SPR-4230: Alternative Quality Assurance Methods for Compacted Subgrade

Peter J. Becker, PhD

Indiana Department of Transportation Division of Research & Development

Presentation Layout

- Project background
- Research approach
- Research Findings to Date

- Laboratory Testing
- Field Testing
- Summary
- Future Work

Performance-Based Specifications

- Type of quality assurance specification
 - Quality assurance = owner/owner's representative (i.e., INDOT)
 - Quality control = contractor
- Describes desired level(s) of engineering property(s)
 - Predictor(s) of performance
 - Appear in primary prediction relationship(s)

Doyle, G. (2003). *Major Types of Transportation Construction Specifications: A Guideline to Understanding Their Evolution and Application.* AASHTO Highway Subcommittee on Construction, Quality Construction Task Force. Washington, D.C.: American Association of State Highway and Transportation Officials.

Traditional Subgrade Quality Assurance

A More Appropriate Performance Property

INDOT Allowed Subgrade Treatment Types

Goal of SPR-4230

Specified chemically modified subgrade resilient modulus used in design

In situ quality assurance testing

Light weight deflectometer (LWD)

- Rapid
- Easy to use
- Provides stiffness meaurement

Confirm specified chemically modified subgrade resilient modulus during construction

Light Weight Deflectometer (LWD)

LWD Elastic Modulus Backcalculation

In Situ Stresses:

$$\sigma_z = f(F_o, r, z) \quad \sigma_r = f(F_o, r, z) \quad \sigma_\theta = f(F_o, r, z)$$

In Situ Vertical Strain:

$$\varepsilon_z = \frac{1}{E} \left[\sigma_z - \nu (\sigma_\theta + \sigma_r) \right]$$

v is Poisson's ratio (0.2 to 0.4 typical)

Vertical Deflection at Surface: $\delta_z = \int_{-\infty}^{\infty} \varepsilon_z dz$

$$\delta_z = \frac{F_o(1-\nu^2)k}{\pi r_o E}$$

k is applied stress shape factor

 $E_{LWD} = \frac{F_o(1 - v^2)k}{\pi r_o \delta_z}$ *E* is elastic Modulus *F_o* is applied force *r_o* is loading plate radius *v* is Poisson's ratio *k* is applied stress shape factor δ_z is surface deflection

Applied Stress Shape Factor (k)

LWD Elastic Modulus

LWD Elastic Modulus ≠ Resilient Modulus (Strain)

LWD Elastic Modulus ≠ Resilient Modulus (Stress)

Previously Established E_{LWD} and M_r Correlations

D. J. White, M. Thompson, and P. Vennapusa, "Field validation of intelligent compaction monitoring technology for unbound materials," Final Report MN/RC-2007-10, Minnesota DOT, St. Paul, Minn, USA, 2007.

A-4 and A-7-5 subgrades $M_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$ $k_i = C_1 + C_2 \left(\frac{\sigma}{\delta}\right)$ i = 1, 2, 3 C_1 C_2 480 1040 k_1 k_2 1.0 -0.9 k_3 -3.72.8

Untreated

S. H. Mousavi, A. G. Gabr, and R. H. Borden, "Subgrade resilient modulus prediction using light-weight deflectometer data," Canadian Geotechnical Journal, 54(3), 2017.

This Study's E_{LWD} and M_r Correlation

5 kg drop weight imparting up to 871 lbf maximum force

Loading plate (5.91 in. diameter)

Laboratory LWD

CBR-sized sample (7 in. high, 6 in. diameter)

A-6 subgrade

- Nominal 4% cement content
- Nominal relative compactions of 90%, 95%, & 100%
- Nominal moisture contents of 2% dry of optimum, optimum, & wet of optimum

Relationship Between E_{LWD} and Axial Stress (σ_a)

Predicting In Situ E_{LWD}

 $E_{LWD} = ae^{b\sigma_a}$

 $\sigma_a = (\varepsilon_{LWD})(E_{LWD})$

 $E_{LWD} = a \exp[b(\varepsilon_{LWD})(E_{LWD})]$

In the lab...

$$\varepsilon_{LWD} = \frac{\Delta h}{h}$$

In the field...

$$\varepsilon_{LWD} = \frac{1}{E_{LWD}} [\sigma_z - \nu(\sigma_r + \sigma_\theta)]$$
$$(\varepsilon_{LWD})(E_{LWD}) = \sigma_z - \nu(\sigma_r + \sigma_\theta)$$

For symmetric loading...

$$\sigma_r = \sigma_\theta$$

 $(\varepsilon_{LWD})(E_{LWD}) = \sigma_z - 2\nu\sigma_r$

$$E_{LWD} = ae^{b(\sigma_z - 2\nu\sigma_r)}$$

Predicting In Situ E_{LWD}

Correlating Predicted In Situ E_{LWD} with M_r

Field Testing (2018 construction season)

I-65 near Frankfort (Crawfordsville District)

- Target 4% cement
- A-4 and A-2-4 subgrades
- 4 test sections

I-469 near Fort Wayne (Fort Wayne District)

- Target 5% cement
- A-6 subgrade
- 2 test sections

US-6 near Brimfield (Fort Wayne District)

- Target 4% cement
- A-1-b and A-4 subgrade
- 1 test section

Cleveland Road in South Bend (La Porte District)

- Target 4% cement
- A-1-b
- 1 test section
- CR 400 S near Clymers (La Porte District)
 - Target 4% cement
 - A-4
 - 1 test section

I-69 near Anderson (Greenfield District)

- Target 4% cement
- A-6
- 1 test section

Results of LWD Field Testing (LWD Deflection)

Results of LWD Field Testing(LWD Elastic Modulus)

Results of LWD Field Testing (LWD correlated resilient modulus)

Falling Weight Deflectometer (FWD)

Applies 7 kip, 9 kip, & 11 kip nominal loads (load cell measures actual loads)

Geophones measuring surface deflection basin to nearest 0.01 mil

11.81 in. diameter loading plate

Backcalculation of Subgrade Resilient Modulus from FWD

LWD and FWD Resilient Modulus Agreement

Key Findings

- The LWD measures in situ soil stiffness (LWD elastic modulus) that relate to pavement subgrade performance
- Although LWD elastic modulus and resilient modulus are not one and the same, they do correlate well with one another
- Field LWD tests provide validation of proposed LWD elastic modulus and resilient modulus correlation
- Resilient moduli correlated from LWD testing are in agreement with resilient moduli backcalculated from FWD testing

Future Work

 Improve correlation between predicted LWD deflection and resilient modulus (more samples from more soil types)

- LWD and FWD measurements from INDOT contracts during the 2019 construction season
 - o Use better model for backcalculating resilient modulus from FWD
- Provide recommendations for subgrade construction acceptance o Maximum LWD deflection o Testing frequency
 - o Effect of curing time
- Publish findings in JTRP technical report

Acknowledgements

• SPR-4230 Study Advisory Committee

o Athar Khan o Nayyar Siddiki

• INDOT Research & Development

o Tony Johnson o Ross Bucher

- o Maurice Hendryx
- INDOT Construction

 Terry Olding
 Greg Hole
- Engineering Consultants

o Dale Wills (Lochmueller Group) o Gary Fox o Tom Harris

o Hobie Deatono Daniel Trano Allen Truax

O Charles SchuelerO Kyle Van Meter

o Myron Cohagan (Lochmueller Group) o Tom Duncan

o Lyle Burkhaltero Chris Weinard

o Steve Lindway

o Josh Tinkle (Alt & Witzig Engineering)

Thank you for your attention

Peter J. Becker, PhD Soil Foundation Research Engineer Indiana Department of Transportation Division of Research and Development P.O. Box 2279 1205 Montgomery Street West Lafayette, IN 47906 Phone: (765) 463-1521 Fax: (765) 497-1665 email: pbecker1@indot.in.gov

GŢŢ

