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On the best bandstructure for thermoelectric performance: A Landauer
perspective

Changwook Jeong, Raseong Kim,a) and Mark S. Lundstrom
Network for Computational Nanotechnology, Birck Nanotechnology Center, Purdue University,
West Lafayette, Indiana 47907, USA

(Received 26 March 2012; accepted 2 May 2012; published online 7 June 2012)

The question of what bandstructure produces the best thermoelectric device performance is revisited

from a Landauer perspective. We find that a delta-function transport distribution function (TDF) results

in operation at the Mahan-Sofo upper limit for the thermoelectric figure-of-merit, ZT. We show,

however, the Mahan-Sofo upper limit itself depends on the bandwidth (BW) of the dispersion, and

therefore, a finite BW dispersion produces a higher ZT when the lattice thermal conductivity is finite.

Including a realistic model for scattering profoundly changes the results. Instead of a narrow band, we

find that a broad BW is best. The prospects of increasing ZT through high valley degeneracy or by

distorting the density-of-states are discussed from a Landauer perspective. We conclude that while

there is no simple answer to the question of what bandstructure produces the best thermoelectric

performance, the important considerations can be expressed in terms of three parameters derived from

the bandstructure—the density-of-states, DðEÞ, the number of channels, MðEÞ, and the mean-free-path,

kðEÞ. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4727855]

I. INTRODUCTION

The performance of thermoelectric (TE) devices is

related to a dimensionless figure of merit, ZT,

ZT ¼ S2rT

jph þ jel
; (1)

where S is the Seebeck coefficient, r the electrical conductiv-

ity, jph the lattice thermal conductivity, and jel the electronic

thermal conductivity. Early work developed TE technology

with a figure of merit of about one,1 but subsequent progress

was stalled for several decades. Recent progress has, however,

been significant, and there are now several reports of ZTs

above one,2 which have been largely achieved by reducing the

lattice thermal conductivity, which dominates the denomina-

tor of Eq. (1). Figure 1 is a plot of ZT vs. jtotð¼ jph þ jelÞ for

several different TE materials including recent materials with

ZT> 1.3–22 Also shown (dashed line) is the result that would

be obtained if the power factor (PF) (S2r) of each material

was the same as that of silicon. The conclusion is that the per-

formance of a thermoelectric material is largely determined

by its thermal conductivity. The power factors of good TE

materials are all similar. This raises the question of what con-

trols the magnitude of the power factor and provides an oppor-

tunity to further increase ZT by power factor engineering.

This paper addresses the question: “How is the electronic

structure of a material related to its power factor?”

For conventional TE materials with approximately para-

bolic energy bands, the power factor is well understood.23,24

High power factors require high mobility to increase r, and

ionized impurity scattering should dominate to enhance S.24

In a seminal paper, Mahan and Sofo asked the question:

“What shape of a bandstructure would produce the highest

thermoelectric performance?” They concluded that materials

with a d-function “transport distribution function,” (TDF)

would be best.25 Subsequently, Nishio and Hirano26 showed

that in the absence of thermal conduction by the lattice, a

single energy channel leads to “electronic efficiencies” at the

Carnot limit. Similar conclusions were reached by Hum-

phrey and Linke.27 In a recent paper, Nakpathomkun et al.
argued that the power delivered to a load is the important

measure of performance and that for such purposes, ZT is

not the best figure of merit.28 Nakpathomkun concluded that

the TDF should have a finite bandwidth (BW �2.25 kBT) for

maximum power output, although the maximum efficiency

(for jph ¼ 0) still occurs for a d-function TDF. The “best

bandstructure question” has also been explored recently by

Fan et al.29 who concluded that for a normalized TDF (i.e.,

the area under the TDF vs. energy curve is bounded), the

d-function TDF is best, but for a bounded TDF (the maximum

value is limited), a narrow but finite width of the TDF is best.

Very recently, Zhou et al. considered the optimal BW ques-

tion and concluded that the existence of an optimal BW

depends strongly on the scattering model used.30 Finally, we

note the recent experiments reporting improved TE perform-

ance in materials with a resonant level8 and in PbTeSe alloys

that display a high degree of valley degeneracy,31 which

increases the density-of-states, DðEÞ, near the Fermi level.

To continue to increase performance of thermoelectric

materials, the electronic performance must be enhanced.2,32

Previous study has clarified several of issues, but a number

of questions remain:

(1) What physical constraints should be placed on the TDF?

Before we explore the best bandstructure question, the

physical constraints to be placed on the TDF must be

clarified.

a)Current address: Components Research, Intel Corporation, Hillsboro,

Oregon 97124, USA.
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(2) How does the BW of the TDF affect TE performance?

Under what conditions is a d-function TDF the best and

under what conditions is a narrow band the best? When a

narrow band is best, what determines the optimum BW?

Finally, how do these results relate to the original argu-

ments of Mahan and Sofo?

(3) How does scattering affect optimum bandstructure?

(4) How should the improved performance of materials with

a high valley degeneracy31 or with a resonant energy lev-

els8 that distort the density-of-states be understood?

(5) Is there a best bandstructure for TE performance?

Our goal in this paper is to answer these questions. We

use a Landauer approach, which is equivalent to the Boltz-

mann transport equation for crystalline semiconductors in

the diffusive limit but has advantages of mathematical sim-

plicity and physical transparency. This is most apparent with

regard to the so-called transport distribution, a central quan-

tity in thermoelectric theory25 whose physical interpretation

is unclear. In the Landauer approach, the transport distribu-

tion acquires a clear physical interpretation—it is propor-

tional to the number of channels available for conduction

times the mean-free-path (MFP) for backscattering, which

makes it easy to identify the appropriate physical constraints

to place on the TDF.

Following Nakpathomkun et al.,28 we shall assess ther-

moelectric performance using two different metrics: (1) the

maximum thermoelectric efficiency and (2) the maximum

power that a thermoelectric generator delivers to a load. The

first is of theoretical interest and the second of practical in-

terest. As discussed in the Appendix, as ZT approaches infin-

ity, the maximum thermoelectric efficiency approaches the

Carnot efficiency, but the efficiency when the maximum

power is delivered to a load approaches one-half of the Car-

not limit, the so-called Curzon-Ahlborn limit.33 Both operat-

ing conditions will be considered.

The paper is organized as follows: Section II summa-

rizes the approach. The expressions presented are those of

standard thermoelectric theory with only one difference—

the transport distribution is expressed in Landauer form.

Section III A is a short discussion of the single energy

case (a d-function TDF). This section sets the stage for

understanding the subsequent results and relates this pa-

per to some previous studies. Section III B is a short dis-

cussion of one-dimensional (1D) thermoelectrics. The

simplicity of the 1D problem provides a clear illustration

of how the number of channels for conduction, MðEÞ, is

related to the density-of-states, DðEÞ, and allows us to

address question (1) above. Question (2) is discussed in

Secs. III C and III D. Section III C examines how the BW of

the dispersion affects TE performance, extending the analysis

of Sec. III B to three-dimensional (3D) thermoelectrics. In Sec

III D, it is shown that the conclusion of Mahan and Sofo is

correct, if properly understood. Section III E is a discussion

of scattering and addresses question (3), and Secs. III F and

III G address question (4). The paper’s conclusions are sum-

marized in Sec. IV, where our perspective on question (5) is

presented.

II. APPROACH

A. Thermoelectric coefficients

We begin with a brief review of the Landauer approach34

to TE transport. The TE transport parameters are5,25

r ¼
ðþ1
�1

dEr0ðEÞ; (2a)

S ¼ kB

q

� �ðþ1
�1

dEðE� EFÞ
r0ðEÞ

r
; (2b)

j0 ¼ T
kB

q

� �2ðþ1
�1

dEðE� EFÞ2r0ðEÞ; (2c)

jel ¼ j0 � S2rT; (2d)

where EF is the Fermi level and r0ðEÞ is the so-called differ-

ential conductivity. For 3D bulk diffusive materials,

r0 ðEÞ ¼ 2q2

h

MðEÞ
A

� �
kðEÞ � @f0

@E

� �
¼ q2RðEÞ � @f0

@E

� �
;

(3)

where 2q2=h is the quantum of conductance, MðEÞ is the

number of conducting channels at a given energy, E, A is the

cross-sectional area, k(E) is the mean-free-path for backscat-

tering, and f0 is the Fermi-Dirac distribution. In Eq. (3),

RðEÞ is the so-called TDF, which arises from a solution to

the Boltzmann transport equation.25 The TDF depends on

both bandstructure and scattering. In the Landauer approach,

RðEÞ is proportional to the product of MðEÞ, which depends

only on bandstructure and k(E), which depends on band-

structure and the scattering physics. For semiclassical

transport in the diffusive limit, the Boltzmann and Landauer

approaches are mathematically identical; we use the

FIG. 1. The maximum ZT vs. total j. Conventional semiconductors used in

IC industry (circle): Si 300 K,3,4 Ge 300 K,5 GaAs 300 K;21 bulk TE materi-

als used in TE devices (triangles): Bi2Te3 300 K,6 BixSb2-xTe3 300 K,7

Si80Ge20 1275 K,22 PbTe 300 K;8 nano-engineered materials (square): Si

nanowire (NW) 300 K,9 Si NW 200 K,10 Bi2Te3/Sb2Te3 superlattice (SL)

300 K,11 PbTe/PbSeTe quantum dot (QD) SL 300 K,12 Tl-PbTe 773 K,8 Na1-

xPbmSbyTe2þm 650 K,13 PbxSn1-xTe-PbS 642 K,14 AgPbmSbTemþ2 800 K,15

PbSbTe 700 K,16 p-PbTe-SrTe 800 K,17 Bi2Te3 300 K,18 BixSb2-xTe3

475 K,7 n-Si80Ge20 1275 K,22 Si 1275 K,3 n-LaTe 1273 K,19 n-YbxCo4Sb12þy

800 K.20 The dashed line is the ZT that would be obtained if the power factor

of each material were the same as that of silicon.
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Landauer approach in this paper because it provides a simple

and clear physical interpretation of the TE transport distribu-

tion function.

B. Bandstructure model

Given a bandstructure, EðkÞ, MðEÞ is easily obtained by

simply counting the bands that cross the energy of interest.5

For the purposes of this paper, we seek a simple but realistic

bandstructure model that gives EðkÞ across the entire Bril-

louin zone (BZ) and for which the BW of the dispersion can

be varied from broad to narrow in order to explore the effects

of bandwidth on the TE coefficients. A simple, nearest

neighbor tight-binding (TB) model,

EðkÞ ¼ 2t0ð1� cos kxaÞ þ 2t0ð1� cos kyaÞ
þ 2t0ð1� coskzaÞ; (4)

will be used. In Eq. (4), t0 ¼ �h2=2mea2 with a and me being

the lattice constant and the effective electron mass, respec-

tively. The BW of the electron dispersion is 12t0. We change

the BW while assuming a ¼ 5� 10�10 m, which keeps the

total number of states fixed. It is important to note that the

TB model gives EðkÞ across the entire BZ and that we do not

assume parabolic energy bands (i.e., EðkÞ 6¼ �h2k2=2me). In

the case of a large BW, however, only states near the bottom

of the band, which are nearly parabolic, are occupied, and

we recover the expected results for parabolic energy bands.

For the small BW case, however, the TDF approaches a

d-function, and much different results are obtained. Because

the TDF is derived from a physically sensible dispersion, no

artificial constraints are placed on the TDF.

III. RESULTS AND DISCUSSIONS

A. Single energy case

We begin with a short discussion of the single energy

case (a d-function TDF), which has received a good deal of

attention and forms one end of the spectrum of BWs that

we will explore. When all the channels are at E¼E0,

M(E)¼M0*d(E�E0), and the differential conductivity

becomes r0(E)¼r0d(E�E0). In this case, the thermoelectric

coefficients become

r ¼ r0; (5a)

S ¼ � kB

q

� �
E0 � EF

kBT

� �
; (5b)

j0 ¼ T
kB

q

� �2 E0 � EF

kBT

� �2

r0; (5c)

jel ¼ j0 � S2r0T ¼ 0: (5d)

Here, with a constant MFP (k0) being assumed, r0 is found

to be

r0 ¼
2q2

h

M0k0

kBT

� �
egF

ð1þ egFÞ2
; (5e)

where gF ¼ ðEF � E0Þ=kBT and gF � 62:4 for the maxi-

mum power factor. The result, Eq. (5e), agrees with Mahan

and Sofo25 but not with Zhou et al.30 who found r0 ¼ 0.

For the single energy case, the electronic heat conduc-

tivity, jel, is zero. This occurs because jel defines the heat

flow under open-circuit conditions. If all the current flows at

E¼E0, then zero current means that no electrons are flow-

ing, so there can be no heat current. For the single energy

case,

jel

r
¼ LT ¼ 0; (5f)

which shows that the Lorenz number, L, is zero. For a para-

bolic energy band under strongly degenerate conditions,

L ¼ ðp2=3ÞðkB=qÞ2, but we shall see that as the BW of the

dispersion decreases, L decreases and approaches Eq. (5f) in

the limit of zero bandwidth.

B. One-dimensional analysis

Here, we illustrate how the number of conducting chan-

nels, MðEÞ, is related to the density-of-states, DðEÞ, by using

a simple 1D example that illustrates the physical constraint

that should be imposed on the TDF. Figures 2(a) and 2(b)

show a plot of the 1D dispersion, EðkÞ ¼ 2t0ð1� cos kxaÞ,
and the corresponding DðEÞ for BWs of �0.1 and �0.6 eV.

At a given energy, E, the number of states that participate in

transport is the number of conducting channels, MðEÞ, which

is often referred to as the number of (transverse) modes in

analogy with the modes of an electromagnetic waveguide.

Given an accurate dispersion, MðEÞ can be readily computed

by counting the bands that cross the energy of interest5 and

is shown in Fig. 2(c). It can be seen that although the DðEÞ
goes to infinity, MðEÞ remains bounded, independent of

bandwidth. (Zhou et al.30 also pointed out that while

DðEÞ ! 1, RðEÞ remains finite.) Note that
Ð

DðEÞ dE is in-

dependent of bandwidth because we fix the total number of

states, but it is the peak value of MðEÞ that is independent of

bandwidth, not
Ð

MðEÞ dE. This 1D example demonstrates

that the answer to the first question posed in Sec. I is that for

a given dispersion, the maximum of MðEÞ is fixed. Fixing

FIG. 2. (a) The 1D dispersion, EðkÞ ¼ 2t0ð1� cos kxaÞ with two different

BWs of a dispersion, �0.1 (dashed line) and �0.6 eV (solid line). (b) The

corresponding the density-of-states, DðEÞ, and (c) the number of conducting

channels, MðEÞ, which represent the number of states that participate in

transport at a given energy E. Note that although the DðEÞ goes to infinity,

MðEÞ remains bounded independent of bandwidth.
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the electrical conductivity when varying the BW (Ref. 27) or

fixing the area under TDF vs. E (Ref. 29) lead to non-

physical results.

The counting bands method can be extended to the two-

dimensional (2D) and the 3D cases. The 1D procedure is

repeated for each transverse wave vector so that the entire

BZ of the material is spanned. The resulting number of con-

ducting channels is integrated over transverse momentum at

a given energy to find the MðEÞ. This method is used next in

3D. Finally, we also note that while not obvious, MðEÞ is

related to the density-of-states according to5

MðEÞ ¼ h

2
htþx ðEÞiDðEÞ; (6)

where htþx ðEÞi is the average velocity in the direction of

transport at energy, E, and DðEÞ is the density of states per

spin. The density of states is per unit length in 1D, per unit

area in 2D, and per unit volume in 3D. The number of chan-

nels is a number in 1D, a number per unit width in 2D, and a

number per unit area in 3D, where the width and cross sec-

tional area are normal to the direction of current flow.

C. Three-dimensional analysis: Constant
mean-free-path

In this section, we extend our analysis to 3D and evalu-

ate the TE coefficients at T¼ 300 K to address question (2).

The BW of the dispersion is varied from very narrow to very

wide while assuming a constant MFP. Figure 3 shows the

computed density-of-states, DðEÞ, and number of channels,

MðEÞ, for small and large BW dispersions. The MðEÞ charac-

teristics display a peak value of �0.6 times the number of

atoms in the cross section—independent of bandwidth. As

was observed for 1D, the total number of states (area under

the DðEÞ curve) is independent of BW but the area under the

MðEÞ curve depends on BW. Finally, Fig. 3 also shows that

the parabolic band assumption (dashed line) matches the

full-band TB results (solid line) only near the bottom of the

band where DðEÞ / E1=2 and MðEÞ / E.5

Next, TE performance for 3D bulk is assessed for two

different conditions: (1) the maximum TE efficiency and (2)

the maximum power that a thermoelectric generator delivers

to a load.25 The load resistance and the location of the Fermi

level are co-optimized in order to extract the maximum effi-

ciency or the maximum power output. For each of the two

different operating conditions, the efficiency and power out-

put are calculated as a function of the BW.

We first evaluate TE performance for zero lattice ther-

mal conductivity, jph ¼ 0, and the results are shown in

Fig. 4(a), where the TE efficiency is normalized by the Car-

not efficiency, gC. For this case, the maximum power output

is obtained for a moderate BW band, but the maximum effi-

ciency occurs for a d-function like narrow band. In agree-

ment with Nakpathomkun,28 we find that as the TDF (or

MðEÞ) approaches a d-function, the maximum efficiency

approaches the Carnot efficiency, but no useful power can be

delivered to a load. However, the d-function TDF does pro-

duce a finite power under maximum power conditions with

an efficiency of one-half the Carnot efficiency, the Curzon-

Ahlborn limit.33

Figure 4(b) shows the results with the more realistic

case, i.e., a finite jph ¼ 0:5 W/m K, which is about 2–3 times

FIG. 3. (a) and (c) The 3D density-of-states, DðEÞ, for the narrow and the

broad BW bands. (b) and (d) The number of conducting channels, MðEÞ, for

the narrow and the broad BW bands. Full-band calculations (solid line) are

compared to effective mass approximation (EMA, dashed line). Based on the

EMA, DðEÞ ¼ me

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meðE� ECÞ

p
=2p2�h3 and MðEÞ ¼ meðE� ECÞ=2p�h2,

where EC is the band edge. Fitted effective masses (me) at the bottom of band

are me ¼ m0 for the broad band and me ¼ 10 m0 for the narrow band, where

m0 is the electron rest mass. It is seen that the DðEÞ and the MðEÞ obtained

from parabolic band assumption (dashed line) match well the full-band TB

results (solid line) only at the bottom of the band. Dotted line is the arbitrarily

normalized “window function,” W ¼ ð�@f0=@EÞ, where f0 is Fermi-Dirac

distributions. For horizontal axis, e ¼ E� EC for DðEÞ and MðEÞ and

e ¼ E� EF for W ¼ ð�@f0=@EÞ, where EF is the Fermi level. In Fig. 3, we

assume EC ¼ EF which is a typical condition for optimum performance.

FIG. 4. Efficiency normalized by Carnot efficiency gC (upper panel) and

power for (a) zero lattice thermal conductivity, jph ¼ 0, and (b) a finite lat-

tice thermal conductivity, jph ¼ 0:5 W/m K are plotted as a function of the

BW. Efficiency and power are evaluated from two different perspectives.

Solid line: condition for the maximum thermoelectric efficiency. Dashed

line: condition for the maximum power that a thermoelectric generator

delivers to a load. The load resistance and the location of the Fermi level are

co-optimized in order to extract the maximum efficiency or the maximum

power output.
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smaller than the lattice thermal conductivity of Bi2Te3. In

contrast to the case of jph ¼ 0; the maximum efficiency now

occurs for a moderate BW, instead of for the narrowest BW.

Note that the maximum power occurs for a moderate BW for

both zero and finite jph. If we repeat the calculations using a

smaller (larger) value of jph, we find only a slight decrease

(increase) in the optimum BW. Next, we discuss how the

BW affects the four TE transport parameters.

The TE coefficients assuming zero lattice thermal con-

ductivity, jph ¼ 0, are shown in Fig. 5. For each value of the

BW, we found the optimal location of the Fermi level to

maximize ZT. As the BW decreases, ZT diverges. Therefore,

the highest ZT and efficiency is obtained for a d-function like

band. As seen in Figs. 5(b) and 5(c), this occurs mainly

because as the BW approaches zero, jel approaches zero

while r approaches a finite value, Eq. (5e), and therefore the

Lorenz number, L, approaches zero as discussed in Sec. III A.

For the large BW case, Fig. 5(b) shows that we obtain the

expected results for a parabolic energy band, i.e., for large

BWs, L saturates at a value slightly above 2. Recall that for a

parabolic energy band under strongly degenerate conditions,

L=ðkB=qÞ2 ¼ p2=3 and for non-degenerate conditions with a

constant MFP, L=ðkB=qÞ2 ¼ 2. The Wiedemann-Franz “law”

states that there is a relation between the electrical conduc-

tivity and the electronic component of the thermal conductiv-

ity, but the specific value of the L depends on bandstructure,

scattering, and the location of the Fermi level. As noted by

Mahan and Bartkowiak,35 it should be regarded as a “rule of

thumb” rather than a law.

In contrast to the case of jph ¼ 0; Fig. 6(a) shows that the

highest ZT occurs for a moderate BW when jph ¼ 0:5 W/m K. As seen in Fig. 6(b), for this case, the optimum BW for high-

est ZT is mainly determined by the BW dependence of the

power factor rather than that of the L. Figure 6(c) shows that

the BW has a strong effect on r, but it has a rather small

effect on S. The stronger variation of r vs. BW than that of S
vs. BW explains the shape of the power factor vs. BW char-

acteristic in Fig. 6(b).

The results shown in Fig. 6 can be understood in terms

of the width of the Fermi “window function,” ð�@f0=@EÞ,
and the distribution of conducting channels, as plotted in

Fig. 3(a). The width of the Fermi window function is a few

kBT, so when the bandwidth of the dispersion is less than this

value, r decreases. The optimum BW for r occurs when the

width of the Fermi window matches the BW of MðEÞ. As the

BW of the dispersion increases, the channels are more spread

out, so given the finite width of the Fermi window function,

a decreasing fraction of the channels can participate in elec-

trical conduction, and r decreases (compare Figs. 3(b) and

3(d)). Note that the peak of jel occurs for a somewhat larger

BW than that of r because of the ðE� EFÞ2 factor in Eqs.

(2c) and (2d).

We have discussed why a d-function like TDF maxi-

mizes the efficiency for jph ¼ 0 and why a TDF with a mod-

erate BW of a few kBT maximizes the efficiency for a finite

jph. For the maximum power output, however, Fig. 4 shows

that a moderate BW is best in either case. This occurs

because the power output is proportional to the power factor

(as discussed in Appendix), and the power factor displays its

maximum at a moderate BW regardless of the value of jph.

FIG. 5. For zero lattice thermal conductivity (jph ¼ 0), (a) ZT, (b) the PF

and the Lorenz number (L), and (c) the Seebeck coefficient (S), the electrical

conductivity (r), and the electronic thermal conductivity (jel) are plotted.

The units of PF, L, S, r; and jel in the plots are 10�6 W/m-K2, ðkB=qÞ2;
10�3V=K; 1/X-m, and 5� 10�5 W/m-K, respectively. For each value of the

BW, we found the optimal location of the Fermi level to maximize ZT. As

the BW decreases, the highest ZT (i.e., efficiency) is obtained for a delta-

function like narrow band. This result occurs mainly because as the BW

approaches zero, jel approaches zero and therefore the L approaches zero.

Note that the maximum PF still appears at a moderate BW.

FIG. 6. For a finite lattice thermal conductivity (jph ¼ 0:5 W/m K), (a) the

ZT, (b) the PF and the Lorenz number (L), and (c) the Seebeck coefficient (S),

the electrical conductivity (r), and the electronic thermal conductivity (jel)

are plotted. The units of PF, L, S, r; and jel in the plots are 10�3 W/m-K2,

ðkB=qÞ2; 10�4V=K; 104/X-m, and 10�1 W/m-K, respectively. For each value

of the BW, we found the optimal location of the Fermi level to maximize ZT.

In contrast with the case of jph ¼ 0; the highest ZT occurs for the moderate

BW mainly because of the BW dependence of the power factor. Since the

BW has a rather small effect on S, the strong variation of r vs. BW explains

the shape of the power factor vs. BW. The optimum BW for r occurs when

the width of the Fermi window matches the width of MðEÞ.
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Achieving a moderate BW band by coherent transport in a

superlattice, however, is not an effective approach because in

that case, most of the channels are filtered out. Molecular ther-

moelectrics is another possibility.36 This might lead to high effi-

ciency but not to high power, because although molecular

levels can be sharp (possibly too sharp), one still needs a large

number of channels in a small energy range. Packing molecules

closely may broaden the levels and degrade performance.

D. The Mahan and Sofo upper limit

In previous sections, we have shown that for a constant

MFP, a moderate BW (a few kBT) is best for the practical

case of a finite jph. This conclusion holds for both the effi-

ciency and the power output when we consider a constant

MFP. This fact has been pointed out in previous studies;25–30

we have provided a simple, physical explanation in terms of

the need to match the width of the Fermi window to the

width of the transport distribution or MðEÞ and also

explained the appropriate physical constraints on the TDF.

In this section, we address the question of how these theoret-

ical studies relate to the original arguments.

The Mahan-Sofo upper limit to ZT can be readily

obtained by using Eqs. (1) and (2d), from which ZT can be

written as

ZT ¼ j0

jph
� 1� jel=j0

1þ jel=jph

� �
: (7a)

Since the term in the brackets is always less than 1, it can be

seen that

ZT � j0

jph
; (7b)

which is the Mahan-Sofo upper limit.25 Mahan and Sofo25

also showed that a bandstructure that produces a d-function

TDF (a single energy channel) gives the upper limit. This

can be readily understood from the fact that jel ¼ 0 for the

single energy case, so Eq. (7a) shows that the thermoelectric

figure of merit reaches its upper limit, ZT ¼ j0=jph. Figure 7

shows the computed j0=jph (upper limit of ZT) vs. BW of

the dispersion (dashed line) along with the computed ZT vs.

BW (solid line). It can be seen that ZT � j0=jph is always

true, and that in agreement with the prediction of Mahan and

Sofo,25 ZT approaches its upper limit for the narrowest BW.

Although we assumed a constant MFP and a finite jph, we

find that the conclusion that ZT � j0=jph and ZT ¼ j0=jph

for d-function TDF are independent of the specific scattering

model and value of jph. The important point, however, is

that j0 depends on the BW, so the upper limit itself depends

on BW and shows peak value at a BW of a few kBT where

the maximum ZT occurs. The highest ZT, therefore, occurs

for a BW that results in operation well below the Mahan-

Sofo upper limit.

E. Role of scattering

In previous sections, we showed that a narrow TDF with

a BW of a few kBT gives the best TE performance. The only

exception is that when jph ¼ 0, the maximum efficiency (but

not the maximum power delivered to a load) occurs for a

d-function TDF. We also revisited the Mahan-Sofo limit

and showed that while the upper limit is obtained for a

d-function TDF, better efficiency can be obtained by operat-

ing below the BW dependent upper limit using a TDF with a

BW of a few kBT. These results answer question (2), but

before we conclude that a narrow band is best, however, we

should realize that our use of the same MFP for all band-

widths is physically unreasonable. One advantage of the

Landauer approach is that it separates the TDF into a part

that depends only on bandstructure, MðEÞ, and a part that

depends both on bandstructure and scattering physics, the

MFP. We turn now to the question of how scattering affects

TE performance and we shall see that although narrow TDFs

have been much discussed,25–30 they are probably not the

best for TE performance.

Recent work by Zhou et al.30 and Jeong et al.37 has

examined three models for scattering: (1) the constant mean-

free-path discussed here in previous sections, (2) a constant

scattering time, and (3) a scattering rate proportional to the

density-of-states, s�1ðEÞ ¼ CelDðEÞ. The constant MFP can

be justified for parabolic energy bands, but it is hard to jus-

tify over a wide range of BWs. The constant scattering time

is commonly used, but hard to justify under any circumstan-

ces. A scattering rate that is proportional to the density-of-

states follows directly from Fermi’s Golden Rule and should

describe acoustic phonon scattering, which typically domi-

nates for good thermoelectrics.

Extensive calculations for the three scattering models

have been presented recently,30,37 so we only review the con-

clusions here. As discussed in previous sections, for a con-

stant mean-free-path, ZT is mostly determined by the BW

dependence of r, which is maximized when the BW of the

TDF matches that of the Fermi window function. Similar

results are obtained for the constant scattering time case. For

the most realistic scattering model, however, it is found that

there is no optimum BW.30,37 Instead, ZT continuously

decreases as the BW decreases. The reason is clear in a Lan-

dauer picture. According to Eq. (3), r is proportional to the

FIG. 7. For a finite lattice thermal conductivity (jph ¼ 0:5 W/m-K), the ZT
(solid line) and its upper limit, j0=jph (dashed line), are plotted as a function

of BW. For each assumed bandwidth, the optimal location of the Fermi level

is determined to maximize ZT. Here, a constant mean-free-path is assumed.

It can be seen that ZT � j0=jph is always true and the ZT approaches its

upper limit for the narrowest BW.
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TDF, which is the Landauer picture proportional to the prod-

uct of the number of channels, MðEÞ, and the MFP, kðEÞ. As

the BW decreases, the number of channels in the Fermi win-

dow increases, which should increase the conductivity, but

the density of states near the Fermi level also increases,

which increases the scattering rate and decreases the MFP.

In our isotropic bandstructure model, the smaller BW corre-

sponds to a larger effective mass and smaller velocity. Since

the MFP is the product of velocity and scattering time, it

decreases faster than MðEÞ increases so ZT decreases as the

BW decreases.

In contrast to several previous studies and to the discus-

sion in earlier sections of this paper, which used overly sim-

plified treatments of scattering, we conclude that for best TE

performance, wide (dispersive) bands are the best. This point

can also be seen from the expression for the conductivity,

r ¼
ð

MðEÞ
A

kðEÞ � @f0

@E

� �
dE: (8a)

Recall that MðEÞ / jtþx jDðEÞ, where jtþx j is the average ve-

locity in the direction of transport at energy, E. Recall also

that kðEÞ / jtþx jsðEÞ and that 1=sðEÞ / DðEÞ, so Eq. (8a)

becomes

r /
ð
jtþx ðEÞj

2 � @f0
@E

� �
dE: (8b)

Equation (8b) shows that the conductivity is proportional to

the square of the average velocity in the Fermi window.

High velocities occur for light effective masses (large BWs),

so for a realistic model of scattering, we conclude that a

wide band, not a narrow band, is best.

F. High valley degeneracy

The analysis in the previous section showed that it is hard

to increase the power factor in a single band by increasing the

density-of-states near the Fermi level because of the tradeoff

between the number of channels and the mean-free-path. It is

generally understood, however, that a high degree of valley

degeneracy is beneficial for thermoelectric performance,1 and

recently, this approach has produced significant increases in

performance.31 This leads to the question of how high valley

degeneracy affects the power factor.

The benefits of valley degeneracy can be understood

with a very simple model. As shown in previous sections,

the power factor is mainly controlled by the behavior of the

conductivity, r, and when a realistic model for scattering is

assumed (proportional to the density of states), large band-

widths, for which the parabolic band assumption holds, are

best. Accordingly, we assume two spherical, parabolic band

semiconductors, the first with an effective mass of m�1 and

the second with m�2. The first semiconductor has a valley

degeneracy of NV1, and the second has only a single valley,

i.e., NV2 ¼ 1. We compare these two semiconductors at the

same density of states (DðEÞ) and ask "How do the power

factors of these two semiconductors with the same densities

of states compare?"

The computed power factor vs. valley degeneracy is

plotted in Fig. 8(a). The calculations assume m�2 ¼ m0 and

that sðEÞ ¼ Cel=DðEÞ with Cel selected to produce average

MFP (hhkii) of 10 nm for a single valley. The calculations

confirm the expectation that valley degeneracy produces

higher performance. For NV ¼ 6, about a factor of 3 increase

of the power factor can be achieved in this model multi-

valley structure. Figures 8(b)–8(d) show the power factor, S,

and r as a function of Fermi level for an isotropic single val-

ley (NV2 ¼ 1) and multi-valley (NV1 ¼ 6 and NV1 ¼ 12). It is

found that the S vs: EF characteristics are the same for the

three cases, but Fig. 8(d) shows that the conductivity

increases with valley degeneracy.

Additional insight into the benefits of valley degeneracy

can be gained from Fig. 9, which compares DðEÞ, MðEÞ,
kðEÞ, and the transport distribution, MðEÞkðEÞ for the three

cases. For this calculation, we forced DðEÞ to be the same in

the three cases (Fig. 9(a)), so the scattering times, sðEÞ, are

also the same. In the multi-valley cases, we combine the con-

tributions of several light mass bands. In an isotropic single

valley, the same density-of-states is achieved by increasing

the effective mass, which lowers the velocity. As shown in

Fig. 9(b), MðEÞ is higher for the multiple valley case because

MðEÞ / tðEÞDðEÞ. Fig. 9(c) shows that kðEÞ is also higher

for the multiple valley case because kðEÞ / tðEÞ sðEÞ. Note

that with a parabolic band, kðEÞ is energy-independent.

Since the transport distribution is proportional to MðEÞkðEÞ,
it is considerably higher for the multiple valley case, as

shown in Fig. 9(d). The jtþx ðEÞj
2

term in Eq. (8b) is larger in

multi-valley case. Stated another way, MðEÞ / tðEÞDðEÞ
and kðEÞ / tðEÞ sðEÞ. While DðEÞ and sðEÞ are the same in

the three cases, the velocity is higher in the multi-valley

cases, so both MðEÞ and kðEÞ are larger when a high density-

of-states is obtained by combining light mass valleys.

FIG. 8. (a) The computed power factor vs. valley degeneracy is plotted. (b)

The power factor (PF), (c) S, and (d) r are plotted as a function of Fermi

level for three cases of NV ¼ 1, 6, and 12. Symbols represent values at opti-

mal Fermi level. It can be seen that PF of multi-valley semiconductor is

improved and that the enhancement is attributed to the increase of r.
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The improved PF for multiple valleys is due to the high

conductivity, r ¼ ð2q2=hÞhMihhkii. The improved power

factor is attributed to increases in both the average MFP,

hhkii, and in the number of channels in the Fermi window,

hMi. For example, hMi ¼ 9:5� 1016 m�2 and hhkii ¼ 18 nm

for the multi-valley case of NV ¼ 6 and hMi ¼ 5:2�
1016 m�2 and hhkii ¼ 10 nm for the single valley case.

G. Distorted density of states

Next, we examine the possibility of improving TE per-

formance with a distorted density-of-states, DðEÞ.8,38,39 To

illustrate the effect of a distorted DðEÞ, we consider a model

semiconductor for which the lower band is an isotropic sin-

gle valley with an effective mass of m0 and the upper band

has an effective mass of 10 m0. The 10� larger effective

mass induces sharp increase of DðEÞ, which is similar to the

effect of a resonant level. We compare the power factor of

this semiconductor to that of an isotropic single valley with

an effective mass of m0. Two different scenarios for scatter-

ing are considered; the first assumes a constant MFP, hhkii,
with a value of 10 nm. The second scenario assumes that

sðEÞ ¼ Cel=DðEÞ with Cel selected to produce hhkii of 10 nm

for an isotropic single valley. In practice, we expect the

results to lie between these two limits. We compare TE per-

formance at the optimal location of the Fermi level while

varying the band-offset, DEC, between the lower and upper

bands.

Figure 10(a), the computed power factor vs. DEC for

the constant MFP case, shows that the best performance is

obtained when DEC ¼ 0. The maximum performance is

much better than that of the single, small mass valley, and

slightly better than that of a single, large mass valley.

Figure 10(b) shows that the maximum PF occurs when the

Fermi level is located near the bottom of the large mass val-

ley. Fig. 10(c) shows that a non-monotonic behavior of

SðEFÞ when DEC > 0 maintains a relatively large Seebeck

coefficient under degenerate conditions. These results

can be understood from Fig. 11. The density of states for

three different valley offsets are shown in Fig. 11(a), and

Fig. 11(b) shows the corresponding MðEÞ. The case of

DEC ¼ 0 produces the largest M at any energy. Because the

MFP is constant (Fig. 11(c)), the transport distribution

FIG. 9. (a) Density-of-states (DðEÞ), (b) number of conduction channels

(MðEÞ), (c) MFP for backscattering (kðEÞ), and (d) MðEÞkðEÞ are plotted for

three cases of NV ¼ 1, 6, and 12. Symbols represent values at optimal Fermi

level. MðEÞ and kðEÞ are higher for the multiple valley case because MðEÞ
/ tðEÞDðEÞ and kðEÞ / tðEÞ sðEÞ. Since the transport distribution is propor-

tional to MðEÞkðEÞ, it is considerably higher for the multiple valley case.

FIG. 10. (a) For constant MFP, the PF vs. DEC for a material with lower

band and upper band, where DEC is the band-offset. Lower band is isotropic

single valley with an effective mass of m0 and upper band has an effective

mass of 10m0. Note that PFs for single valley with an effective mass of m0

and 11m0 are 1.25� 10�3 W/mT2 and 1.38� 10�2 W/mT2, respectively.

Upper band with heavy effective mass produces higher performance regard-

less of DEC in comparison to the power factor of a single light mass valley

and best performance is obtained when DEC ¼ 0. (b)–(d) The PF, Seebeck

coefficient (S), and electrical conductivity (r) vs. Fermi level for three cases

of DEC ¼ 0, 5, and 10kBT. Comparing to the case of single valley, it is found

that a significant increase in r lead to improved power factor. Non-

monotonic Seebeck coefficient behavior (Fig. 10(c)) maintains large S at the

degenerate limit. Symbols represent values at optimal Fermi level.

FIG. 11. (a) Density-of-states (DðEÞ), number of conduction channels

(MðEÞ), MFP for backscattering (kðEÞ), and MðEÞkðEÞ vs. Fermi level are

plotted for three cases of DEC ¼ 0, 5, and 10kBT for constant MFP. Since

MFP is constant, the sharp increase of DðEÞ leads to a sharp increase of

MðEÞ and TDFs (i.e., MðEÞkðEÞ). The resulting strong energy dependence

of MðEÞkðEÞ produces non-monotonic Seebeck coefficient behavior. Sym-

bols represent values at optimal Fermi level.
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(which is proportional to MðEÞkðEÞ) is largest for all energies

for DEC ¼ 0, which leads to the higher power factor. As dis-

cussed in Sec. III E, however, the assumption of a constant

mean free path for this composite band is unrealistic. Next,

we discuss the more realistic case where the scattering rate is

proportional to the total density-of-states, sðEÞ ¼ Cel=DðEÞ.
This scattering rate produces a significantly different TDF,

which leads to significantly different results.

Figure 12(a) shows the computed power factor vs. DEC

for the case of sðEÞ ¼ Cel=DðEÞ. Also shown is the power

factor for a single light mass valley (red circle). As discussed

in Sec. III E, a single heavy mass valley produces much lower

performance. Figure 12(a) shows an enhanced power factor

when DEC is larger than about 10 kBT. For example, about a

factor of two increase can be achieved for DEC ¼ 15 kBT.

This is in stark contrast to the case of constant MFP for which

best performance is obtained with DEC ¼ 0. This behavior

occurs because for the case of sðEÞ ¼ Cel=DðEÞ, the increase

in DðEÞ leads to large scattering rates if the upper band with

its large DðEÞ is located within the Fermi window. For

DEC ¼ 0, r is reduced by a factor of �10 compared to that

for the single light mass valley.

Figures 12(b)–12(d) plot the power factor, S and r vs.

Fermi level for DEC ¼ 5; 10; and 15 kBT and show that the

improved power factor for DEC >� 10 kBT is mainly attrib-

uted to a large r while maintaining a large S of �120 lV=K in

the degenerate limit (which is due to the non-monotonic SðEFÞ
characteristic). For DEC ¼ 10kBT, r ¼ 1:88� 105 X�1m�1

which is about 4 � larger than r for a single light mass valley.

It is found that at the optimal Fermi level, r keeps increasing

with DEC because the effective number of conduction channels

contributed by the lower band increases for large DEC. In prac-

tice, achieving this performance would depend on the ability to

dope the semiconductor so that EF is near DEC.

The non-monotonic behavior of SðEFÞ is observed for

both constant MFP and for sðEÞ ¼ Cel=DðEÞ. In fact, for the

second case, SðEFÞ actually changes sign for EF > DEC.

This can be understood from the DðEÞ, MðEÞ, kðEÞ, and

MðEÞkðEÞ characteristics as plotted in Figs. 11 and 13. For

constant MFP, the sharp increase of DðEÞ leads to a sharp

increase of MðEÞ and TDF (i.e., MðEÞkðEÞ) when the upper

bands are available. In contrast, for the second case, the

sharp increase of DðEÞ leads to sharp decrease in kðEÞ and

TDF due to large scattering rates when we assume

sðEÞ ¼ Cel=DðEÞ. From Eq. (2b), the Seebeck coefficient in

the degenerate limit is given by

S ¼ p2kB
2T

�3q

d
�

lnkðEÞMðEÞ
�

dE

�����
E¼EF

; (9)

which is the so-called Mott formula. Consequently, the

strong energy dependence of the MðEÞkðEÞ near the edge of

the upper band leads to the non-monotonic SðEFÞ. The

drop in MðEÞkðEÞ for the second case causes a change in

sign of S.

The simple models considered in this discussion show

that we should expect improved TE performance with

increasing valley degeneracy. In practice, the valleys may be

anisotropic, which provides additional opportunities to

increase the number of channels without decreasing the

MFP. (Some example calculations are discussed in the Ap-

pendix.) We also showed that a semiconductor with a locally

distorted DðEÞ near the Fermi level can display an enhanced

power factor through increase of r and non-monotonic See-

beck coefficient characteristics. However, the increase of

power factor only happens when lower and upper bands are

FIG. 12. (a) The PF vs. DEC for a material with lower band and upper band,

where DEC is the band-offset. Lower band is isotropic single valley with an

effective mass of m0 and upper band has an effective mass of 10m0. Red

circles represent the PF for a single valley. The improved PF is obtained for

DEC >� 10kBT. (b)–(d) The PF, Seebeck coefficient (S), and electrical con-

ductivity (r) vs. Fermi level for three cases of DEC ¼ 5, 10, and 15kBT. It

can be seen that non-monotonic Seebeck coefficient behavior (Fig. 9(c))

improves S at the degenerate limit. As DEC becomes large, r at optimal

Femi level continues to increase. Therefore, the enhanced power factor is

obtained when DEC is larger than about 10kBT.

FIG. 13. Density-of-states (DðEÞ), number of conduction channels (MðEÞ),
MFP for backscattering (kðEÞ), and MðEÞkðEÞ vs. Fermi level are plotted for

three cases of DEC ¼ 5, 10, and 15kBT. The MFP is decreased when upper

bands are available. As a result, MðEÞkðEÞ is reduced. The resulting sharp

decrease of MðEÞkðEÞ produces non-monotonic Seebeck coefficient

behavior.
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engineered in an appropriate way, so the benefits of locally

distorted density-of-states should be carefully considered on

a case-by-case basis. Finally, these model calculations show

how profoundly scattering influences the results underscor-

ing a point recently made by Zhou et al.30 and illustrating

how these effects can be understood by interpreting the TDF

from a Landauer perspective.

IV. SUMMARY

In this paper, we set out to answer several questions and

summarize the answers as follows.

(1) What physical constraints should be placed on the TDF?

The TDF(E) can be written as a product of the number of

channel, MðEÞ, and the mean-free-path, kðEÞ. Each of

these two quantities is well-defined and directly relatable

to the underlying electronic bandstructure. For a given

dispersion, the maximum of MðEÞ is fixed not the area

under MðEÞ vs. E.

(2) How does the BW of the TDF affect TE performance?

When the lattice thermal conductivity is zero, a

d-function TDF produces an electronic efficiency at the

Carnot limit, but no power can be delivered to a load.

For a constant MFP (independent of BW), a narrow TDF

maximizes the power delivered to a load—for both zero

and finite lattice thermal conductivity. For a finite lattice

thermal conductivity, it also maximizes the efficiency.

The BW should match the width of the Fermi window. A

d-function TDF produces an ZT at the Mahan-Sofo limit,

ZT ¼ j0=jph, but this upper limit itself depends on the

BW, so higher ZTs result for higher BWs where opera-

tion is below the Mahan-Sofo limit.

(3) How does scattering affect optimum bandstructure?

Scattering profoundly changes these conclusions. If,

instead of a constant MFP, we assume that the scattering

rate is proportional to the density-of-states, we conclude

that a very broad band is better than a narrow band.

(4) How should the improved performance of materials with

a high valley degeneracy31 or with a resonant energy lev-

els8 that distort the density-of-states be understood?

It is best to achieve a high density of states through val-

ley degeneracy with a number of light mass valleys, as

opposed to a single heavy mass valley because the higher

velocity of the light mass valley increases both MðEÞ
and kðEÞ. Offsetting the valleys in energy can enhance

the Seebeck coefficient, but it degrades the conductivity.

With a higher upper valley effective mass and the appro-

priate energy offset, TE performance can be enhanced,

but the results are sensitive to the specifics of scattering.

(5) Is there a best bandstructure for TE performance?
Although there is no simple answer, the general consid-

erations are clear. Assuming that scattering rate is pro-

portional to density-of-states, high average velocities in

the Fermi window produce the best results, so materials

with a small density-of-states are best. The small DðEÞ
helps to increase scattering times. The large velocity

times this DðEÞ gives a significant number of channels

for conduction, and the large velocity also increases

the MFP.

For more complex thermoelectric performance, materi-

als can be compared in terms of three well-defined physical

parameters: (1) the average velocity in the direction of trans-

port, jtþx ðEÞj, (2) the density-of-states, DðEÞ, and (3) the dis-

tribution of channels in energy, MðEÞ. Each of these three

parameters can be easily extracted from a bandstructure,

EðkÞ. Alternatively, we could express the three parameters as

tðEÞ, DðEÞ, and tðEÞDðEÞ. High velocities lead to long

MFPs, low densities-of-states produce long scattering times

and long MFPs, and large numbers of channels increase the

conductivity. A super linear increase of MðEÞ is also benefi-

cial for the Seebeck coefficient. As illustrated in the discus-

sion of distorted bandstructures, specific results depend very

much on specifics of scattering (e.g., electron-phonon cou-

pling constants), but these three parameters should provide

useful guidance in assessing the performance of materials.
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APPENDIX A: THE MAXIMUM POWER CONDITION
AND THE MAXIMUM EFFICIENCY CONDITION

For the maximum power condition and the maximum ef-

ficiency condition, we will find the power delivered to the

load resistance and the efficiency. The power delivered to

the load,

PLoad ¼ I2RLoad; (A1)

where I is the current flow due to temperature gradient and is

expressed as

I ¼ SDT

Rþ RLoad
; (A2)

where R is the resistance of thermoelectric devices. So

Eq. (A1) becomes

PLoad ¼
SDT

Rþ RLoad

� �2

RLoad: (A3)

Equation (A3) can be expressed as

PLoad ¼
S2DT2

R

M

ð1þMÞ2
; (A4)

where M is the ratio of the resistance of RLoad to R,

M � RLoad=R. The efficiency is given by

g ¼ PLoad

Win
¼ I2RLoad

SThI þ KtotðTh � TcÞ
; (A5)

where Win is the total heat flow from the hot side.
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1. The maximum power condition, RLoad5R

First, it can be seen from Eq. (A3) or (A4) that the

power is maximized for RLoad ¼ R and is given by

P
†

Load ¼
S2

4R
DT2 ¼ PF

DT2

4
; (A6)

with PF ¼ S2=R being the power factor. The power delivered

to the load for this condition is a function of PF, not ZT. Under

this condition, the current is obtained to be I ¼ SDT=2R from

Eq. (A2). Inserting this current into Eq. (A5), the efficiency

under the maximum power condition is given by

g† ¼ ðSDT=2RÞ2R

SThðSDT=2RÞ þ KtotDT

¼ ZDT

2ZThot þ 4

¼ Z

ð2Z þ 4=ThotÞ
DT

Thot
; (A7)

where Z ¼ S2=ðRKtotÞ. The efficiency is a function of Z.

2. The maximum efficiency condition, RLoad5R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ZT
p

We can maximize the efficiency in Eq. (A5) when

M � RLoad=R is given by

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT
p

(A8)

Under this condition, the maximum efficiency is obtained

from Eq. (A5) to be

g� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT
p

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT
p

þ Tcold=Thot

� 	
DT

Thot
: (A9)

This efficiency is also a function of Z. Under the maximum

efficiency condition (i.e., RLoad ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT
p

), the power

delivered to the load P�Load is obtained from Eq. (A3),

P�Load ¼
SDT

Rþ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT
p

� �2

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT
p

¼ S2DT2

R

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT
p

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT
p

Þ2

¼ P
†

Load

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT
p

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT
p

Þ2
; (A10)

where we also used Eq. (A6). P�Load is a function of Z as well

as PF since P
†

Load is a function of PF. In addition, we can see

that P�Load �P
†

Load always holds because 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT
p

� ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ZT
p

Þ2. Now we have the efficiency (Eqs. (A7)

and (A9)) and the power (Eqs. (A6) and (A10)) under both

conditions.

APPENDIX B: THE EFFECT OF ANISOTROPIC BANDS

To illustrate the effect of anisotropic valleys in a multi-

valley materials, we consider multi-valley materials with

a valley degeneracy of NV ¼ 6. For ellipsoidal bands, the

degree of anisotropy (k) is represented by the ratio of the lon-

gitudinal effective mass (m�l ) to transverse effective mass

(m�t ), i.e., k ¼ m�l =m�t . We compare an anisotropic multi-

valley material to a single valley material with an effective

mass of m�2 at the same density of states. It is found that ani-

sotropic multi-valleys produces higher performance than iso-

tropic multi-valleys. This occurs mainly because a larger

degree of anisotropy (i.e., larger k) leads to increases in hhkii
and hMi (i.e., enhanced power factor).

The results can be understood in a following way. With

the same density-of-states,

NV

�
ðm�l m�t

2Þ1=3
�3=2

¼ ðm�2Þ
3=2

(B1)

or

m�2 ¼ N
2=3
V ðm�l m�t

2Þ1=3
(B2)

For each equivalent ellipsoidal band, the number of conduc-

tion channels is the density-of-states in the 2D plane trans-

verse to the transport direction1 (i.e.,
ffiffiffiffiffiffiffiffiffiffiffi
m�l m�t

p
). The MFP for

backscattering is proportional to velocity times scattering

time. The velocity is proportional to 1=
ffiffiffiffiffiffi
m�t
p

but the scatter-

ing times are the same if we make the physically reasonable

assumption that the scattering rate is proportional to the den-

sity-of-states. From Eq. (B1) or (B2), the ratio of r for aniso-

tropic multi-valley (r1) to that for isotropic single valley (r2)

is

r1

r2

� M1

M2

� k1

k2

¼
NV

ffiffiffiffiffiffiffiffiffiffiffi
m�t m�l

p
m�2

� m�2
m�t

� �1=2

¼ N
2=3
V k1=3: (B3)

Equation (B3) reduces to an isotropic multi-valley case at

k¼ 1. The simple models considered here show that we

should expect improved power factor with increasing valley

degeneracy and with the degree of anisotropy. Also note that

the conductivity of the multiband semiconductor depends

more strongly on valley degeneracy than on the degree of

anisotropy.
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