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Steady-state heat transport: Ballistic-to-diffusive with Fourier’s law

Jesse Maassena) and Mark Lundstrom
Network for Computational Nanotechnology, School of Electrical and Computer Engineering,
Purdue University, West Lafayette, Indiana 47907, USA

(Received 14 August 2014; accepted 26 December 2014; published online 21 January 2015)

It is generally understood that Fourier’s law does not describe ballistic phonon transport, which is

important when the length of a material is similar to the phonon mean-free-path. Using an

approach adapted from electron transport, we demonstrate that Fourier’s law and the heat equation

do capture ballistic effects, including temperature jumps at ideal contacts, and are thus applicable

on all length scales. Local thermal equilibrium is not assumed, because allowing the phonon

distribution to be out-of-equilibrium is important for ballistic and quasi-ballistic transport. The key

to including the non-equilibrium nature of the phonon population is to apply the proper boundary

conditions to the heat equation. Simple analytical solutions are derived, showing that (i) the magni-

tude of the temperature jumps is simply related to the material properties and (ii) the observation of

reduced apparent thermal conductivity physically stems from a reduction in the temperature gradi-

ent and not from a reduction in actual thermal conductivity. We demonstrate how our approach,

equivalent to Fourier’s law, easily reproduces results of the Boltzmann transport equation, in all

transport regimes, even when using a full phonon dispersion and mean-free-path distribution.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905590]

I. INTRODUCTION

Thermal transport at the nanoscale is a problem of great

fundamental and practical interest.1 Figure 1 shows the tem-

perature profiles across silicon films of varying length (L), as

computed by the phonon Boltzmann Transport Equation

(BTE).2 The temperature jumps at the interfaces with the

two ideal, reflectionless contacts are characteristic features

of quasi-ballistic phonon transport, and are commonly

observed3,4 in physically detailed modeling (such as Monte

Carlo simulations,5,6 molecular dynamics,7–9 or solutions of

the phonon BTE2–4,10–15). In practical situations, the routine

analysis of nanoscale heat transport phenomena, including

ballistic effects, has been limited by the high computational

demand of rigorous simulations. Simple, accurate, and physi-

cally transparent models that provide physical insight could

help in understanding the results of detailed simulations, as

well as the analysis of experiments.

Quasi-ballistic phonon transport can impact the thermal

response of materials on the nanoscale and even on the

microscale, given that phonon mean-free-paths (MFP) can

span from �1 nm to >10 lm.16 Ballistic phonon effects

reduce the heat carrying capability of thin-films from the

value expected from a simple application of Fourier’s

law.17,18 This also affects the analysis of experiments prob-

ing short time and length scales (e.g., time/frequency-domain

thermoreflectance),19,20 influences heating in small elec-

tronic devices,1 and can provide a route to extract the MFP

distribution of materials.21,22 A simple, physically sound,

accurate, and computationally efficient technique to analyze

such problems is presented in this paper. The lines in Fig. 1

are the results of our calculations described below.

In this paper, we begin with an approach originally

introduced by McKelvey23 and Shockley24 to describe parti-

cle transport, and extend it to treat heat transport. This tech-

nique uses a particularly simple, but accurate, discretization

of the BTE into forward and reverse fluxes that provide solu-

tions from the ballistic to diffusive limits. Additionally, we

show that the McKelvey-Shockley phonon BTE can be

recast exactly as Fourier’s law and the heat equation with no

additional assumptions (such as restrictions on the size of the

structure or assumption of local thermal equilibrium). When

solved with physically meaningful boundary conditions, the

solutions are identical to those of the McKelvey-Shockley

phonon BTE. The lines in Fig. 1 are solutions of the heat

equation, r2T¼ 0, using the correct physical boundary con-

ditions, as described in this paper.

FIG. 1. Normalized temperature profile ðTðxÞ � TRÞ=ðTL � TRÞ versus nor-

malized position x/L for a Si film of L ¼ 3; 30; 300 nm. Symbols are results

of the phonon BTE (taken from Ref. 2). Lines are solutions to the approach

described in this paper, which are obtained by solving a very simple phonon

BTE or, equivalently, by solving r2T ¼ 0 with physically correct boundary

conditions.a)Electronic address: jmaassen@purdue.edu
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The outline of this paper is as follows. Section II

describes our approach to heat transport. A simple example

calculation is presented in Sec. III, where we show that the

magnitude of the temperature jump is proportional to the pho-

non transmission across the structure. Section IV provides a

derivation of familiar heat transport equations from the

McKelvey-Shockley phonon BTE. Although familiar in form,

the heat equation includes ballistic effects if proper boundary
conditions are used. Section V discusses the treatment of a

full phonon dispersion with energy-dependent mean-free-

path, and explains how the calculations shown in Fig. 1 are

performed. Finally, we summarize our findings in Sec. VI.

II. THEORETICAL APPROACH

For this work, we borrow an approach originally devel-

oped for electronic transport that is applicable on all length

scales, the McKelvey-Shockley flux method,23,24 and adapt

it for phonon/heat transport. We assume steady-state 1D

transport along x with an infinite y-z plane. The essence of

this approach is to (i) describe phonons in terms of fluxes

(i.e., phonon density times average velocity along the trans-

port direction) and (ii) categorize all phonons into two com-

ponents: forward and backward fluxes. The governing

equations of the McKelvey-Shockley flux method are25

dFþ x; �ð Þ
dx

¼ �
Fþ x; �ð Þ

k �ð Þ þ
F� x; �ð Þ

k �ð Þ ; (1)

dF� x; �ð Þ
dx

¼ �
Fþ x; �ð Þ

k �ð Þ þ
F� x; �ð Þ

k �ð Þ ; (2)

where Fþ/F� are the forward/backward phonon fluxes [units:

#phonons m�2 s�1 eV�1], k(�) is the mean-free-path for

backscattering, and � is the phonon energy. The above

coupled equations describe the evolution of each flux type,

which can scatter to/from the opposite flux component. k(�)
governs the scattering, and is defined as the average distance

travelled along x by a phonon with energy � before scattering

into an opposite moving state (in the isotropic case, k is (4/3)

times the regular MFP26). Note that the McKelvey-Shockley

flux method can be derived from the BTE.25 The boundary

conditions are

Fþðx ¼ 0þ; �Þ ¼ Fþ0 ð�Þ; (3)

F�ðx ¼ L�; �Þ ¼ F�L ð�Þ; (4)

where L is the length of the thermal conductor. Thus, one

needs to specify the injected phonon fluxes at both ends: Fþ

on the left side (x¼ 0þ) and F� on the right side ðx ¼ L�Þ.
The McKelvey-Shockley flux method described by Eqs. (1)

and (2), with the boundary conditions given by Eqs. (3)

and (4), forms the basis for our approach to heat transport

(see Fig. 2).

The total heat current ðItot
Q Þ and heat density ðQtotÞ are

written as

Itot
Q ¼

ð1
0

� ½Fþðx; �Þ � F�ðx; �Þ� d�; ½W m�2�; (5)

Qtot xð Þ ¼
ð1

0

�
Fþ x; �ð Þ þ F� x; �ð Þ

vþx �ð Þ

" #
d�; J m�3½ �; (6)

where F ¼ Fþ � F� is the net phonon flux, ðFþ þ F�Þ=vþx is

the phonon density, and vþx is the average x-projected veloc-

ity (defined as vþx ¼
P

k;vx>0vxdð�� �kÞ=
P

k;vx>0dð�� �kÞ).
The heat current and heat density correspond to multiplying

the net phonon flux and the phonon density, respectively, by

the energy � carried by each phonon (and integrating over all

phonon energies). From the above definitions, we can

directly replace F6 in the McKelvey-Shockley flux equa-

tions (Eqs. (1) and (2)) by I6
Q ¼ �F6, as we will assume from

this point on unless otherwise stated. In addition, to ease the

notation we will drop the explicit dependence on � in I6
Q , k,

and vþx , although keep in mind that a final integration over

energy is required (Eqs. (5) and (6)).

Equations (1) and (2) comprise a simple BTE in which

the forward and reverse fluxes have been integrated over

angle. This particular discretization is especially effective in

handling the correct physical boundary conditions, where a

flux is injected from each side. Inside the device, the carrier

distribution can be very far from equilibrium, but each half

of the distribution is at equilibrium with its originating con-

tact as it is injected and scattering gradually mixes both flux

components. In the limiting case of purely ballistic transport,

each half of the distribution is in equilibrium with its origi-

nating contact. More complicated discretizations are possible

and sometimes necessary, but we will demonstrate the effec-

tiveness of these simple equations in the remainder of the

paper.

III. EXAMPLE: HEAT TRANSPORT IN A DIELECTRIC
FILM

Having presented the McKelvey-Shockley flux method

adapted for heat transport, we will now demonstrate this

approach with an example. We will consider steady-state

thermal transport across a dielectric film of length L
(the electronic contribution to thermal transport can be

neglected), contacted by two ideal thermalizing contacts

each at their respective temperatures TL (left contact) and TR

(right contact), as shown in Fig. 3(a). “Ideal contacts” in this

context assume that (i) each contact is in thermal equilib-

rium, with phonon statistics given by the Bose-Einstein dis-

tribution, and (ii) the interfaces are reflectionless, thus

phonons are not scattered at the contacts. While perfect

FIG. 2. Thermal conductor of length L with a given mean-free-path for

backscattering k. By specifying the injected phonon fluxes (solid arrows),

the McKelvey-Shockley flux equations describe the evolution of the flux

components inside the material.
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contacts are assumed in this paper, this is not a fundamental

limitation of our approach, as we will discuss later.

We begin by subtracting the flux equations (1) and (2)

dIQ=dx ¼ 0: (7)

This is the energy balance equation, or equivalently the first

law of thermodynamics, which states that under steady-state

conditions the heat current IQ is a constant along x. Using

this relation with Eqs. (1) and (2), we have

dIþQ xð Þ
dx

¼
dI�Q xð Þ

dx
¼ � IQ

k
: (8)

It is straightforward to show that IþQ ðxÞ and I�QðxÞ have the

following solutions:

IþQ xð Þ ¼ IþQ;0 �
IQ

k
x; (9)

I�Q xð Þ ¼ I�Q;L �
IQ

k
x� Lð Þ; (10)

where we used the boundary conditions Eqs. (3) and (4). The

forward and backward heat currents I6
Q vary linearly along x,

as shown in Fig. 3(b). The difference between IþQ and I�Q is

the net heat current IQ, and the slope of IþQ and I�Q is IQ=k.

The net heat current IQ can be extracted by subtracting

Eq. (10) from Eq. (9), and isolating IQ

IQ ¼
k

kþ L

� �
IþQ;0 � I�Q;L

h i
; (11)

where k=ðkþ LÞ is the phonon transmission coefficient T ,

corresponding to the probability of a phonon traveling from

one contact to the other. Thus, the net heat current is simply

the difference in injected heat currents times the phonon

transmission coefficient.

If the contacts are in equilibrium, then the injected heat

currents from the contacts can be written as

IþQ;0 ¼ �
M

h
fBE TLð Þ; (12)

I�Q;L ¼ �
M

h
fBE TRð Þ; (13)

where Mð�Þ is the distribution of modes of the thermal

conductor (depends only on the phonon dispersion),27,28

fBE is the Bose-Einstein occupation function, and h is

Planck’s constant. Inserting these expressions into Eq. (11),

we obtain

IQ ¼ �
M

h

k
kþ L

� �
fBE TLð Þ � fBE TRð Þ½ �; (14)

� � M

h

k
kþ L

� �
@fBE

@T|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K

DT; (15)

where K ¼ Kball T is the thermal conductance and Kball is

the ballistic thermal conductance.29 Note that Eq. (15)

applies in the case of a small DT, while Eq. (14) does not

have this limitation. The total heat current is calculated by

integrating over energy (Eq. (5)). The above expressions for

IQ are applicable on all length scales, and span from ballis-

tic to diffusive transport regimes. The transmission coeffi-

cient controls the length dependence of the heat current. In

the ballistic limit L� k; T ! 1 and IQ is independent of

length. Note that in this limit IQ is equal to the known

expression in the Casimir limit (see Appendix A). In the

diffusive limit, L� k; T � k=L, and IQ / 1=L, as expected

from classical scaling. Equation (14) is identical to IQ

obtained with the Landauer approach.29,30 One advantage

of the McKelvey-Shockley flux method, versus Landauer,

is that it provides spatial information on the heat transport

properties.

Equation (6) shows that the heat density is the sum IþQ þ
I�Q divided by the average forward projected velocity vþx .

Often it is desirable to replace heat density by temperature. It

is important to note that in small structures (compared to k)

the phonon distribution may be highly non-equilibrium and

the definition of temperature, an equilibrium quantity, is am-

biguous (no such problem arises with IQ and Q). Assuming a

small applied DT ¼ TL � TR ensures the thermal conductor

remains near equilibrium, where temperature is well defined.

In this case, we can rewrite heat density in terms of tempera-

ture using dQ ¼ CV dT, where CV is the volumetric heat

capacity. And, we can expand the heat currents I6
Q ðxÞ

¼ I6
Q;eq þ dI6

Q ðxÞ due to a small difference in contact

temperatures DT, where IþQ;eq ¼ I�Q;eq is simply the equilib-

rium heat current arising from a reference background tem-

perature, chosen as TR in this case. Rewriting Q in terms of

T, we find

FIG. 3. (a) System under study: a thermal conductor of length L joined by

two contacts in equilibrium, each at a specified temperature TL and TR. The

contact interfaces are reflectionless and do not scatter phonons. (b) Forward

and backward heat currents versus position x. (c) Temperature profile versus

position x, which shows the temperature jumps (dTc) at the contacts. The

temperature profiles of the forward and backward phonons are shown as

dashed lines.
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dT6 xð Þ ¼
2dI6

Q xð Þ
CV vþx

; (16)

T xð Þ ¼ dTþ xð Þ þ dT� xð Þ
2

� �
þ TR: (17)

The temperature profile inside the thermal conductor is

proportional to the sum of dIþQ and dI�Q or equivalently the

average of dTþðxÞ and dT�ðxÞ, and is presented in Fig. 3(c).

Note that dQ6 ¼ ðCV=2Þ dT6, since CV takes into account

both the forward and backward phonon states. Using this

with the property dQ ¼ dQþ þ dQ�, we obtain the above

expression for T(x), which has the appearance of an average

over dT6. We see that T(x) varies linearly inside the thermal

conductor, and that there are discrete temperature drops at

the boundaries. The separation of temperature for phonons

traveling in the forward and backward directions is com-

pletely analogous to the way electrochemical potentials are

treated with electron transport in nanostructures.31

Allowing the forward- and backward-moving phonon pop-

ulations, and associated temperatures (Tþ and T�), to be differ-

ent is key to capturing the non-equilibrium nature of ballistic

transport. In the diffusive limit, the difference between Tþ and

T�, as well as IþQ and I�Q , becomes vanishingly small, and corre-

sponds to the case of near local thermal equilibrium (i.e., both

halves of the phonon distribution are nearly identical). For an

extended discussion on this and related topics regarding our

approach, we refer readers to Ref. 40.

We can use Eqs. (16) and (17) with Eqs. (9) and (10) to

determine the temperatures at the boundaries

T 0þð Þ ¼ 2� Tð Þ TL

2
þ T TR

2
; (18)

T L�ð Þ ¼ T TL

2
þ 2� Tð Þ TR

2
; (19)

where the relation TL ¼ TR þ 2dIþQ;0=CVvþx was used (the

factor of two appears since the forward and backward heat

currents are equal in the contacts). The boundary tempera-

tures Tð0þÞ=TðL�Þ are weighted averages of the contact tem-

peratures that depend on T . When T ! 0 (diffusive limit),

the “interior” boundary temperatures tend to the contact tem-

peratures (classical result), and when T ! 1 (ballistic limit)

the boundary temperatures tend to the average of the contact

temperatures (constant T(x) inside the material).32 From

Eqs. (18) and (19), we can extract the value of the tempera-

ture jumps at the contacts (dTc). dTc is found to be identical

at both left and right contacts

dTc ¼
T
2

TL � TRð Þ; (20)

¼ IQRball

2
; (21)

where Rball ¼ 1=Kball is the ballistic thermal resistance with

Kball ¼ CVvþx =2. We find the temperature jumps are simply

proportional to the transmission, which depends on L and k,

and can be interpreted as an intrinsic contact resistance. The

temperature jumps do not occur because the contact interfaces

scatter phonons, since we assume reflectionless contacts.

Rather, it is because we specify the injected heat currents

IþQ;0=I�Q;L at one end of the thermal conductor, while the oppo-

site ends are “floating” boundaries that depend on k and L (as

shown in Fig. 3(b)). Once the forward and backward heat cur-

rents are added to obtain temperature, discrete drops are

observed at the boundaries.

In this work, we have assumed perfectly thermalizing

contacts that are in equilibrium, which allows us to extract a

simple analytical expression for the temperature jumps. In

general, one must specify the injected heat currents at the

boundaries, which in principle can originate from an adja-

cent material that need not be in equilibrium.

In Fig. 4, we compare our simple model (lines) to the

numerical solutions of the BTE (symbols), in the case of

diamond films of length L¼ 0.1 lm, 1 lm, and 10 lm.

Using the effective k values reported in Ref. 3 for T¼ 77,

300 K, we find our simple analytical model adequately

reproduces the results of the BTE, including the linear tem-

perature profiles and the temperature jumps at the contacts.

We note that phonons in a material typically have a broad

distribution of k, and in general using a constant k may

lead to significant errors (in this case, dTc should be

obtained by evaluating k and T at each energy and inte-

grating over energy following Eqs. (5) and (6), as dis-

cussed in Sec. V).

FIG. 4. Normalized temperature profile ðTðxÞ � TRÞ=ðTL � TRÞ versus nor-

malized position x/L of diamond films of length L¼ 0.1 lm (a), 1 lm (b),

and 10 lm (c). Lines correspond to our analytical solution, and symbols

are obtained from the phonon BTE (taken from Ref. 3). The values

k ¼ 2840 lm ð77 KÞ and k ¼ 596 nm ð300 KÞ reported in Ref. 3 were adopted.
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To summarize, writing the phonon BTE in the

McKelvey-Shockley form (Eqs. (1) and (2)) leads to very

accurate solutions for the class of problems considered in

this section. In Sec. IV, we will show that exactly the same

solutions can be obtained by solving the traditional diffusion

equation—if the appropriate boundary conditions are used.

IV. FOURIER’S LAW AND HEAT EQUATION

In this section, we demonstrate how the McKelvey-

Shockley flux equations can be rewritten into familiar

expressions for heat transport that yield exactly the same

results. By adding Eqs. (1) and (2) (replacing F6 by I6
Q ) and

using the relation Q ¼ ðIþQ þ I�QÞ=vþx , we obtain

IQ ¼ �Dph

dQ xð Þ
dx

; (22)

¼ �j
dT xð Þ

dx
; (23)

where

Dph ¼ k vþx =2; (24)

j ¼ CVDph; (25)

Dph is the phonon diffusion coefficient and j is the bulk

thermal conductivity (see Appendix B). Equation (23) is

Fourier’s law, and comes out directly from the McKelvey-

Shockley flux method, without making any assumption on L
relative to k. This indicates that the ballistic transport

physics contained in the McKelvey-Shockley flux method

are also included in Fourier’s law. By combining Fourier’s

law with the energy balance equation (Eq. (7)), we find the

steady-state heat equation

d2Q xð Þ
dx2

¼ d2T xð Þ
dx2

¼ 0; (26)

where we assumed the material parameters are position-

independent. Fourier’s law has been derived from the BTE,3

by assuming that the phonons at each x were locally at ther-

modynamic equilibrium. We find no such assumption is

necessary. The key to capturing ballistic transport effects

with Fourier’s law is to use the correct physical boundary

conditions.

Traditionally, the contact temperatures TL/TR are used as

the boundary conditions; however, the McKelvey-Shockley

flux method shows it is the injected heat currents that are the

physical boundary conditions (Eqs. (3) and (4)). Stated dif-

ferently, the BTE is a first order equation in space, and

requires one boundary condition for the phonon distribution.

This is typically accomplished by defining a boundary condi-

tion on half of the distribution (the incoming flux) at each of

the two contacts. Specifying the contact temperatures as the

boundary conditions at both ends overspecifies the problem.

The temperature at each of the two ends is determined by the

temperatures of the injected fluxes and by the scattering

within the film; it is an outcome of the calculation.

Although, in the diffusive limit, the boundary temperatures

tend asymptotically to the contact temperatures. In general,

using the definitions of heat current and heat density, the

boundary conditions for temperature are determined to be

(details in Appendix C)

2 dIþQ;0 ¼ �j
d dTð Þ

dx

����
0þ
þ CVvþx dT 0þð Þ; (27)

2 dI�Q;L ¼ þj
d dTð Þ

dx

����
L�
þ CVvþx dT L�ð Þ; (28)

where TðxÞ ¼ dTðxÞ þ TR; dTðxÞ ¼ ½dTþðxÞ þ dT�ðxÞ�=2 and

TR was chosen as our reference background temperature.

The above boundary conditions are mixed, meaning they

depend on both temperature and its derivative, and are appli-

cable even when the contacts are not in equilibrium.

Solving the heat equation (Eq. (26)) is straightforward,

and simply gives a linear temperature profile

T xð Þ ¼ T 0þð Þ 1� x

L

� �
þ T L�ð Þ x

L

� �
: (29)

Inserting this solution into Eqs. (27) and (28), we can deter-

mine Tð0þÞ and TðL�Þ, which in this case (equilibrium

contacts) are equal to Eqs. (18) and (19). With equilibrium

contacts, applying the above boundary conditions is equiva-

lent to replacing the contact temperatures TL and TR by the

“interior” boundary temperatures Tð0þÞ and TðL�Þ. We note

that using Eqs. (18) and (19) with Eq. (21), Tð0þÞ and TðL�Þ
can also be rewritten as

T 0þð Þ ¼ TL �
RballIQ

2
; (30)

T L�ð Þ ¼ TR þ
RballIQ

2
: (31)

With a given T(x), we can calculate the heat current

using Fourier’s law (Eq. (23))

IQ ¼ j
T 0þð Þ � T L�ð Þ

L

� �
; (32)

¼ j
TL � TR

Lþ k

� �
: (33)

Note the correct usage of Fourier’s law implies evaluating

the gradient of T using the “interior” boundary tempera-

tures and not the contact temperatures. This expression

for heat current is applicable on all length scales, and is

equal to Eq. (15). In the diffusive limit ðL� kÞ, we have

IQ ¼ j ðTL � TRÞ=L, the classical result; in the ballistic

limit ðL� kÞ, we have IQ ¼ j ðTL � TRÞ=k and the heat

current is independent of L. Equation (33) shows that

jdT=dxj is reduced, due to the temperature jumps at the

boundaries, and is equivalent to replacing L by Lþ k. As

transport becomes more ballistic, the temperature jumps

increase and the absolute temperature gradient inside

the thermal conductor decreases. If one assumed dT=dx
¼ ðTL � TRÞ=L for all L, then a reduction in the expected

IQ could be interpreted as a reduction in the thermal

conductivity. This introduces the concept of apparent

thermal conductivity, which is mathematically defined as
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japp ¼ j � L=ðLþ kÞ.29 Our analysis shows that, physically,

ballistic transport reduces dT=dx and does not change the

bulk thermal conductivity of the material at any length

scale—as long as k is independent of energy.

V. ROLE OF FULL PHONON DISPERSION AND
MEAN-FREE-PATH DISTRIBUTION

In Sec. III, we validated our approach by comparing our

solutions to the numerical results of the BTE where a con-

stant k was used. In general, the MFP of phonons in a given

material can span orders of magnitude,16 and may not be

well represented by a single MFP. Next, we investigate the

impact of an energy-dependent k(�), and demonstrate how to

perform detailed modeling using the “simple” approach pre-

sented in this paper. Specifically, we calculate the tempera-

ture profile inside a silicon film, using a first principles-

calculated phonon dispersion38,39 and a semi-empirical scat-

tering model calibrated to experimental data. From the full

phonon dispersion, shown in Fig. 5(a) (details in Ref. 33),

we obtain Mð�Þ and vþx ð�Þ. Including Umklapp, defect and

boundary scatterings, we extract k(�), presented in Fig. 5(b)

(details in Ref. 34). With this model, we can reproduce the

lattice thermal conductivity of bulk silicon within 15% error

from 5 K to 300 K.

Fig. 1 shows the normalized temperature profile versus

normalized position of Si films for L¼ 3, 30, 300 nm. Our

solutions (lines) are compared to results of the phonon BTE

(symbols).2 Given that small differences would be expected

since we do not use the exact same dispersion and MFP dis-

tribution as in Ref. 2, the agreement is very good. If the

average bulk k is used ðkave ¼ 151 nmÞ, instead of the

energy-dependent k(�), significant differences in the temper-

ature profiles are observed. For example, with k(�) the tem-

perature jumps are 0.43 (L¼ 3 nm), 0.27 (L¼ 30 nm), and

0.09 (L¼ 300 nm), however, with kave we find 0.49, 0.42,

and 0.17, respectively. Thus, using kave overestimates the

phonon ballisticity, because it fails to capture the fact that a

large fraction of the phonons have a MFP less than the aver-

age (see Fig. 5(b)).

How does the temperature profile change when using an

energy-dependent k(�)? According to Eq. (6) and the defini-

tion of heat capacity dQðx; �Þ ¼ CVð�Þ dTðx; �Þ, the energy-

averaged temperature at any point x is given by

dT xð Þ ¼

ð1
0

CV �ð Þ dT x; �ð Þ d�ð1
0

CV �ð Þ d�
; (34)

where

CV �ð Þ ¼ � 2M �ð Þ
h vþx �ð Þ

� �
@fBE �ð Þ
@T

: (35)

Note that CV ¼
Ð1

0
CVð�Þ d�, and that the term in brackets is

simply the phonon density of states.29 From the temperature

profile given by Eq. (29), we only need to compute the energy-

averaged temperatures Tð0þÞ ¼ dTð0þÞ þ TR and TðL�Þ
¼ dTðL�Þ þ TR with Eq. (34). A straight line connecting both

points corresponds to the correct energy-averaged temperature

profile. dTð0þ; �Þ and dTðL�; �Þ are both related to the temper-

ature jump dTcð�Þ at the contacts (Eq. (20)) and thus k(�).
Hence, if Mð�Þ; vþx ð�Þ and k(�) are known (using full phonon

dispersions and energy-dependent scattering rates), performing

detailed modeling within the simple approach described in this

paper boils down to evaluating one integral in energy to extract

the energy-averaged dT or T . From this the temperature profile

corresponds to a straight line joining Tð0þÞ and TðL�Þ. Note

that if k is a constant, then dT does not depend on energy, eval-

uating Eq. (34) is trivial, and Mð�Þ and vþx ð�Þ do not need to be

specified.

VI. SUMMARY

In summary, using the McKelvey-Shockley flux method,

we have shown that a simple phonon Boltzmann equation

can be written. The solutions to this equation agree well with

the results of the full phonon BTE, including temperature

jumps (dTc) at the boundaries with ideal contacts. Examples

with a simple phonon dispersion and energy-independent

phonon mean-free-path and with a full band phonon disper-

sion and energy-dependent mean-free-path distribution were

both considered. For the simple case, analytical solutions for

T(x) and IQ that describe phonon transport from the ballistic

to diffusive limits were derived. For the complicated case,

the results of full numerical solutions of the phonon

Boltzmann equation can be reproduced with a fraction of the

computational burden.

In addition to faster solutions, the method introduced

here also provides new insights into quasi-ballistic phonon

FIG. 5. (a) Phonon dispersion of bulk silicon computed from first principles

(lines: theory; symbols: experimental data35). (b) Mean-free-path for back-

scattering k versus energy at room temperature. k includes boundary, defect,

and Umklapp scattering, and was calibrated to experimental data. Dashed

horizontal line corresponds to the average bulk kave ¼ 151 nm.
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transport. For example, the nature of dTc was discussed, and

we showed that it is simply related to the phonon transmis-

sion across the film. In addition, we showed that dTc can be

described in terms of an ideal contact resistance equal to

one-half of the ballistic thermal resistance at each contact,

which is analogous to the so-called quantum contact resist-

ance for electron transport.36 We also showed that for a con-

stant mean-free-path, the thermal conductivity of a small

structure (k> L) is the same as the bulk thermal conductiv-

ity. The reduction in heat flux occurs because the tempera-

ture difference across the film is less than the difference in

temperatures of the two contacts and not, as commonly mod-

eled, because of reduced thermal conductivity.

Finally, we showed that our simple phonon Boltzmann

equation can be rewritten exactly as Fourier’s law and the

heat equation. When solved with correct boundary conditions,

we showed that Fourier’s law and the heat equation capture

ballistic effects and are thus applicable on all length scales.

This work addressed one-dimensional transport where

the approach and effects can be most clearly discussed. If

extensions to higher dimensions are similarly accurate, this

approach may prove useful in extending finite-element heat

transfer tools to capture ballistic effects and analyzing realis-

tic structures and experiments probing short length and time

scales, such as time/frequency-domain thermoreflectance.

For the latter, a time-dependent McKelvey-Shockley flux

method of the type previously used to described electron

transport37 will be needed.

ACKNOWLEDGMENTS

This work was supported in part by DARPA MESO

(Grant No. N66001-11-1-4107) and through the NCN-NEEDS

program, which is funded by the National Science Foundation,

Contract No. 1227020-EEC, and the Semiconductor Research

Corporation. J.M. acknowledges financial support from

NSERC of Canada.

APPENDIX A: HEAT CURRENT IN THE CASIMIR LIMIT

In this Appendix, we show how our derived expression

for heat current (Eq. (14)), in the ballistic phonon limit,

reduces to the known result in the Casimir limit. Starting

from Eq. (14), we assume purely ballistic transport, meaning

k� L and T ! 1, which gives

Itot
Q ¼

ð1
0

�
M �ð Þ

h
fBE �; TLð Þ � fBE �; TRð Þ½ � d�; (A1)

where we have integrated over energy to obtain the total heat

current (using Eq. (5)). With a linear phonon dispersion, as is

commonly assumed in the Casimir limit, the distribution of

modes is29

M �ð Þ ¼ 3p�2

h2v2
g

; (A2)

where vg is the group velocity and the factor of three is for

the three acoustic branches. Inserting Eq. (A2) and the

expression for fBE into Eq. (A1), we find

Itot
Q ¼

3p
h3v2

g

ð1
0

�3

e�=kBTL � 1
� �3

e�=kBTR � 1

� �
d�; (A3)

where kB is Boltzmann’s constant. Defining a new variable

y ¼ �=kBTL;R, Eq. (A3) becomes

Itot
Q ¼

3pk4
B

h3v2
g

T4
L � T4

R

� 	 ð1
0

y3

ey � 1
dy: (A4)

One can show that the integral is equal to p4=15, which gives

the known result for heat current in the Casimir limit3

Itot
Q ¼ rðT4

L � T4
RÞ; (A5)

r ¼ p5k4
B

5h3v2
g

; (A6)

where r is the Stefan-Boltzmann constant for phonons. Note

the above expression is valid at temperatures much less than

the Debye temperature of the material.

APPENDIX B: TRADITIONAL EXPRESSION FOR
THERMAL CONDUCTIVITY

The expression for bulk thermal conductivity derived

from the approach presented in this work is (see Eq. (25))

j ¼ CVk vþx =2; (B1)

where CV is the heat capacity, k the mean-free-path for back-
scattering, and vþx is the average x-projected velocity of the

forward moving carriers. The commonly encountered rela-

tion for thermal conductivity is

j ¼ CVl vg=3; (B2)

where l is the mean-free-path and vg the group velocity. We

can show that both Eqs. (B1) and (B2) are identical, in the

case of an isotropic phonon dispersion (note our approach

applies in the case of any full phonon dispersion). In Ref. 26,

it is shown that vþx ¼ vg=2 and k ¼ ð4=3Þ l. Inserting these

relations into Eq. (B1), one directly finds Eq. (B2).

APPENDIX C: BOUNDARY CONDITIONS FOR
TEMPERATURE

In this note, we demonstrate how to derive Eqs. (27) and

(28). Our starting point is Fourier’s law, which we showed is

applicable on all length scales (Eq. (23))

IþQ xð Þ � I�Q xð Þ ¼ �j
dT xð Þ

dx
; (C1)

where IþQðxÞ � I�QðxÞ is simply the net heat current IQ. Using

the expression for heat density (Eq. (6)), we have

IþQ ðxÞ þ I�Q ðxÞ ¼ vþx QðxÞ: (C2)

By adding Eqs. (C1) and (C2) and evaluating x at the left

boundary ðx ¼ 0þÞ, we obtain
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2IþQ;0 ¼ �j
dT

dx

����
0þ
þ vþx Q 0þð Þ: (C3)

By subtracting Eq. (C1) from Eq. (C2) and evaluating x at

the right boundary ðx ¼ L�Þ, we obtain

2I�Q;L ¼ j
dT

dx

����
L�
þ vþx Q L�ð Þ: (C4)

Since we assume the applied temperature difference across

the contacts (DT ¼ TL � TR) is small, the heat currents can

be expanded as I6
Q ðxÞ ¼ dI6

Q ðxÞ þ I6
Q;eq, where IþQ;eq ¼ I�Q;eq is

the equilibrium heat current associated with a reference

background temperature (chosen as TR in this case) and

dI6
Q ðxÞ is a correction due to DT. Rewriting Eqs. (C3) and

(C4) in terms of the injected heat fluxes due to DT and using

the definition for heat capacity CV (dQ¼CV dT), we find

2 dIþQ;0 ¼ �j
d dTð Þ

dx

����
0þ
þ CVvþx dT 0þð Þ; (C5)

2 dI�Q;L ¼ j
d dTð Þ

dx

����
L�
þ CVvþx dT L�ð Þ; (C6)

where T(x)¼ dT(x)þ TR. The above equations relate the

injected heat currents at the boundaries to the temperature

(and its gradient) at the boundaries, and represent the correct

physical boundary conditions for the heat equation and

Fourier’s law.

Note that Eqs. (C5) and (C6) are applicable even when

the contacts are not in equilibrium. If the contacts are in

equilibrium, then dIþQ;0 and dI�Q;L can be obtained by expand-

ing Eqs. (12) and (13)

IþQ;0 ¼ �
M

h
fBE TRð Þ þ

@fBE

@T
DT

� �
¼ IþQ;eq þ dIþQ;0; (C7)

I�Q;L ¼ �
M

h
fBE TRð Þ ¼ I�Q;eq: (C8)

By choosing TR as the reference temperature, we have

dI�Q;L ¼ 0.
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