Design Inputs

Design Life: 20 years Design Type: JPCP

Design Structure

Layer type	N
PCC	JPCP D
Flexible	Default
Cement_Base	Cemen
Subgrade	A-7-6
Subgrade	A-7-6

Design Outputs

Distress Prediction St

Dis

Mean joint faulting (in) JPCP transverse cracking

Distress Charts

Terminal IRI (in/mile)

Mean joint faulting (in)

Distress Charts

JPCP transverse cracking (percent slabs)

Reliability (%)

Target

90.00

90.00

90.00

Achieved

99.92

99.90

91.91

Distress @ Specified

Reliability

Predicted

117.99

0.07

4.61

Target

172.00

0.12

5.00

Cracking PCC (s) peo ž 5 INVERSE ADD THE

2.00

ACI 325

- Limited design charts
- New guide based on PavementDesigner runs

Table 3.4—Twenty-year design thickness recommendations, in. (no dowels)

		k = 50	0 psi/in. (C	BR = 50; I	R = 86)	k = 40	0 psi/in. (C	BR = 38; I	R = 80)	k = 30	0 psi/in. (O	BR =26; I	R = 67)
	MOR, psi:	650	600	550	500	650	600	550	500	650	600	550	500
	A (ADTT=1)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.5
	A(ADTT = 10)	4.0	4.0	4.0	4.5	4.0	4.0	4.5	4.5	4.0	4.5	4.5	4.5
	B (ADTT = 25)	4.0	4.5	4.5	5.0	4.5	4.5	5.0	5.5	4.5	4.5	5.0	5.5
Traffic	B (ADTT = 300)	5.0	5.0	5.5	5.5	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0
category	C (ADTT = 100)	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0
	C (ADTT = 300)	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0	5.5	6.0	6.0	6.5
	C (ADTT = 700)	5.5	5.5	6.0	6.0	5.5	5.5	6.0	6.5	5.5	6.0	6.5	6.5
	$D(ADTT = 700)^{\dagger}$	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
		k = 200	0 psi/in. (C	BR = 10; I	R = 48)	k = 10	0 psi/in. (0	CBR = 3; R	= 18)	k = 5	0 psi/in. (O	CBR = 2; R	?= 5)
	MOR, psi:	650	600	550	500	650	600	550	500	650	600	550	500
	A (ADTT=1)	4.0	4.0	4.0	4.5	4.0	4.5	4.5	5.0	4.5	5.0	5.0	5.5
	A(ADTT = 10)	4.5	4.5	5.0	5.0	4.5	5.0	5.0	5.5	5.0	5.5	5.5	6.0
	B (ADTT = 25)	5.0	5.0	5.5	6.0	5.5	5.5	6.0	6.0	6.0	6.0	6.5	7.0
Traffic	B (ADTT = 300)	5.5	5.5	6.0	6.5	6.0	6.0	6.5	7.0	6.5	7.0	7.0	7.5
category	C (ADTT = 100)	5.5	6.0	6.0	6.5	6.0	6.5	6.5	7.0	6.5	7.0	7.5	7.5
	C (ADTT = 300)	6.0	6.0	6.5	6.5	6.5	6.5	7.0	7.5	7.0	7.5	7.5	8.0
	C (ADTT = 700)	6.0	6.5	6.5	7.0	6.5	7.0	7.0	7.5	7.0	7.5	8.0	8.5
	$D (ADTT = 700)^{\dagger}$	7.0	7.0	7.0	7.0	8.0	8.0	8.0	8.0	9.0	9.0	9.0	9.0

PavementDesigner.org

*ADTT – average daily truck traffic. Trucks are defined as vehicles with at least six wheels; excludes panel trucks, pickup trucks, and other four-wheel vehicles. Refer to Appendix A. k – modulus of subgrade reaction; CBR – California bearing ratio; R – resistance value; and MOR – modulus of rupture.

PavementDesigner for Roadways

- Roots date back to the 1960s
 PCA Method
- Tailored for streets and roads
- Failure modes are cracking and erosion

Municipal Street Design with PavementDesigner

- Design for Overland Parkway with ~100 trucks/day
- Existing Subgrade is poorly graded silt (A-5)

Highway Design with PavementDesigner

- 7,860 trucks (~20M ESALs)
- 90% Reliability
- 5% Slabs Cracked
- 6 lane facility

- Edge Support
- HMA Subbase = 1"
- Cement Stb Subgrade = 6"
- K = 160 psi/in

- R-Value = 20
- MOR = 630 psi
- E_{PCC} = 3,500,000 psi

- Design:
 - AASHTO 93 = 11"

DESIGN SUMMARY REPORT FOR

JOINTED-PLAIN CONCRETE PAVEMENT (JPCP)

DATE CREATED:

Thu Oct 04 2018 15:10:11 GMT-0500 (Central Daylight Time)

Project Description

Project Name:	ARDOT - I-30 Calcula	tedwixier:	undefined	Zip Code:	undefined
Designer's Name:	undefined	Route:	undefined		
Project Description:	undefined				

Design Summary

boolgir cummary	Doweled	Undoweled		Doweled	Undoweled
Recommended Design Thickness:	8.50 in.	8.50 in.	Maximum Joint Spacing:	15 ft.	15 ft.
Calculated Minimum Thickness:	8.43 in.	8.43 in.			

Pavement Structure

CONCRETE				SUBGRADE	
28-Day Flex Strength:	630 psi	Edge Support:	Yes	R-Value:	20
Modulus of Elasticity:	3500000 psi	Macrofibers in Concrete:	No	Calculated MRSG Value	4,305 psi

Project Level

TRAFFIC		GLOBAL	
Spectrum Type:	Major Arterial	Reliability:	90 %
Design Life:	20 years	% Slabs Cracked at End of Design Life:	5 %
USER DEFINED	TRAFFIC		
Trucks Per Day:	7,860	Avg Trucks/Day in Design Lane Over the D	esign Life: 2,596
Traffic Growth Rate %:	1 % per year	Total Trucks in Design Lane Over the Desi	gn Life: 18,964,076
Directional Distribution:	50 %		
Design Lane Distribution:	60 %		

Design Inputs

Design Life: 20 years Design Type: JPCP

Existing construction: Pavement construction: Traffic opening:

June, 2020 September, 2020

Climate Data 34.747, -92.233 Sources (Lat/Lon)

Design Structur	Design Structure						
Layer type	Material Type	Joint Design:	Joint Design:		Heavy Trucks		
PCC	JPCP Default	9.0	Joint spacing (ft)	15.0	Age (year)	(cumulative)	
Flexible	Default asphalt concrete	1.0	Dowel diameter (in)	1.25	2020 (initial)	7,860	
Cement_Base	Cement stabilized	6.0	Slab width (ft)	12.0	2030 (10 years)	9,775,300	
Subgrade	A-7-6	10.0			2040 (20 years)	22,134,400	
Subgrade	A-7-8	Semi-infinite					

Design Outputs

Distress Prediction Summary

Distress Type	Distress @ Specified Reliability		Reliability (%)		Criterion
	Target	Predicted	Target	Achieved	Sausheu:
Terminal IRI (in/mile)	172.00	117.99	90.00	99.92	Pass
Mean joint faulting (in)	0.12	0.07	90.00	99.90	Pass
JPCP transverse cracking (percent slabs)	5.00	4.61	90.00	91.91	Pass

Distress Charts

	Faulting	
0.12	0.12	
p 81		
0.05		207
0.08		
0.04	A REPORT OF A REPORT	103
0.02		
0	0 2 4 6 6 10 12 14 16 15	1
	Revenuent: Alter Treeset 1	

Differences Between Parking and Street Design

- Simplicity in Parking:
 - Limited Spectrums (for now)
 - Growth Rate = 0%
 - Directional Dist = 100%
 - Design Lane Dist = 100%
 - Fibers not allowed
 - Edge support assumed to be yes
 - Only allows 1 subbase layer

INTERMODAL DESIGN

Intermodal Design?

What Designs are Available for Heavy Intermodal/Industrial Vehicles

- ACI 330.2R-17 Guide for the Design and Construction of Concrete Site Paving for Industrial and Trucking Facilities
 - Uses design tables (Mainly for Trucks)
 - Lists additional design software:
 - ACPA StreetPave
 - Pavement ME
 - TCPavements / Optipave
 - ACPA AirPave

Intermodal Design with PavementDesigner

- Design for a CAT 986 Loader
 - 130,000 lb
 - Wheel base = 12.5 ft
 - Axle width = 10 ft
 - Tire Pressure = 90 psi

Engine			Operating Specifications		
Engine Model	Cat [®] C15 ACERT ^{IM}		Rated Payload - Quarry Face	10 tonnes	11 tons
Gross Power - ISO 14395	329 KW	441 hp	Rated Payload - Loose Material (Standard)	12.7 tonnes	14 tons
Net Power - SAE J1349	305 kW	409 hp	Rated Payload - Loose Material (High Lift)	11 tonnes	12.1 tons
Buckets			Operating Weight	43717 kg	96,379 lb
Bucket Capacities	5-10.3 m ²	6.5-13.5 yd ²			

What About Overlay Design?

- PavementDesigner Overlay Design Procedure
 - Utilizes JPCP design with modification to account for existing surface layer's condition and thickness
- Links out to the BCOA-ME
 - Best method available
 - Incorporates ACPA BCOA and 6x6x6 designs

Increasing in Use!

SY OF THIN (<6 IN.) CONCRETE OVERLAYS

Lots of Guidance Available...

Newest Resource Detailing Performance

Concrete Overlay Performance on Iowa's Roadways

Field Data Report July 2017

IOWA STATE UNIVERSITY

Sponsored by Iowa Highway Research Board (IHRB Project TR-698) Iowa Department of Transportation (InTrans Project 15-559)

 Detailing overlays with up to 35 years of performance!

Guide to All Things Overlays!

- Overlay types and uses
- Evaluation & selection
- Design guidance
- Miscellaneous design details
- Overlay materials selection
- Work zones under traffic
- Key points for overlay construction
- Accelerated construction
- Specification considerations
- Repairs of overlays
- Free download at:

www.cptechcenter.org

