Building a Safer, More Sustainable World ... One Project at a Time

Rapid-Setting Non-Portland Cement Concrete Applications

Matthew Ross P.E. Engineering Sales Manager <u>Mross@ctscement.com</u> 816 803-9331

Leading manufacturer of belitic CSA cement technology in North America

INFRASTRUCTURE Highways, Roadways, Bridges and Viaducts

GOVERNMENT Federal, State & Local Agencies, Public Works

MIXED USE Urban Development, Multi-Family, Residential

INDUSTRIAL Water/Wastewater, Power & Energy, Manufacturing

MARINE Dams, Canals, Locks, Levees, Ports & Channels

AVIATION Runways, Taxiways, Aprons, Hangars

INSTITUTIONAL Schools, Universities, Healthcare, Correctional

COMMERCIAL Retail, Hospitality, Recreation, Arenas, Convention Centers

MINING & TUNNELING Shotcrete, Pumpable Grout, Cavity Fill, Pipe Liners

100% Employee Owned

At the heart of CTS's success is our team of employee-owners whose integrity, commitment and willingness to go the extra mile stand behind everything we do. Every employee has a personal stake in helping you succeed.

Objectives

- Review Industry Objectives & Key Challenges
- Introduce Calcium Sulfoaluminate (CSA) Cement Technology
- Understand the Performance Advantages of CSA
- Review Materials Available Based on CSA Technology
 - Rapid Set[®] (ASTM C1600)
 - Komponent[®] (ASTM C845)
- Discover the Design Versatility CSA Offers
- Discuss the Sustainability Advantages of CSA
- Review Key Industry Standards, Best Practices & Specification Recommendations

Design, Construction & Development Teams are charged with...

Improving ...

- Project Efficiencies
- Long-Term Performance

While ...

- Minimizing Downtime
- Reducing Project Costs
- Reducing Lifecycle Costs

Primary theories on how deterioration & corrosion in concrete occurs:

Drying shrinkage cracking & porosity of concrete allows...

- Salts and other contaminants enter the concrete and cause corrosion.
- Corrosion of the metal leads to expansive forces that cause cracking of the concrete structure.
- Cracks in the concrete allow moisture and salts to reach the metal surface and cause corrosion.

Ultimately, Concrete Durability & Service Life is Compromised by...

- Cracking & Curling
- Spalling & Abrasion
- Sulfates & Chlorides

- Alkali-Silica Reaction (ASR)
- Carbonation
- Corrosion

How do We Achieve the Objective to Prevent Deterioration & Failure?

Prevent Deterioration Caused by Shrinkage Cracking

Prevent Deterioration Caused by Chemical Attack (Sulfates, Chlorides)

Lower Porosity & Purmeability

Maximize Durability Asset Life

What Is It?

Calcium Sulfoaluminate (CSA) Cement

- Modified derivative of portland cement clinker
- Higher quality hydraulic cement
- Developed in the 1950's to overcome common shortfalls of portland cement
 - Excessive shrinkage
 - Susceptibility to chemical attack
 - Destructive reactions with certain aggregates
 - Negative consequences of traditional accelerating admixtures

Where Did It Come From?

- Joseph Aspdin is credited with the development of Portland Cement.
- Took out a patent in **1824** for "**Portland Cement**," a material he produced by firing finely-ground clay and limestone until the limestone was calcined.
- He called it **Portland Cement** because the concrete made from it looked like **Portland** stone, a widely-used building stone in England.

Global

Mfg

1960's

Innovation Continues

1950's

Mobile

Plants

1980's

History

- **1950's** Alexander Klein discovers calcium sulfoaluminate (CSA) cement and focuses on chemical pre-stressing of concrete and shrinkage compensation of portland cement. **Type K Shrinkage-Compensating Cement Concrete** is invented. Ed Rice was instrumental in these early R&D efforts.
- **1960's** Ed Rubin, Alexander Klein and Ed Rice develop **advanced CSA rapid hardening, high early strength cement**. First industrial production of CSA at the Kaiser Cement Plant.
- **1970's** CSA technology continues to develop and project uses grow. Including:

Los Angeles World Trade Center, Washington, D.C. Subway, Chicago O'Hare Parking Structure, Dallas City Hall, and Ohio Turnpike Bridge Decks, The Pentagon.

1980's Further growth and development of rapid setting technology & bulk products.

1990's Consumer-based product line developed (bag & box / retail & specialty distribution).

CalTrans – 400 lane miles of concrete highway

2000's International market expansion; product development continues (paint line, mining, self-leveling and polishable cements)

Today, millions of cubic yards of CSA are placed worldwide each year.

Cement Technology Evolution

- Portland Cement
 - Ubiquitous, successful, 200 year-old.
- Calcium Sulfoaluminate (CSA) Cement
 - Developed out of UC Berkeley in California in the 1950s
 - Expansive material compensates drying shrinkage of portland cement. (Type K)
- Belitic Calcium Sulfoaluminate (BCSA) Cement
 - Standalone, rapid setting cement developed in the 1970s.
 - Does not exhibit the shortcomings of other Rapid Strength Concretes

Portland Cement Concrete Limitations

Strength Gain	4350 Psi in 7 days	 Slow Return of Infrastructure to Service Cost to traveling public and stakeholders, safety
Shrinkage	600-700 Microstrains	 Cracking Slab Size (15-20 ft) - Distance Between Joints Cost of Joint Maintenance Service Life (25-40 years)
Porosity	20-30% of Volume	- ASR, Ingress of Chlorides, Sulfates, etc. - Service Life (25-40 years)
Carbon Footprint	0.9 t CO ₂ / t cement	- Sustainability

BCSA is a stand-alone rapid-setting cement.

No accelerating additive, No CaCl2, not Fondu, not of blends of CSA with portland, not a blend of Fondu with portland..... no blending with other cements.

	Calcium Sulfoaluminate	Dicalcium Silicate	Calcium Sulfate
Belitic Calcium Sulfoaluminate Cement	25%	50%	15%

First commercialization of this cement: 1978 in the USA

```
Ettringite
```

1) Hydration of sulfoaluminate into ettringite C_4A_3 +8C\$+6C+96H \rightarrow 3C₆A\$₃H₃₂

Followed by

2) Hydration of C_2S

 $C_2S+xH\rightarrow C_ySH_{x+y-2}+(2-y)CH$

Primary Differences

Portland Cement Composition

	Early Strength Gain	Long-Term Strength Gain	Attacked by Sulfates		
ASTM C150 TYPE	C₃S	C ₂ S	C ₃ A	C₄AF	C <u>s</u>
I	59	15	12	8	2.9
П	46	29	6-8	12	2.8
Ш	60	12	12-15	8	3.9
IV	30	46	5-7	13	2.9
V	43	36	4-5	12	2.7

Calcium Sulfoaluminate Cement Composition

	Early Strength Gain	Long-Term Strength Gain	Attacked by Sulfates		
ASTM C1600	C ₄ A ₃ S	C ₂ S	C ₃ A	C₄AF	C <u>s</u>
CSA Cement	30	45	0	2	15

Quantities represent % composition

- Early Strength Gain Element Achieves a Significantly Different Performance
- Exceptional Long-Term Strength Gain
- Durability is not Compromised for Speed
- Negligible C₃A Content Achieves Absolute Sulfate Resistance

BCSA has had a <u>single-cement</u> in use since 1978.

- Akin to Portland Cement
- •960375-09-1

Key: <u>A SINTERED</u> material, not a blend

Key Characteristics of BCSA Concrete

• Speed of Construction

- 1.5 Hour Compressive Strength 5070 Psi
- Strength
 - Ultimate compressive strength as high as 8700 PSI Higher strength than Portland at equal w/c
- Shrinkage
 - As low as 200 microstrains at 28 days (without shrinkage-reducing admixtures)

• Sulfate Resistance

- High sulfate resistance due to absence of C_3A
- Sustainability
 - 0.67 tons of CO₂ per ton of BCSA cement

Very Low Shrinkage: Increased durability

Drying Shrinkage – ASTM C596

Performance

Shrinkage-Compensating Concrete ACI 223 Type K (ASTM C845, C878)

- Designed to IMPROVE THE CEMENT PASTE within the concrete structure.
- Engineered to COMPENSATE for drying shrinkage – effectively achieving net zero shrinkage of the concrete.

Dimensional stability maintained for the designed service life of the placement.

- CSA cement is **NOT** an SRA.
- SRAs affect the surface tension of the pore water.
- They are designed to **DELAY** shrinkage.
- Effects diminish over time.
- Compressive strengths can be affected.

Speed • Strength • Sulfate Shrinkage Carbon Footprint

ASTM C1581: Restrained Shrinkage

B-CSA Concrete: No Cracks at 90 Days Portland-based High Early Strength: Failure at 8.9 Days (Avg.)

Performance

Joint Width over Time

The Wider the Joint, the Greater the Shrinkage of the Slab

- Shrinkage Compensating Concrete (Komponent®) manufactured by CTS is extremely stable, with little to no long term shrinkage, control joint strain or warping. This stability is noted at both early age and at 10 months.
- Typical PCC and HPC continue to exhibit control joint growth at 10 months.
- Shrinkage Reducing admixtures have a minor impact at early age but do not impact long term sectional stability. Shrinkage, control joint strain and warping are nearly similar to typical PCC but slightly better than High Performance Concrete (HPC)

Alkali- Silica Reactivity : A better cement matrix

Lower pH Lower eq. Alkali Internal dessication Lower porosity

Performance

PORTLAND CEMENT CONCRETE

Only hydrates approximately 55% (0.25 w/c) of the mix water leaving approximately 45% for evaporation

CSA CEMENT CONCRETE

Performance

Water

Sand

- Eliminate Capillary Channels and Voids
- Low Shrinkage
- Maximum Formation of Ettringite Crystals Achieves High 1 to 1.5 Hr. Strength (Up to 7,000 psi)
- Can Have Expansive Qualities (Type K)
- High Sulfate Resistance (No C₃A)

- ✓ Low Porosity = Low Chloride Diffusion
- ✓ Low Permeability
 - Maximum Durability

Enhancing Performance

How?

A Different Hydration Mechanism

- Mix water is chemically retained ("bound") within the ettringite structure
- Eliminates bleed water (minimal water of convenience)
- Maintains integrity of the mix designed at the surface; w/c ratio is not compromised
- Improves abrasion resistance 30-40% (ACI 223)
- Prevents voids & capillary channels that lead to drying shrinkage
- Increases density
- Lowers porosity & permeability
- Prevents cracking & curling due to drying shrinkage volume change
- Prevent laitance and other "debris" from being drawn to the surface

Portland Cement Concrete Egress of Excess Water

&

Escape of convenience water in portland cement concrete creates voids & capillary channels that lead to shrinkage & contamination

Enhancing Performance

How?

Early Ettringite Formation

- ASTM C1600
 - Maximum formation during the first
 24 hours
 - Rapid strength gain without sacrificing long-term performance
 - Fast return to service (1 to 3 hours)

• ASTM C845

- Maximum formation during the first 7 days enhances strength gain
- Minor controlled early expansion compensates for shrinkage
- Rapid formation speeds setting time 20-30 minutes

Full consumption of mix water and complete hydration of CSA cement during placement and cure maximizes performance of the placement and helps prevent detrimental delayed ettringite formation.

CSA Cement Ettringite Crystals

Portland Cement Crystals & Gel

Performance

- •CSA cement (ASTM C1600) provides absolute sulfate resistance.
- •CSA cement expansive additive (ACI 223, ASTM C845) enhances sulfate resistance for all OPC mix designs.

Sustainability

- Less Limestone
 - Fewer Natural Resources
 - 1/3 less CO₂ emissions
- Kiln Temperature is ~400°F Lower
 - Significant reductions in fuel and CO₂ emissions
- Easier to Grind than OPC Clinker
 - Less electricity/energy consumption
- Recycled & Post Industrial By-Products
 - Divert waste from landfills

Used In

Pavement

I-14 Palmdale, CA

First Type K Shrinkage-Compensating Concrete Pavement 1963

I-12 Lodi, CA

Second Type K Shrinkage-Compensating Concrete Pavement 1963

1994 – Rockford Airport

The longest section: 1200 ft long and 7 inch thick without any transverse joints.

Pavement

Rockford IL Airport | FAA Research Project

Evaluate durability and significant joint reduction – the location of spalling, a common source of foreign object debris, safety hazards, costly maintenance and repair projects.

Unique Pavement Designs

- Type K Shrinkage-Compensating Concrete/ Steel Fibers
- Type K Shrinkage-Compensating Concrete/ Post-tensioned & Steel Fibers

	Regular PCC	Type K + Steel Fibers	Type K + Post Tensioned + Steel Fibers
Length of Runway Section	580'	900′	1200'
Slab Thickness	15"	10"	7"
Longitudinal Joint Spacing	18.75'	None	None
Transverse Joint Spacing	20'	85' to 200'	None
PCI Rating (10 Years)	67	82	98

Rockford IL Airport | Constructability Report 10 Year Inspection

\$50.36 yd2

Conventional PCC with Rebar 520' long, 75' wide, 15" thick Joints: 18.75' longitudinal & 20' transverse

\$50.72 yd2

Steel Fibers and Shrinkage-Comp 900' long, 75' wide, 10" thick Joints: no longitudinal, 85' to 200' transverse "Severely spalled" – many cracks & spalls Performance Index: Good

"Performing very well" – a few tight cracks Performance Index : Very Good Condition

\$46.29 yd2

Post-Tensioned and Fibers and Shrinkage-Comp 1200' long, 75' wide, 7" thick Joints: no longitudinal, no transverse "Performing exceptionally" Performance Index : Excellent Condition

"The use of Type K did not create handling, storing or delivery problems."

When Time is Money

High Early Strength
Maximum Durability

1994 - Northridge Earthquake

- Collapse of Interstate 10 Overpass
- Approach Slabs Rehabilitation
- Re-opened 74 days ahead of schedule
- Catalyst Project for CalTrans and FHWA

1995 -> ongoing: California Department of Transportation

Since 1994 Earthquake

Freeway Closes at 10 pm, re-opens at 5 am

Specifications:400 psi (2.8 Mpa) Flexural Strength at 4 hours

600 psi Flexural Strength at 28 days

1,400 lane-miles of belitic CSA pavement.

Panel Replacement

California Freeway System (Caltrans)

> Over 1,400 lane miles since 1995

Caltrans Report Evaluation of Rapid Strength Concrete Slab Repairs Dated October 2008 Less than 1.4% distressed slabs found Mostly construction related failers
Performance Goals Achieved

- 1. Maximum Formation of Ettringite Crystals
- 2. Eliminate Capillary Channels and Voids
- 3. Maximum Utilization of H₂O Molecules
- 4. No C₃A Content

- Prevent Deterioration Caused by Shrinkage Cracking
- Prevent Deterioration Caused
 by Chemical Attack (Sulfates, Chlorides)
- Lower Permeability
- Maximum Durability

Used In

Fast-Setting Hydraulic Cement Materials ASTM C1600

- Concrete Mixes
- Concrete Resurfacers & Underlayments
- Mortar Mixes & Repair Mortars
- Non-Shrink Construction Grouts
- Smoothing & Patching Compounds
- DOT & FAA Concrete Paving & Overlays
- Polishable Concrete Toppings
- Stucco Materials
- Tunneling & Mining Products
- Shotcrete
- Flowable Fill (CLSM)
- Cementitious Slurry
- Hardscape Mortars
- Tilt-Up Panels

Used In

Fast-Setting Hydraulic Cement Materials ASTM C1600

Advantages

- CSA Technology
- Minimize Shrinkage
- Improved Durability
- Increased Abrasion & Impact Resistance
- Reduced Permeability
- Protection of Reinforcement
- Increased Service Life

- Fast, Initial Set in 20 Minutes
- Structural Strength in 1 Hour
- In-Service in 1 to 3 Hours
- Minimizes Downtime
- Accommodates Accelerated Schedules
- Speeds Time to Asset Utilization

Project Value

CSA cement can be used wherever OPC is used

- Greatest Value is Realized...
 - Anywhere Fast Strength Gain is Required
 - Where In-Service Time is Paramount
 - Re-Align Critical Path (Recapture Time)
 - When Project Schedules Fall Behind
 - When Delay Penalties are Impending
 - Opening On Time is Critical
 - Early Formwork Removal is Necessary or Beneficial
 - Revenue Generating Asset
 - Emergency Repairs
 - Fast-Track Projects

Product Availability

New Construction, Repair & Restoration

- Concrete Mixes
- Concrete Overlays & Sub-Bases
- Mortar Mixes & Repair Mortars
- Non-Shrink Construction Grouts
- Vertical & Overhead Materials
- Smoothing & Patching Compounds

Product Availability

Pavement & Overlays DOT Approved

- Concrete Mixes
- Concrete Overlays & Sub-Bases
- White Toppings (Bonded & Unbonded)
- Mortar Mixes & Repair Mortars
- Low Permeability Concrete
- DOT & FAA Concrete Paving
- Latex Overlays

Product Availability

Shotcrete, Tunneling, Mining, Geotechnical

- Shotcrete
- Cavity Fill
- Flowable Fill/Backfill
- Lean Base
- Structural Support
- Pipe Liner/Mine Roof Supports
- Underground Road Repair

Rapid Strength Products

Set 45 Master Builders Magnesium Phosphate based, not a hydraulic cement

Reg Set Ideal Cement Co. High C₃A – Subject to sulfate attack, no longer made

Pyrament Lone Star Cement Co. Difficult to control, no longer made

PCC & Calcium Chloride Standard concrete mix with calcium chloride as an accelerator, subject to sulfate and chloride attack and high shrinkage rate

Rapid Strength Products – cont.

Rockfast Blue Circle Cement Co. Mineral Admixture made in England, not competitive in the U.S.

Ultimax Ultimax Corp. Mineral Admixture has been used by Caltrans

Quickrete Quickrete Corporation Fast setting concrete products available for smaller "bag" sized projects

CEMENT & CONCRETE PRODUCTS™

Type I-II Portland and Calcium Aluminate blend High early strength gain, used in refectory industry high heat

- CSA Cement blended with Type I-II or Type III Portland Cement, Higher cement content need to obtain for equal strength
- Rapid Set Cement 100% CSA Cement CTS Cement Mfg. Corp. Fast setting, high early strength available in bags or bulk High early strength, minimal shrinkage, resistant to chemical attack

Construction Cement Products

All the above mentioned products are RAPID STRENGTH PRODUCTS

ONLY ONE RAPID SET!

Material Selection

	Type III	BCSA	OPC	OPC + CSA	Type III + Accelerator	OPC + CAC
Blended	No	No	No	Yes	No	Yes
Low Shrink	No	Yes	No	Yes	No	No
High Early Strength	No	Yes	No	Yes	Yes	Yes
Moderate Early Strength	Yes	Yes	No	Yes	Yes	Yes
Sulfate Resistance	No	Yes	No	No	No	No
Cost	\$\$	\$\$\$	\$	\$\$	\$\$	\$\$\$

CalTrans 1999

- In 1999, CalTrans replaced a two-mile section of freeway from the 57/210 interchange to Garey Avenue in Pomona, CA.
- This rehabilitation project placed 3,500 cubic yards of Rapid Set cement pavement, 9-in thick in 55 hours and completed the project on time.

Crews Placing a Two-Mile Section of the 210 Freeway, 1999

Roads & Bridges

Highway 280

San Francisco

"Replacement work went without a hitch." - Joon Kang, Project Manager - CalTrans

Roads & Bridges

Specification

1 Hour Workability

Max. Shrinkage 0.045%

1,200 psi @ 3 hrs

3,500 psi @ 4 hrs

28" to 35" Displacement

Highway 280 San Francisco

Roads & Bridges

"We used Rapid Set to improve efficiencies and meet the deadline at it is performing beautifully."

- Joon Kang, Project Manager/CalTrans

Remove & Replace Hinges

1 Hinge Memorial Day

- 1 Hinge July 4th
- 2 Hinges Labor Day Weekend

Pavement Rehabilitation I–10 Pomona CA

Replacement of 9" Thick Concrete 3 hour Flex Strength 450 psi

Nevada DOT – PN# Q2-010-12

Remove & Replace Damaged PCCP - 2013

Pavement damage on this main thoroughfare due to rock slide

Nevada DOT – PN# Q2-010-12

Remove & Replace Damaged PCCP - 2013

RMA Group Test Results # 13-068-0/02 Strengths Requirements & Results

		Compressive	Flexural
Spec	½ Hour	1700 psi	N/A
RS Average	1 Hour	3460 psi	455 psi
RS Average	10 Day	5260 psi	620 psi

- Rapid Set chosen for Cast-in-Place Panel Replacement
- The Most Cost Effective Solution with Minimal Impact on Commuters and Commercial Transportation

2" Thick Rapid Set[®] Concrete Used on Tulsa Streets Rehabilitation Bid Competitively Against Asphalt On Life Cycle Basis

Rehabilitating a damaged street in 4 hours (Overlay)

Overlay

Utah DOT I-80 Patching

- Sub-Base repair with RS Lean Concrete Base
- Full Depth Panels, 10" Thick

- Ready Mix Production, 20-25 Transit Time
- Opening Strengths in 2 Hours (Retarded Mix for 1 Hour)

Utah DOT I-15 Patching

Bridge Impact Panels | The "Spaghetti Bowl" I-15 and I-80 Intersection

- High Traffic Thoroughfare
- Closures 6 Hrs/Night

- 3" to 6" Repair Depths
- Chipping Hammer Removal
- Ready Mix Production (w/retarder)
- Wet Burlap Curing

I-40 NC DOT Current Project | 4,000 cu. yd.

- Flexural Spec: 400 psi in 4 Hours
- Breaking Flex Beams Nightly
- RS is meeting spec in 1.5 Hrs; Over 500 in 2 Hrs
- Curing Compound Used on Panels

- Volumetric Production
- Time Restrictions: 8:30pm to 6:30am
- Late Opening Penalties: \$5,000/Hour
- Must meet Flexural (650 psi) AND Compressive (4500 psi) Strengths @ 28 Days

Emergency Repairs I-5 Sacramento

Rapid Set[®] Saved 7 Days of Repair Work Required Low Shrinkage

Concrete Placement Using a Mobile Mixer

SC DOT I-85 Patching 2016, 8-Weekend Project

-

- 150-180 cu. yd./weekend
- Opening Compressive Strength Spec: 1,600 psi
- Breaking Cylinders @ 24 Hrs and 28 Days

Lincoln Tunnel Full Depth Repair

- Most traveled thoroughfare in the region
- Weekend pavement replacement
- Demo & prep completed on Saturday
- Poured at 6am Sunday
- Opened to traffic 6pm Sunday

RSLMC Bridge Decks

IN DOT 2018 Construction I-65 Columbus IN

RSLMC Bridge Decks

IN DOT 2018 Construction I-465 Carmel IN

Bridge Decks Closer Pours

TN DOT 2018 Construction Poplar Street Bridge over I-240 Closure Pour

Closure Pours

IL Toll Road Precast Panel Closures and Bedding Grout

Tyndall AFB Laboratory Crater Repair

Damage to reopening 4 Hours 10 Craters 1 Crew

Government

- f. Rapid Set is recommended as the user's choice for crater repairs due to its ease of use, controllable set time, performance, and fast cure time.
- g. Future exercises should be conducted to determine if the recommended repairs could be completed in the 4-hr time frame using manpower and equipment similar to that available during expedient and sustainment operations.
- h. The required cap thickness as a function of backfill strength and expected aircraft loading should be explored through additional field testing and/or the use of finite element models. Until this testing is complete, Table 34 provides a matrix of layer thicknesses for standard pavement sections for typical design aircraft, traffic levels, conservative material properties, and relevant environmental conditions for expedient and sustainment repair.

Government

- Rapid Set Repair Mix is used by US Military all over the World at Bases for Concrete Repairs
- Shipped in one ton sacks

LaGuardia Airfield | Taxiway Full Depth Panel Replacement

- 300 cu. yd. @ 20" thick
- Weekend replacement
- Ready mix delivery with batch plant on-site
- Opening strengths achieved and on-time performance delivered

SEA-TAC Airfield Rehabilitation

Runway 16C Concrete Panel Replacement Program (1994-2005)

- 1,200 aircraft movements daily
- 600 aircraft landing on rapid set CSA concrete panels (slabs) daily
- 35,000 yd³ of Rapid Set[®] CSA concrete placed (708 panels)
- Runway and Taxiways

1994 – Seattle Airport Runway

Largest Use of B-CSA on Airfield Pavement in the World

Fast Runway Rehabilitation

Fast Taxiway and Apron Rehabilitation

1995-current

39,239 Cu yds of BCSA Concrete

Now used by more than 40 Airports Worldwide

SEA-TAC Airfield Rehabilitation Research 2012

FATIGUE LIFE RESEARCH

"Flexural Fatigue Behavior of Plain Concrete Fabricated with CSA Cement"

OPC Mix| Replacement Rate:35.5%CSA Mix (ASTM 1600)| Replacement Rate:3.8%

Estimation of Fatigue Life = 87 years

Report and Testing by Construction Technology Laboratories, Inc. (CTL)

- Static Flexural Strength (ASTM C78)
- Repetitive Loading at Various Stress Ratios (0.48 – 0.89) (ASTM D1195/D1195M)
Melbourne Tullamarine

Hartsfield-Jackson Atlanta International

Full Depth Panel Replacement

wo machines produce concrete at the same time to speed production The World's Busiest Airport with 5,000 Flights/Day

Hartsfield-Jackson Atlanta International

Full Depth Panel Replacement

Opening strength was typically achieved in 2 hours and the 28 day in less then 24 hours

Flexural strength of 500 psi is required at opening and 750 psi at 28 days

PDX Elevated Departure Road

1 Day compressive breaks averaged 4,350 psi

Aviation

Panel Replacement

Airports Around the World

- Los Angeles International (LAX)
- Boston Logan (BOS)
- Savannah/Hilton Head (SAV)
- Portland International (PDX)
- Auckland International (AKL)
- And more...

Airport	Date	Application	
SEA – Seattle-Tacoma Int'l Airport	1994-1998	Runwav Panel R&R	
MDW – Midway Int'l Airport	1998	Runway Panel R&R – Bulls-Eye Intersectio	
SNA – John Wayne Int'l Airport	1998	Parking Garage	
BOS – Boston/Logon Int'l Airport	2004	Runway Repairs	
ICT - Wichita Dwight D Eisenhower Airport	2004	Runway and Apron Repairs	
KCI – Kansas City Int'l Airport	2004	Runway and Apron Repairs	
ATL – Atlanta/Hartsfield Int'l Airport	2004	Runway and Taxiway Repairs	
EWR - Newark Liberty Int'l Airport	2005	Runway and Taxiway Repairs	
JFK - John F. Kennedy Int'l Airport	2006	Runway and Taxiway Repairs	
LGA - LaGuardia Int'l Airport	2006	Runway and Taxiway Repairs	
TSA – Taipei <u>Songshan</u> Int'l Airport	2007	Panel R&R, Patch work, & ELT Lights	
CAE - Columbia Metropolitan Airport	2007	Runway and Apron Repairs	
MEM - Memphis Int'l Airport	2008	Runway and Apron Repairs	
SDF - Louisville Int'l Airport	2008	Panel R&R	
STL - Lambert–St. Louis Int'l Airport	2008	Parking Garage Repairs, Panel R&R	
LAX – Los Angeles Int'l Airport	2008	Runway Repair & ELT Lights	
PHL - Philadelphia Int'l Airport	2009-2010	Runway and Taxiway Repairs	
SYD – Sydney Int'l Airport, Australia	2009	Runway and Taxiway Repairs	
PHX - Phoenix Sky Harbor Int'l Airport	2010	Runway and Taxiway Repairs	
DXB - Dubai Int'l Airport	2011	Runway Patch repairs	
MEL - Melbourne Int'l Airport	2011	Runway and Taxiway Repairs	
SPN - Saipan Int'l Airport	2012	Taxiway Panel R&R & ELT Lights	
PDX – Portland Int'l Airport	2014	EDR overlay	

On-Going Research

- FAA Standards Limit Airport Slab Sizes to 20-25 feet
- Larger Slab Sizes...
 - Reduce Maintenance By Reducing the Number of Linear Feet of Joints
 - Prevent the Outside Wheel of Wide-Bodied Aircraft from Rolling Along a Joint
 - Minimize FOB Concerns

Slab Size	Number of Slab	Linear Feet of Joints	% Reduction in Joints
18.75'	3,840	134,850	
25′	2,160	98,850	27%
37.5′	960	62,850	53%

Versatility

Mix Designs

- Mix Designs Can Be Customized To Suit the Project Timeline
- Offers Flexibility in Phasing
 - Provide Structural Strength in 1 up to 12 Hours
 - Accommodate Accelerated Schedules
 - Contractor Friendly Provides More Working Time

Production

Must provide enough time to allow for transport & placement

• Options

- Retarding Admixtures
- Amount and temperature of water added
- Temperature of materials at time of mixing
- Method of Delivery

Production

Ready-Mix Delivery

- Produced at a local batching plant
- Delivered to job site by tuck mounted intransit mixers
- Measured by weight of ingredients
- More precise than on-site batching plants
- Final quality & working time influenced by time in transit
- Additional fees apply

Volumetric On-Site Batch Plant

- A.k.a. "Metered Concrete"
- Concrete components mixed on-demand; produce the precise amount needed
- No excess, no waste
- Measures by volume instead of by weight
- Most precise method of production (highest quality control)
- Prevent short load challenges
- Pay for actual usage

Standard Specification for Rapid Hardening Hydraulic Cement¹

(must be reported on manufacturer's certification)

	Cement Type					
	URH	VRH	MRH	GRH		
Compressive Strength (See						
Section 9 for procedures), min,						
MPa [psi]						
11⁄2 h	21 [3000]	12 [1700]				
3 h	28 [4100]	15 [2200]	10 [1500]	7 [1000]		
6 h			14 [2000]	10 [1500]		
1 day	35 [5100]	24 [3500]	17 [2500]	14 [2000]		
7 days	41 [6000]	28 [4100]	28 [4100]	24 [3500]		
28 days	57 [8300]	35 [5100]	31 [4500]	28 [4100]		
Drying Shrinkage, max %						
7 days	0.06	0.06	0.08	0.10		
28 days, air storage	0.07	0.07	0.09	0.12		
Min Time of Final Set C191 ap-						
paratus						
Minutes ^A	10	10	10	10		
Autoclave, max expansion %	0.8	0.8	0.8	0.8		

^A The initial setting time typically ranges from 10 to 45 min for rapid hardening cements of various types and composition.

Best Approach: Specify Early strength AND Low Shrinkage

We are committed to growing our businesses together with you!

ASTM C878 Standard Specification for the Restrained Expansion of Shrinkage-Compensating Concrete

Keeping restrained expansion in perspective....

