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Steady-state thermal transport in nanostructures with dimensions comparable to, the non mean-free-path is examined.

Both the case of contacts at different temperatures with no internal heat enera ion and contacts at the same temperature with

internal heat generation are considered. Fourier’s Law results are compared to fgite olume method solutions of the phonon

Boltzmann equation in the gray approximation. When the boundapy eonditiens ate properly specified, results obtained using
Fourier’s Law without modifying the bulk thermal conduclivityﬁ@ n ?)sentially exact quantitative agreement with the
phonon Boltzmann equation in the ballistic and diffusive limits.“Che etwors between these two limits are examined in this
paper. For the four cases examined, the error in the app eb%al onductivity as deduced from a correct application of
Fourier’s Law is less than 6%. We also find that the %ﬁ{s\ aw results presented here are nearly identical to those

obtained from a widely used ballistic-diffusive approachybut analytically much simpler. Although limited to steady-state

conditions with spatial variations in one dimension mjp,a\gr y model of phonon transport, the results show that Fourier’s
Law can be used for linear transport from the diffusive o the ballistic limit. The results also contribute to an understanding of

how heat transport at the nanoscale can be WO in terms of the conceptual framework that has been established for

~

1‘( in r?nostructures with dimensions comparable to the phonon mean-free-path is a problem

electron transport at the nanoscale.

I. INTRODUCTION

The treatment of heat tyan:
of both fundamental andé%x%ﬁe est.'? Beginning with the work of Joshi and Majumdar®, much has been learned about

thermal transport at t Qoscale (as reviewed, for example, in Chapter 7 of Ref. 3). Rigorous techniques, such as molecular

dynamics simulationd® or solving the phonon Boltzmann Transport Equation (BTE) directly®, have been essential in
=

understanding nanossa eat transport, but physically sound, analytically compact, and computationally efficient approaches

are algo much- d. Majumdar showed how to use Fourier’s Law at the nanoscale by replacing the thermal conductivity

with a size-dependent, apparent thermal conductivity.” Chen and Zeng showed that the direct use of Fourier’s Law without

mgﬁhe thermal conductivity can produce quite accurate results, at least for one-dimensional problems.® The key is to

use appropriate (temperature-jump) boundary conditions. Because of the need for computationally efficient approaches,

extensions of Fourier’s Law have been considered by many researchers (e.g. see Refs. 9-11 and references therein).

9 Electronic mail: jan.kaiser@rub.de


http://dx.doi.org/10.1063/1.4974872

! I p‘ | This manuscript was accepted by J. Appl. Phys. Click here to see the version of record.

this paper, we examine the use of the unmodified Fourier’s Law at the nanoscale, but with special boundary

Pu b“&l{“llﬂg] s at the contacts. In this regard, the recent work of Peraud and Hadjiconstantinou'® is relevant. Peraud and
Hadjiconstantinou present asymptotic expansion solutions of the Boltzmann equation focusing on small Knudsen numbers."’

Our paper examines the use of Fourier’s Law across the entire diffusive to ballistic spectrum. Peraud and Hadjiconstantinou

show that the zeroth order solution is the classic Fourier Law solution with fixed temperatures at the boundaries, but the first

and second order solutions involve temperature jumps at the boundaries. Their analysis 4 hat at least up to second order,

the thermal conductivity in the bulk is the unmodified bulk conductivity— even in hructures. They point out that there

is no justification for introducing an effective thermal conductivity in small structures; the*reduction of thermal transport is

due to the temperature jump boundary conditions, not to a reduced thermal ¢
-~

we arrive at. The difference is that Peraud and Hadjiconstantinou treat the full B’SE by asymptotic expansion and focus on the

uCtivity, These are the same conclusions that

small Knudsen number regime. In contrast, we first simplify the B@the McKelvey-Shockley equations) and then show that

these equations lead without further approximation to Fourier’ssLaw ang_ at temperature jump boundary conditions arise

naturally from using physically correct boundary cond@e BTE itself. Peraud and Hadjiconstantinou introduce

kinetic boundary layer functions to treat the non-linear{cmpexature profiles near the boundaries. We ignore these boundary

layers and treat the entire region inside the contacts,with Fourier’s Law. For moderate Knudsen numbers, our solution is less

™
accurate, but in the diffusive limit and the bal{\lim (which is not examined in Ref. 10), our solution is exact. The main
conclusion of our work agrees with that o h':@adjiconstantinou — that one should use the unmodified Fourier’s Law
inside a nanostructure, but the boundary.conditions'must be modified to a jump type boundary condition.
This paper builds on the wetk ofd\iaassén and Lundstrom'” who extended the work by Chen and Zang® by introducing a
consistent definition of t?)per r‘é’ at ?e nanoscale (analogous to the way that electrochemical potentials are defined at the

nanoscale') and by s owiNto derive Fourier’s law without assuming local thermodynamic equilibrium. The work

reported here extends Dn Ref. 12 by considering the important case of nanostructures with internal heat generation and by

Aesult
4 eSuj

steady-state, gray modelsThis comparison confirms that Fourier’s Law produces exact solutions in the diffusive and ballistic

carefully compari btained from Fourier’s Law to numerical solutions to the phonon BTE assuming a simple,
limits fand"it quantifies the errors between these limits. The Fourier’s Law analysis presented here also provides new insights
into hea ans)ort in nanostructures with internal heat generation, such as how to describe temperature in terms of the
temperaturés of forward and reverse fluxes and the fact that even under diffusive conditions, temperature jumps can occur at
contacts."We show that the critical issue is not the validity of Fourier’s Law itself, but rather the boundary conditions to apply

to the heat equation.
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AI Phe six model structures shown in Fig. 1 were recently examined by Hua and Cao'® who used a simple gray model and

Pu b|'§J1UJ&g1 e steady-state phonon BTE by Monte Carlo techniques. Structures (a) and (b) in Fig. 1 are infinite in the y- and z-
directions, so transport is one-dimensional. Structures (c) and (d) are thin in the y-direction and assume diffusive scattering
at the boundaries. Structures (¢) and (f) are nanowires with diffusive boundary scattering. In this paper, we consider
structures (a) — (d) using material parameters appropriate to silicon at room temperature (thermal conductivity, kp,;;, =
160 W/(mK), specific heat, C, = 1.63 x 10° J/(m® K), sound velocity,v, = 6400 ||Z\719 ps, which results in a
phonon mean-free-path of A = 46.0 nm). Structures (¢) and (f) of Fig. 1 are discuss 'Ae Supplementary Information. We
will compare results obtained from Fourier’s Law to those obtained from asfinite ¥Qlume*method solution to the phonon
BTE." In the Supplementary Information, we compare our solution to the r L;'?S‘B'F--Hua and Cao obtained by solving the

—
same gray model phonon BTE using Monte Carlo techniques.'*'* 3

The paper is organized as follows. In Sec. II, the use of Fou@’s Law at the nanoscale'>'* is briefly reviewed. Results

are presented in Sec. III, and the results are discussed in Sec. IV, which alsd discusses the source of the differences in the two

methods observed in the quasi-ballistic regime. Section V‘QQN@

~ .

e conclusions of the paper.

.

x=0 x=1L
(b)

$
7, .
x::O x::LX
(d)

S
. I
x=0 x=1L

FIG. 1.5 Model sttuctures examined: with no internal heat source and contacts at different temperatures (a, c, e) and with internal
heat soureg and contacts at the same temperature (b, d, f). (After Hua and Cao'®)

<


http://dx.doi.org/10.1063/1.4974872

| This manuscript was accepted by J. Appl. Phys. Click here to see the version of record.
A & 'IPUI IER’S LAW AT THE NANOSCALE

Publish ”f'lg use of Fourier’s Law at the nanoscale has been discussed in Ref. 12-14; only a brief summary for the steady-state
condition of interest in this paper is provided here. More details are provided in the Supplementary Information and in Ref.
12 (see also the Supplementary Information for Ref. 12).

We begin with the steady-state flux equations as written by Shockley:'**

PR

dFg) _ FE() Fg() S

\ (1a)

dx 1 T 2 D

dFy (x) _ Fg(x) N Fy (x) _E' (1b)
dx A A 2’ ‘)

where FQ+ (x) is the forward-directed heat flux, Fj (x) the negative:_@ire d heat flux, A the “mean-free-path for

backscattering” (see the appendix in Ref. 20 and Ref. 21). The term, S, is a héat generation term assumed to be spatially

uniform in this paper. The mean-free-path for backscattering is rel%to the conventional mean-free-path, A = v, **?!

1=2A. \‘\
3
Temperatures can be associated with the forward and Ver§€l{xe

\

vt g (3a)

"2 <

P \\ (3b)
Q 2 \

where vy = v,/2 is the average +x-directed Velocity, Cy is the specific heat per unit volume, and v; is the sound velocity.

- @)

<1
I

I

=
|

i

T*and T~ should be understoodito be temperatures relative to a background temperature, To.'> Small deviations in
temperature are assumed so that tky specific heat can be treated as a constant. Our use of two different temperatures for the
forward and reverse stre has b éscussed in Ref. 12 and is analogous to how the electrochemical potential has been
defined at the nanos le.‘D)\s discussed in Ref. 12, the forward and reverse halves of the distribution are assumed to be near-

equilibrium dis

utiyws racterized by two different temperatures. Although each half is a near-equilibrium distribution,
the overall fdistributi cén be very far from equilibrium as the ballistic limit is approached. Local thermodynamic
equilibriuﬂ, ich Qould characterize the distribution with a single temperature, is not assumed. Finally, we note that the
flux e ations‘jan be derived from the Boltzmann Transport Equation. They can be regarded as a type of differential
ap h&ys&)n to the Equation of Phonon Radiative Transport (ERPT) in which we integrate separately over the forward and
reverse\directions rather than over all directions. *”** In the Supplementary Information, we relate the flux equations to the

ERPT.

By adding and subtracting eqns. (1a) and (1b), we find
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/A =$

(4a)
Publiéfing
Fy =~y Z_ZC" ’ (4b)
where
Fo(x) = F§ (x) — F5 (%) ®)

P

is the net heat flux,

viA 1 3 6)
Kpuik = XT Cy = §V5ACV \\
is the thermal conductivity, and ‘)
\-‘
T=(T*+T)/2 o (7)

is the average temperature of the forward and reverse heat ﬂu@ E tion) (4a) and (4b) lead to a steady-state heat

diffusion equation, ")

. L
a*’r _ § ®)
dx? " Ky \

that is mathematically identical to eqns. (1). Equations m‘ﬂom the ballistic to diffusive limits. Accordingly, eqn. (8)

also applies from the ballistic to diffusive limits. T mrmal conductivity, Kp,,;x, 1S not size dependent (unless we bring in

surface roughness scattering as discussed later N s). The fact that Fourier’s Law and the heat diffusion equation can

be used from the diffusive to ballistic limits'yit bulk thermal conductivity has been discussed in Ref. 12. We must,
however, be careful about the boéindary“gonditions when using eqn. (8).'> We shall see that a size dependent “apparent
thermal conductivity” resul &mper boundary conditions are used (see eqn. (15) below). Peraud and
Hadjiconstantinou reach%e sarne_comClusion. '

The boundary c d'iﬁjh\the phonon BTE are the incident heat fluxes from the two contacts. (Ideal black body

contacts are assumied.)

V.

shoﬁn in Ref. 12, when the correct boundary conditions are used, temperature jumps can occur — even

temperatures at the two ends of the film are a result of the calculation and can only be imposed in

the diffusive limit.

(9a)
(9b)
where']; is the temperature of the left contact and T is the temperature of the right contact. The temperature jumps can be

shown to be the product of the net heat flux and one-half of the ballistic thermal resistance'
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RpA 10a
ALR ;0% o
Publishing
RzA
AT(L) = Fo(L) ——, (10b)
2
where A is the cross-sectional area and
2 (11
R ys

reflectionless (black) contacts. Real contacts would have additional interface resis

is the ballistic thermal resistance. Note that Rgis a fundamental thermal bou a%@he for the assumed ideal,
ce.

To summarize, we solve eqn. (8) with boundary conditions specified %s. (9) = (11). After solving for T(x), the

'M\
directed temperatures can be obtained from o
T*(x) =T(x) + Fy(x)RpA/2 =, 5 (12a)
T~(x) = T(x) — Fy(x)RpA/2. (\- D (12b)
;
Use of these equations will be illustrated as we discuss th | structures shown in Fig. 1.

mode
Finally, we note that the specification of bou da.;\c«\ditions in terms of the ballistic resistances simplifies the
well

or example, it is well-known that thermal transport can be

~
sing\the equivalent circuit in Fig. 2 below, all of the steady-state, transient,

calculations and may be useful in other contex QS

simulated using an electrical network analogy?

and small-signal results presented in Ref’ well as all of the results to be reported in this paper) can be obtained by

circuit simulation. This equivalent circuit describes thermal transport from the ballistic to diffusive limits and is identical to

the standard equivalent circuit fq r%nsport except for the addition of one-half of the ballistic resistance at each of the
two contacts.” / Q

I I
R, /2 |dR, /2 dL (2 dL (2 dR, ]2 ER,,/z
I
|

V.
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. Equivalent circuit for the treatment of thermal transport from the ballistic to diffusive limits. The circuit simply adds ballistic
“cOntact resistances to the standard, diffusive equivalent circuit . Here Ry, = dx/(KpyA) » dLey = To dR¢p, Where Ty is a scattering time
Publ (h) fthkftgt eneo equation °, and dC,, = A C, dx. For a typical problem, the structure would be divided into several sections to spatially
tesulve tie temperature profiles, but the ballistic resistors should only be included at the two contacts (i.e. there would be several sections
like that in the dashed rectangle, but only two ballistic resistors).
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lll. RESULTS

In this section, four of the cases illustrated in Fig. 1 are considered. In each case, v{ resent the Fourier’s Law solution
and compare it to finite volume method (FVM) solutions of the BTE." Q\
A. Cross-plane nanofilm with no internal heat generation \
Consider first the case of Fig. 1a, where the contacts are at different tc%zegand there is no internal heat source.
beun

—
The length in the y-direction is assumed to be long enough so that lateral Qs ries have no influence on the phonon

-

transport. According to (8) with S = 0, the temperature profile is(linear,so we find

(13)

T, — AT — (Tg + AT))

- -
e RN
Using (10) for AT = AT(x = 0) = AT(x = L,), we fi d\

\
T, - TR)

F, =k (
Q app L,

where \
Kpuik  Kpulk \ (15)

K = =
P 1+ A/L, 1+4Kn,/3
is the apparent thermal con duct'Vlc@‘differs from the bulk thermal conductivity, Ky, due to quasi-ballistic phonon
transport in the x-direction. %ds? umber, Kn,, is defined as Kn, = A/L,.
The temperature prd{e\

X x

T = (1, - A1) J + Tp+a7) ()
X
£ .
and the temperatu ump‘s/ére obtained from (10) as
ﬂ

1 T 1/ T,-T
ATz_(vk (Tb_TR)=E(TL_TR)=E(1+§/(41§n ))' .

(14)

(16)

+

Thestemperature jump is one-half the phonon transmission, 7, times the difference in the contact temperatures. The last
exph)mn the RHS is eqn. (27) in Ref. 18. The result has been obtained a number of times in the past using a variety of
methodsy it results here from a simple solution to the heat equation using Fourier’s Law and appropriate boundary conditions.

Note that eqn. (17) applies in both the ballistic to diffusive limits as well as in between these limits.
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he normalized temperature profiles for several different Knudsen numbers are plotted in Fig. 3a, which compares the

Pu b“ﬁlllﬂlg( Law solution as given by eqn. (16) to FVM BTE simulations. In the diffusive limit, T (x) varies linearly from T to
Tg and both solutions agree. Near the ballistic limit (Kn, = 100 in Fig. 3a), T(x) = (T, + T)/2, and Fourier’s Law gives

the correct answer. Figure 3a shows differences in the quasi-ballistic regime (1 < Kn, < 10), which get smaller for Kn, <

1 and for Kn, >» 10. We conclude that for case (a) in Fig. 1 (which is much like the casedreated in Ref. 12), Fourier’s Law

with correct boundary conditions in the heat equation provides an exact description of b{N diffusive transport and an

approximate solution between those limits. 3

|~ e — | R FL Kn=10.01
s FL Kn=0.1
--—--FLKn=1
0.8
= = =FL Kn=10
%
= 0.6
=
T 04
1)
=
e
-
02

0 0.2 0.4 06 08
x/L

X

FIG. 3. a) Normalized temperature profile (T (x) — (T, — Tg) vs. normalized distance, x/L,, for cross-plane heat transport with no
internal heat generation (Fig. 1a). Several-different Knudsen numbers are shown. Lines are the result of Fourier’s Law, and the symbols
are FVM solutions of the phonon BTE, b) The left axis shows the normalized temperature jump, AT (x = 0)/(T;, — Tr) vs. Kn, for cross-
plane thermal transport with no intefnal heat generation (case 1b in Fig. 1). The Fourier’s Law solution (line) is from eqn. (10a), and filled
symbols are the FVM solutions tg'the I}?Oﬂo . The empty symbols belong to the right axis and show the error, |ATg, — AT, |/ (T, —
Tr), between both solution: /

S.
Figure 3b, a plot of éﬁg{liz temperature jump vs. Knudsen number, shows the differences between the Fourier’s

Law solution and the'EVM/BTE solution more clearly. The differences first increase as Kn, increases and then decrease as

Kn, continues to,incréase towards the ballistic limit. The error vs. Kn, is also plotted in Fig. 3b, which shows that the

o

maximum error occurs at Kn, = 2.3 and is less than 4%. Fourier’s Law is exact in the ballistic and diffusive limits (small

numerical*errorsiare Seen in the FVM solution because the BTE becomes stiff in the diffusive limit).
B. hs‘!plane nanofilm with internal heat generation
Weturn next to the case shown in Fig. 1b, cross-plane heat transport with a uniform internal heat generation and both

contacts at the same temperature, T, = Tr = Tp. This problem has been considered by Zeng and Chen** and by Bulusu and


http://dx.doi.org/10.1063/1.4974872

| This manuscript was accepted by J. Appl. Phys. Click here to see the version of record. |
A x IVPerzf\. who solved the one-dimensional phonon BTE exactly, and recently by Hua and Cao'®, who solved the two-
Publ I(ﬁl%laﬂ&»nal phonon BTE by Monte Carlo simulation.
Equation (8) can be solved to find

(18)

T(x) = ( ) (L—x)x+T,,

2Kpuik

where we are careful not to assume Tj, = T,,. The temperatures at the boundaries are ob@/ from eqns. (10) with

AT(0) = —(Tp — To) = —AT(Ly).

We find \
SL\ 1 19

|AT|=Tb_T0:(7>m- -‘Q‘.\ (19)

The maximum temperature occurs at x = L,/ 2. From eqns. (18) a (Lgl we ﬁ&i
C, ’) (20)
L

AT -~ T,-T, 24 8Kn,/3’ \
where 6T = T (x = L,/2) — Tp. The solution is sketched‘\'Q 4. Itas interesting to note that the temperature jumps at the

boundaries do not depend on the mean-free-path, but e‘l"?su-in.temperature inside the film does. The more diffusive the

~

6T  T(Ly/2)—T, Ly 1

~

is reached where T(x) = T,. Note that a tradifienal Kourier’s Law solution to this problem (i.e. assuming that T(0) =

sample, the higher the peak temperature. The more Wc the'sample, the lower the peak temperature until the ballistic limit

T(L) = Ty, would be incorrect even for w \%};A, but the error would be small because the temperature jump at the

boundary, AT, would be much lesséaﬂ‘&iemperature rise inside the structure, 6T.

J
/ \<‘<>w i (zreim)i' ol

) \ T(x)

/ ar
w

_J‘ o Ty
5 |AT| =T — Ty

Q L'I'o To— x
= X =Ly
\J~ X

FIG. 4. Sketch of the solution, T'(x), for a sample with internal heat generation and two contacts at the same temperature.
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AI PigL re 5a plots the normalized temperature, (T (x) — Tp)/(T, — Ty) vs. normalized distance, x /L, for several different
Pu b“ﬁm&& numbers and compares our Fourier’s Law solution to FVM BTE simulations.'” As Kn, — 0, (T(x = L, /2) —
Ty)/(T, — Ty) — oo, and the agreement in the diffusive limit is excellent. As Kn, = oo, (T(x = L,./2) = T,)/(Tp, — Tp) =
0, and the agreement in the ballistic limit is excellent. As for the example with no internal heat generation, errors occur

between the ballistic and diffusive limits. Finally, we note that although much simpler in f , the Fourier Law solution,

eqns. (18) and (19), gives results that are essentially identical to the ballistic-diffusive so tbmgsented as eqn. (23) in Hua

and Cao.'®?¢
i (a) & FLKn=0.1 (b) e
¢ FL Kn=0.5 =
\ v FLKn-l e rvm |03 §
3t o O Error &~
™ o 0.25 9
S 3
By ~
X ~
2 Y
~ .
=2 i
ot ~
~ 10.1 gl
&
0.05 &
0
107

FIG. 5. a) Nanofilm (cross-plane) wi eat generation (Fig. 1b). Plot of (T(x) — Ty)/(Tp — Ty) vs. x/L, for several different
values of Kn,. Lines are Fourier} solutigns and symbols are FVM solutions of the phonon BTE. b) The left axis shows the
normalized temperature rise, 8T /AT vs, Knyfof cross-plane thermal transport with internal heat generation (case 1¢) in Fig. 1). The line is
the Fourier’s Law solution fro . 2’0) and the filled symbols are FVM solutions of the phonon BTE. The empty symbols belong to the
right axis and show the erro?g’l’ v/

(@)

Trym/ATryy |, between both solutions.

Figure 5b, a chhe normalized temperature rise, 6T /AT, in the center of the film as given by eqn. (20) vs.

Kn, shows theddifferénces ‘between our Fourier Law solutions and the FVM BTE solutions more clearly. Differences

between the¢ two ar:sr hes first increase as Kn, increases and then decrease as Kn, continues to increase towards the

ballisti€ lrmit. aximum error in the Fourier’s Law solution occurs at Kn, = 0.5 and is about 28%. Similar behavior is
observedyvith ;d without internal heat generation, but the maximum error and the Knudsen number for which the maximum

err Eu‘rs.are seen to be problem specific.

C. Apparent thermal conductivities

10
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AI P/lea suring internal temperature profiles is difficult experimentally; often what is determined is an apparent thermal
PUbl'&]ﬂ&G& rity. It is perhaps more relevant, therefore, to examine the errors associated with evaluating the apparent thermal
conductivity with Fourier’s Law. For case (a) in Fig. 1, a difference in the temperature between the two contacts with no
internal heat generation, the apparent thermal conductivity that would be deduced was given by eqn. (15). Hua and Cao also

define an apparent thermal conductivity for case (b) in Fig. 1, no temperature differen?etween the two contacts but with

internal heat generation. In this case, the apparent thermal conductivity that would be d u&vi&w

S 5 (21a)
where ‘)
—~

(T(x)) = ZLLIT(x)dx. 3

Using eqn. (18), we find ( »-)
o T - (22)
P T 1+ 4Kn,’ \

which is the same result obtained by Hua and Cao'® 't@stic—diffusive approach.” In the diffusive limit, Kn, <« 1,

Kapp = Kpuik> as expected. As the structure beco Ng)re listic, Kgpp < Kpuik, and in the ballistic limit where Kn, >

e

es vs. Knudsen number for the case of no internal heat generation and for

1, Kapp = 0.

Figure 6 plots the apparent thermal co

]

the case with internal heat generati he Fourier’s Law solutions, eqns. (15) and (22), are compared to FVM solutions to
the phonon BTE. Again, we seg'that Eourier’s Law is essentially exact in the diffusive and ballistic limits, and there is some

error between these limit fﬁe apparent thermal conductivities, however, the errors are less than for the internal
temperature profiles. The maximum error, Akgyy/Kpyk, is 5.6% for the results shown in Figs. 6 and 7. A properly
implemented Fougier )w, therefore, provides a good framework for interpreting measurements of apparent thermal
conductivity. £
= 4
- -
\ T
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FIG. 6. Apparent thermal conductivities for cross plan t sport vs. Kn,. Case of Fig. 1a (temperature difference but no internal
heat generation (TD)) and case of Fig. 1b (no contact te re difference but with internal heat generation (IHG)) are shown. Symbols
are FVM simulations of the phonon BTE, and the s 1d 11ne thourler s Law solutions, eqns. (15) and (22).

D. Thin films

dimensional solution. Extension of t

£

of this paper. Instead, we will examine ﬁe—dimensional (1D) solutions to these problems and show that 1D solutions can be

We turn next to the thin films '&ﬁlse boundary scattering. A proper treatment of these structures requires a two-

ds described here to two and three dimensions is needed, but beyond the scope

quite accurate for the QS)}\Knsidered by Hua and Cao'®, who solved the 2D phonon BTE.

a ao, we examine the apparent thermal conductivity for the structures shown in Figs. 1c and 1d
'séls t?the Monte Carlo simulations of Hua and Cao are included in the Supplementary Information).
Equation (1) gave She pparent thermal conductivity for the case of a temperature difference between contacts with no

interndl heat generation. In terms of the mean-free-path for backscattering in the bulk, A, eqn. (15) can be written as

K i (23)
R A/ L

In a thinyfilm, the mean-free-path is shortened by boundary scattering to

12
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where f is an empirical parameter and L,,, the thickness of the film. Equation (24) can be regarded as an empirical fit to more
rigorous treatments like that of Sondheimer?” and McGaughey et al.*® (See Supplementary Information for more discussion

of this point.) Using (24) in (23) and expressing the result in terms of the Knudsen numbers Kn,, = A/L, and Kn, = A/L,,

Kpuik

we find for the case of a temperature difference (TD), /\

(25)

Kapp(TD) =

(Kny + Kny/B) 4\“
Equation (22) gave the apparent thermal conductivity for the case of no tem era@ difference between contacts with internal
K

heat generation. In terms of the mean-free-path for backscattering in thefbulk; A, eqm, (22) can be written as

X CyviA/2 - 3 (26)
apr =1y 34/L, ( ,.)
Using eqn. (24) for the mean-free-path in a thin film in eqnw(26)<and expressing the result in terms of the Knudsen

numbers Kn, = A/L, and Kn,, = A/L,, we find for the \n& | heat generation (IHG),
Kpulk \ 27)
7 .
+3 (3Kn, + Kn,/B) \

We consider cases (c) and (d) of Fig. 1, tr N thin film for 0.01 < Kn, < 100. Figure 7 compares the Fourier’s

Kapp(IHG) =

Law and FVM BTE solutions for Kn, =1 Mdiffusive boundary scattering. (The apparent thermal conductivities for

the TD and IHG cases are given

qns«(25) and (27) for the Fourier’s Law solution.) The TD and IHG apparent thermal
s L

conductivities are predicted by Fouri

£
Law solutions is quite g%. Th alup,/ B = 2.9 in eqns. (25) and (27), which produces the best fit, is between the 37 /2

to be distinctly different. Agreement between the FVM BTE and Fourier’s

given by Flik” and t &Sgive Majumdar’.
£
ﬂ
Q s
w <
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525
FIG. 7. Apparent thermal conductivities for a thin film with Kn, £1 vs. (cases (c) and (d) of Fig. 1). Symbols are FVM BTE
simulation results, and the lines are the Fourier’s Law solutions,ﬁg{ ) and/(27), with B = 2.9.

\
IV. DISCUSSION

Several aspects of the solutions presented in the previgus section are discussed in this section. First, we examine the

A4

directed temperatures, which play an imp. rtanN eat transport at the nanoscale.'? Second, we examine the ballistic

limit and show that the Fourier’s Law solution has«the correct ballistic limit. Third, we discuss the discrepancies observed
between the Fourier Law and M te‘GS solutions in the quasi-ballistic regime. Finally, we briefly discuss a recently
reported, highly accurate anallcq ent of the problem with no internal heat generation.

A. Directed tempe tﬂj}fd\ﬂuxes

the directed temperatures and heat fluxes for the cases of Figs. la and 1b — cross plane heat

flux is,inj ectedsvit the temperature of the left contact, T;, and decays linearly across the film as phonon out-scattering takes
p InsT ¢ film, the temperature, T (x), should be regarded as a measure of the amount of heat in the forward flux.
=

Similagly, the reverse flux is injected at a temperature, Ty, and increases linearly across the film. The corresponding directed

fluxes for this case are shown in Fig. 9a and follow directly from eqns. (1).

14
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A s I Phe case for internal heat generation is shown in Figs. 8b and 9b. As shown in Fig. 8b, T*(x) begins at T, and increases

Puml(ﬁﬁ!iﬁlgcally across the film as heat is generated. Similarly, T~ (x) begins at Ty at x = L, and increases across the film

towards x = 0. The corresponding directed fluxes are shown in Fig. 9b. Atx = 0, Fy (x = 0) begins at Fy = v{ C;T,/2, the

heat flux injected from the contact. Similarly, atx = L, Fy (x =

1

FIG. 8. Directed temperatures versus position x/L, for: a)
plane) with internal heat source. In both cases, L = 1 = 4A/ 3

Tgr]/[T, — Tg]. On the right, the normalized tel\ures
"\

[TCo) -

norm. 7(x)
o
(o))

T

(a)

0.5
x/L

N\

\\Tﬁ)

 NF

0.5
x/L

X

1.3 n

L) begins at F,.
2 ya
% (b)

— 1.5
R
~ T
g 1
S -~
= -

0.( 5 T‘

0.5
x/L

X

oss-plane) with temperature difference and b) Nanofilm (cross-

- On the left, the normalized temperatures are defined as Ty g7, =
Tnorm = [T(x) — TO]/[SLx/ZU;Cv]'
1
o (b)
Rad
S o Fr F F
=
—
o
=
-0.5
-1
0 0.5 1
x/L
X

m the flux equations, (1), the ballistic limit is obtained by letting A — co. When converted to a temperature, the result

is
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For case (a) of Fig. 1, cross-plane thermal transport with no internal heat generation, we find T(x) = (T, + Tg)/2, which is

| This manuscript was accepted by J. Appl. Phys. Click here to see the version of record.
AlR..

the correct ballistic limit.'>* This is also the result obtained from the Fourier’s law solution, eqns. (16) and (17) in the limit
Kpuie = . For case (b) of Fig. 1, cross-plane thermal transport with internal heat generation, T, = T = Ty, and eqn. (23)
gives the same result as the Fourier’s Law solution, eqn. (18) in the limit as K, — { We conclude that Fourier’s Law
gives the correct solution in the ballistic and diffusive limits, but in between these li its})gs. 3 and 5 show small differences
between Fourier’s Law and FVM solutions to the BTE. \
C. The quasi-ballistic regime, Kn,~ 1. ‘)
—

have sho

Fourier’s Law gives correct solutions in the diffusive limit, and that when proper boundary conditions
are used, it also gives the correct solutions in the ballistic limit, bucs;sho in Figs. 3 and 5, differences are observed in the
quasi-ballistic regime where Kn, is on the order of unity. Undég qua —bal‘latic conditions, the temperature profiles in Fig. 3a

are seen to be slightly non-linear — the temperature is a ljttleshigher than the Fourier Law results near the left contact and a

little lower near the right contact. This nonlinearity c a.lwen in Fig. 1 of Ref. 12 and in the exact solutions presented

by Heaslet and Warming.*' How is this explained? S
Y
A basic assumption in the flux method is the forward flux and backward flux each travel at a fixed, spatially uniform

velocity of (v}) = (vgy) = v;/2. The fac arhﬁcomes from averaging over angles assuming a spherically symmetric

distribution of velocities. It has, however, been ngted that diffusion is altered within about a mean-free-path of absorbing

contacts where the distribution
Shockley at the left (inji?g
the steady-state, no interhal

Oal velocity at location, x. Near the right contact, the number of negative velocity phonons

'(@mes asymmetric.*? Berz has discussed this at the right (collecting) contact and
his effect can be understood as follows. The heat flux is spatially invariant under
rce ¢

ditions of Fig. 3a. Write the heat flux as Fy = Cy T (x){v,(x)), where (v, (x)) is the

average, x-directe

decreases, becatise the'absorbing contact prevents their injection. As a result, the average velocity is larger than expected near

tact, whichurequires the average temperature to be smaller than expected near the right contact to maintain the

constant-heat . *¥ Near the left contact, the average velocity is smaller than expected because phonons with small x-
directe elocit}s (i.e. those injected tangentially) scatter more often near the surface than do phonons with larger x-directed

hs.{Because the velocity is smaller than expected, the temperature must be larger than expected to maintain the

constanttheat flux. The distortion of the spherical distribution of velocities occurs within about a mean-free-path of each

boundary. For samples on the order of one mean-free-path thick, these two regions overlap, and the error in our Fourier Law

16
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A x Fpon, which assumes a spherical distribution of velocities, is largest, as observed in Fig. 3b. For very thin samples, there is
PUb|'§hAE& ion of the distribution due to scattering, and our solution is exact. Similar distortions of the spherical distribution
must explain the errors in the case of internal heat generation (Fig. 5). The boundary layer effects are resolved in full

1'%3*! solutions to the phonon BTE.

numerical® or analytica

Finally, we note that when the contacts are at different temperatures, the magnitude of the temperature jumps depends on
the phonon transmission (Knudsen number). When the temperatures of the two contaéa identical, but there is internal
heat generation, temperature jumps can also occur, but they do not depend on the Q transmission. It has been pointed

out that in the general case, internal heat generation and contacts at different Mt , it is possible to eliminate the

temperature jumps or to produce asymmetric temperature jumps.**

A
Q
D. Analytical Solutions of Ordonez-Miranda et al. C

Highly accurate analytical solutions for case (a) in Fig. 1 l§\5§3 tly been reported by Ordonez-Miranda et al.*> Their
approach resolves the boundary layer non-linearities mentioned abovg, and are very close to the FVM numerical solutions
(the difference is less than 2%). Analytical solutions s Wre very useful, but they tend to be available only for a few
specific problems. For other problems, Fourier’s L \33 bi\ d with modest errors. For example, cases (b), (¢), (d), and (e)

in Fig. 1 are easily handled by Fourier’s Law. bitrary heat generation source, S(x), can also be treated, and extensions to

full phonon dispersion and energy depen Mring are possible (as discussed and demonstrated in Ref. 12). While

Fourier’s Law is not a panacea (for le, it’s not clear how to extend it to strongly 2D problems), it can play a useful role
e<ﬁ\

in analyzing thermal transport at th oscale. In Fig. 5 of Ref. 35, the authors present analytical solutions for three different
geometries. We discuss th/eéo ond
V. CONCLUSIONS 3

£

The results. discussed y( this paper show that when used with proper boundary conditions, the unmodified Fourier’s Law

ipg Fourier Law solutions in the Supplementary Information.

can provide'a good Bescription of steady state, one-dimensional heat transport in nanostructures with and without internal
—

heat g eratiors(within the context of the simple gray model employed here). The results agree well (although not perfectly)
merical solutions of the phonon BTE. They also agree very well with a more analytically complicated ballistic-

-
diffusive approach.”® The Fourier’s Law approach provides simple, analytical expressions that are exact in the diffusive and

ballistic limits. Between these two limits, errors in the Fourier’s Law solution can occur. The problems discussed in this

paper (and the additional ones in the Supplementary Information) indicate the magnitude of the errors that can be expected.
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e apparent thermal conductivity, which can be measured more easily than the internal temperature profile, the errors are
Publighigdow 10%.

The results of this paper also provide some insights into thermal transport at the nanoscale. For example, it is interesting
to note that the magnitude of the temperature jump is related to the mean-free-path when there is no heat source, but it is
independent of mean-free-path when there is an internal heat source and the contacts are at the same temperatures. We also
showed how to extract the directed temperatures, T+ (x) and T~ (x) from T (x). Theé shown in Figs. 8 and 9 give
insights into the meaning of temperature at the nanoscale; they show how it can be tmderstood in a manner that is analogous
to the way that electrochemical potentials at the nanoscale are now understood.'

To solve a heat transport problem, a heat current equation (e.g. Fourier Qr)ﬁs;mserted into a heat balance equation,
-
and boundary conditions are specified. This paper reinforces the conclu('oii;fDSefS. 10 and 12 that the main issue is not the
validity of Fourier’s Law at the nanoscale; it is the appropriate bo@ry conditions on the heat equation at the nanoscale.
Several issues deserve further study. A formal derivation of the ﬂ&‘x) equations from the phonon BTE would help to
clarify the assumptions involved (a simple derivation i&d in' the Supplementary Information). The Fourier’s Law

treatment of complex phonon dispersions and energy- mean-free-paths deserves further study to extend the initial

demonstration in Ref. 12. Extensions of this me Bﬂﬁ higher spatial dimensions should also be explored, but there are

-
concerns about the usefulness of the diffusion oximation with temperature jumps in two and three-dimensions (see the
discussion in Chapter 7, Sec. 6 of Ref. 3). cless, the in-plane transport examples discussed in the paper show that

eful role in analyzing heat transport at the nanoscale.'”'* More generally, this

suggestions that Fourier’s Lawg/can
paper indicates how ele?bn (( ph0/10n transport at the nanoscale can be understood within a common conceptual

framework.*® 3\
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See supplement m&erial for further explanations.
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