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Full dispersion versus Debye model evaluation of lattice thermal
conductivity with a Landauer approach

Changwook Jeong,a) Supriyo Datta, and Mark Lundstrom
Network for Computational Nanotechnology, Birck Nanotechnology Center, Purdue University,
West Lafayette, Indiana 47907, USA

(Received 3 December 2010; accepted 12 February 2011; published online 8 April 2011)

Using a full dispersion description of phonons, the thermal conductivities of bulk Si and Bi2Te3 are

evaluated using a Landauer approach and related to the conventional approach based on the

Boltzmann transport equation. A procedure to extract a well-defined average phonon mean-free-path

from the measured thermal conductivity and given phonon-dispersion is presented. The extracted

mean-free-path has strong physical significance and differs greatly from simple estimates. The use of

simplified dispersion models for phonons is discussed, and it is shown that two different Debye

temperatures must be used to treat the specific heat and thermal conductivity (analogous to the two

different effective masses needed to describe the electron density and conductivity). A simple

technique to extract these two Debye temperatures is presented and the limitations of the method are

discussed. VC 2011 American Institute of Physics. [doi:10.1063/1.3567111]

I. INTRODUCTION

Electron and phonon transport play a critical role in a

number of technological applications. They are central to

thermoelectric technology, for which performance is deter-

mined by the dimensionless figure of merit, ZT, which has

been limited to �11–3 for many years. Recent reports of

ZT> 1,1–3 have been achieved by using nanostructured mate-

rials to suppress the lattice thermal conductivity. Further pro-

gress will require careful engineering of both the phonon and

electron transport.4–9 Phonon transport also plays an increas-

ingly important role in integrated circuits where the increas-

ing importance of power dissipation, self-heating, and the

management of hot spots10 necessitates electron-thermal co-

design. These examples indicate that a unified treatment of

electron and phonon transport would be useful.

Diffusive transport has been often described by the

Boltzmann transport equation (BTE) and simplifications of

it, such as drift-diffusion equation for electrons or Fourier’s

Law for phonons.11,12 The Landauer approach13 provides a

simple, physically insightful description of ballistic transport

and has been widely used to describe quantized electrical

and thermal transport in nanostructures.14–17 Although not as

widely appreciated, the Landauer approach describes diffu-

sive transport as well and provides a simple way to treat the

ballistic to diffusive transition. Thermal transport in nano-

wires has recently been described by a Landauer approach,18

but applications of the Landauer approach to bulk transport

have been rare. In a previous paper,19 we showed a very sim-

ple procedure to use the Landauer approach with a full band

description of E(k) to evaluate thermoelectric transport pa-

rameters. In that paper, we also related the full band calcula-

tions to the widely-used effective mass level model and

presented a procedure for extracting the two different effec-

tive masses (density-of-states and conductivity effective

masses) that are needed to evaluate the electron density and

the TE transport coefficients.

In this paper, we extend Ref. 19 to phonons and show

how the same very simple procedure can be used to evaluate

the lattice thermal conductivity from a full zone description

of the phonon dispersion. The main contributions of the pa-

per consist of presenting a simple technique for extracting a

physically meaningful mean-free-path for phonons from the

measured thermal conductivity and relating the full disper-

sion results to the simpler, Debye model for phonon disper-

sion. Our specific objectives are: (1) to mathematically relate

the Landauer expression for the thermal conductivity, jph to

the more common approach that begins with classical kinetic

theory, (2) to show that two different Debye temperatures

are needed to accurately evaluate both the specific heat and

lattice thermal conductivity with physically meaningful

mean-free-paths, (3) to quantitatively examine both elec-

tronic performance and thermal performance of bulk silicon

(Si) and bismuth telluride (Bi2Te3) within the Landauer

framework and a full zone description of the phonon disper-

sion, (4) to present a technique to extract a clearly-defined

average phonon mean-free-path for phonon backscattering

from the measured thermal conductivity, and (5) to discuss

the similarities and differences between electron and phonon

transport in terms of the Landauer picture.

The paper is organized as follows. In Sec. II, we pres-

ent a brief summary of the Landauer formalism for electron

and phonon transport. In Sec. III, the results of full phonon

dispersion simulations of the electrical and thermal conduc-

tivities of Si and Bi2Te3 are presented. A technique to

extract a well-defined mean-free-path is presented in Sec.

IV. We also compare and contrast electron and phonon

transport in Sec. IV and discuss the extraction of the two

Debye temperatures that are needed when using simplified

models of phonon dispersion to evaluate the specific heat

and thermal conductivity. Finally, our conclusions are sum-

marized in Sec. V.a)Electronic mail: jeong.changwook@gmail.com.
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II. APPROACH

The theoretical approach to phonon transport used in

this paper closely follows the approach for electrons as pre-

sented in Ref. 19. In the linear response regime, we can

define20,21

G Eð Þ ¼ 2q2

h

� �
Tel Eð Þ ¼ A

L
q2R Eð Þ ½1=X�; (1)

where

Tel Eð Þ ¼ Tel Eð ÞMel Eð Þ ¼ kel Eð Þ
kel Eð Þ þ L

Mel Eð Þ (2)

is the total transmission for electrons in the Landauer pic-

ture13 with Mel(E) being the number of conduction channels

at E and Tel (E) is the transmission at energy, E, with kel Eð Þ
being the mean-free-path for backscattering and L the length

of the resistor. Equation (1) also expresses G(E) in terms of

the so-called transport distribution, R Eð Þ, which arises when

solving the diffusive Boltzmann transport equation (BTE)21

and is defined as

R Eð Þ ¼ 1

X

X
~k

t2
x
~k
� �

s ~k
� �

d E� E ~k
� �h i

; (3)

where X ¼ AL and A is the cross-sectional area of the

conductor.

Although the approach is more general, in this paper we

restrict our attention to diffusive samples for which

Tel Eð Þ ! kel Eð Þ=L and to three dimensional samples for

which we write G Eð Þ ¼ r Eð ÞA=L, where r Eð Þ is the conduc-

tivity. Accordingly, the expressions for conductivity analo-

gous to the conductance in Eq. (1) become

r Eð Þ ¼ 2q2

h

� �
Mel Eð Þ

A
kel Eð Þ ¼ q2R Eð Þ ½1=X�m�: (4a)

The total electrical conductivity is obtained by integrating

r Eð Þ �@f0=@Eð Þ over all of the energy channels with f0

being the Fermi-Dirac distribution, and the other thermo-

electric coefficients are readily obtained, as described in

Ref. 19, where mathematical definitions of Mel(E) and

kel Eð Þ are also given. For example, the electronic thermal

conductivity for zero voltage gradient is obtained as

j0 ¼
2k2

BTLp2

3h

� �ðþ1
�1

Mel Eð Þ
A

kel Eð Þ

� 3

p2

E� EF

kBTL

� �2

� @f0

@E

� �" #
dE ½W=m� K�: (4b)

Expressions for the lattice thermal conductance, Kph, and lat-

tice thermal conductivity, jph analogous to Eq. (4b) can be

readily obtained and expressed as14,18

Kph xð Þ ¼ k2
BTLp2

3h

� �
�Tph xð Þ ½W=K� (5a)

and in the diffusive limit

jph xð Þ ¼ k2
BTLp2

3h

� �
Mph xð Þ

A
kph xð Þ ½W=m�K�; (5b)

where the transmission is �Tph xð Þ ¼ Tph xð ÞMph xð Þ and

Mph xð Þ is the number of phonon conducting modes (per

polarization). The definitions of Tph xð Þ and Mph xð Þ are simi-

lar to those for electrons.19 In 3D, the phonon mean-free-

path for backscattering, kph xð Þ is given as19

kph xð Þ ¼ 4=3ð Þtph xð Þsph xð Þ ¼ 4=3ð ÞK xð Þ; (6)

where the prefactor, 4/3 comes from averaging over angle in

3D, tph xð Þ is the spectral phonon group velocity at fre-

quency, x, sph xð Þ is the phonon momentum relaxation time,

and K xð Þ is the commonly-defined spectral mean free path.

Note that the mean-free-path for backscattering, Eq. (6),

which arises in the Landauer approach, is somewhat longer

than the mean-free-path for scattering, K. In the appendix,

the relation of Eq. (5b), the Landauer expression for lattice

thermal conductivity, to the conventional expression from ki-

netic theory is given.

To find the total conductivities, we multiply the energy-

resolved quantities by a “window function” and integrate

over energy,

r¼ 2q2

h

� �ðþ1
�1

Mel Eð Þ
A

kel Eð Þ �@f0

@E

� �
dE� 2q2

h

� �
Melh i kelh ih i

(7a)

jph ¼
�

k2
BTLp2

3h

�ðþ1
�1

MphðxÞ
A

kphðxÞ
3

p2

�
�hx

kBTL

�2
"

�
�
� @n0

@ð�hxÞ

��
dð�hxÞ � ðk

2
BTLp2

3h
Þ Mph

� �
kph

� �� �
;

(7b)

where

Mh i �
ð

M xð ÞW xð Þdx; (7c)

kh ih i � Mkh i= Mh i¼
ð

k xð ÞM xð ÞW xð Þdx=

ð
M xð ÞW xð Þdx;

(7d)

where x ¼ E for electrons and x ¼ �hx for phonons and W xð Þ
is a “window” function given by

Wel Eð Þ ¼ � @f0

@E

� �
ðelectronsÞ; (7e)

Wph �hxð Þ ¼ 3

p2

�hx
kBTL

� �2

� @n0

@ �hxð Þ

� �
ðphononsÞ: (7f)

The electrical conductivity is proportional to the quantum

of electrical conductance, 2q2=h, and the thermal conduc-

tivity to the quantum of thermal conductance, k2
BTLp2=3h.

The electrical and thermal conductivities are related to

these two fundamental parameters and to the number of

conducting channels per unit area, the mean-free-paths for
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backscattering, and to the Fermi-Dirac (f0) or Bose-Einstein

distributions (n0).

The number of conducting channels is determined by the

electronic structure or phonon dispersion of the material. In

Ref. 20, we discussed the evaluation of this quantity for elec-

trons in 1D, 2D, and 3D considering a simple, effective mass

level model. In Ref. 19, we discussed the evaluation of Mel(E)

from a full band description of E(k) and its relation to effec-

tive mass level models. For phonons, a linear and isotropic

phonon dispersion, x ¼ tsq, gives Mph xð Þ and DphðxÞ as

Mph xð Þ ¼ A 3x2=4pt2
s

� 	
ð3DÞ (8a)

Dph xð Þ ¼ X 3x2=pht3
s

� 	
ð3DÞ (8b)

where ts is the velocity of sound in the direction of transport,

and the factor of 3 comes from 3 branches. In the appendix,

corresponding expressions for 1D, 2D, and 3D conductors

are given and compared to the expressions for electrons. Our

objective in this paper is to present a simple technique to

compute, Mph xð Þ from a given full zone description of the

phonon dispersion. Because simple descriptions of phonon

dispersions are convenient to use, they find wide applica-

tions. The extraction of Debye model parameters from a rig-

orous evaluation of Mph xð Þ and a discussion of the

limitations of the Debye model are, therefore, also important

parts of this paper.

Given a phonon dispersion, Mph xð Þ can be obtained by

counting the bands that cross the energy of interest. This

method provides a computationally simple way to obtain

Mph xð Þ from a given x qð Þ.18,19 The basic idea is illustrated in

Fig. 2(a) using a dispersion relation along the transport direc-

tion for Si: (1) from 0 to 7.3 THz, the Mph xð Þ is three due to

two transverse AP modes (TA) and one longitudinal AP

modes (LA); (2) from 7.3 to 12.8 to 15.0 THz, we have only

one LA and one longitudinal OP modes (LO); (3) from 15.0 to

15.8 THz, Mph xð Þ in this case is 3 due to two transverse OP

modes (TO) and one LO. To evaluate Mph xð Þ, a full band

description of phonon dispersion is needed. Several techni-

ques have been reported for computing detailed phonon

band structure.22,23 In this work, the full phonon dispersion

is calculated by using an interatomic pair potential model

within General Utility Lattice Program (GULP).24

From the measured thermal conductivity, one can reli-

ably estimate the average mean-free-path from the measured

conductivity. From Eq. (7b), we can write

kph

� �� �
¼ jph

k2
BTLp2

3h

Ðþ1
�1

Mph xð Þ
A

3
p2

�hx
kBTL

� �2

� @n0

@ �hxð Þ

� �
 �
d �hxð Þ

¼ jph

Kph BAL=A
;

(9)

where the denominator of Eq. (9) is recognized as ballistic

thermal conductance per area Kph BAL=A. Note the units of

Kph BAL=A are W/m2-K, which is different from the units of

jph, W/m-K. Since the numerator in Eq. (9) can be measured

and the denominator readily evaluated from a known disper-

sion, reliable estimates of the mean-free-paths can be obtained.

The extraction of average electron mean-free-path by similar

way has been used to analyze electronic devices.25–27

Finally, we note that two Debye temperatures are

required to evaluate the specific heat and the thermal con-

ductivity properly with the simple Debye model. The use of

two Debye temperatures was also found necessary in work

on the thermal conductivity of nanowires.18 The Debye

temperature is usually determined to obtain the observed

specific heat, which is hereinafter called Debye temperature

for the specific heat (HD). The Debye temperature for ther-

mal conductivity (HM) is newly defined and is determined

to obtain the correct Kph BALL=A. For 3D bulk ballistic con-

ductors with linear phonon dispersion, the specific heat per

volume and ballistic thermal conductance per area are

expressed as

CV;3D ¼
3k4

BT3
L

2p2�h3t3
s

 !ðHD=T

0

x4ex

ex � 1ð Þ2
dx; (10a)

Kph BAL=A ¼ 3k4
BT3

L

8p2�h3t2
s

 !ðHM=T

0

x4ex

ex � 1ð Þ2
dx; (10b)

where x ¼ �hx=kBTL. Both HD and HM are extracted to

match full band results.

III. RESULTS

In this section, the phonon thermal conductivity will be

evaluated and interpreted within the Landauer framework.

Two representative semiconductor materials are compared to

examine key factors for good TE materials; Si and Bi2Te3.

We then compare full band calculations to linear dispersion

approximations. A technique to extract a well-defined aver-

age mean-free-path is also presented. We show that this

mean-free-path has a strong physical significance.

Figures 1(a) and 1(b) show calculated and measured28–30

phonon dispersion characteristic along high symmetry direc-

tions; the phonon DOS for Si and Bi2Te3 are also shown. The

Tersoff potential model and Morse potential model are used

for Si31and Bi2Te3
23, respectively. Computed elastic proper-

ties with these models show overall good agreement with

experiments, indicating that the potential model describe well

the harmonic behavior.23,31 For both materials, it can be seen

that the AP modes are well reproduced and OP modes are

somewhat overestimated. Because thermal transport is mostly

dominated by AP modes, we expect that the mean-free-path

for backscattering can be accurately extracted with these full

band dispersions from Eq. (9). It should be understood that

our objective is to describe a general technique and to discuss

general features of the solution. More refined treatments of

phonon dispersion could be used.

The specific heat per volume (the integral of Eq. (A3))

is calculated and shown in Fig. 1(c). As shown in Eq. (A3),

the specific heat calculations do not require us to include

scattering. In each plot, the solid line is the result with calcu-

lated DOS, and the dashed line is the result with the meas-

ured DOS. It is seen that two curves are generally in a good

agreement for both materials.
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Figure 2(b) shows full dispersion results and results with

a linear dispersion approximation. At low frequency, the lin-

ear dispersion approximation provides a good fit to the full

band calculation, and it is found that the average sound ve-

locity to fit to full band results for Bi2Te3

(ts¼ 1:74� 105cm=s) is about one third of average sound

velocity of Si (ts¼5:32� 105cm=s). The available number

of conducting modes is seen to be smaller for Bi2Te3 for

most of frequency range.

Next, the phonon thermal conductance is evaluated. The

ballistic thermal conductance per area for Si and Bi2Te3 is

calculated as shown in Fig. 3. The ballistic thermal conduct-

ance is proportional to the effective number of phonon con-

ducting modes, which can be readily obtained from phonon

dispersions. Below 30 K, Kph BAL for Bi2Te3 is larger than Si

due to the large Mph xð Þ at low frequency. At 300 K, how-

ever, Kph BAL for Si is a factor of 10 larger than Kph BAL for

Bi2Te3, which results because the effective number of pho-

non conducting modes of Bi2Te3 is 10 times smaller than

that of Si.

From Eq. (9), the average mean-free-path for backscat-

tering is deduced by taking ratio of the measured thermal

conductivity to the ballistic thermal conductance per area.

Figure 4 shows the extracted kph

� �� �
for Si and Bi2Te3. At

300 K, kph

� �� �
for Bi2Te3 is 14 nm and for Si, it is 115 nm.

To relate extracted kph

� �� �
to expected average kph

� �� �
from the spectral phonon mean-free-path for backscattering

kph xð Þ, expressions for sph xð Þ in the relaxation time approx-

imation (RTA) are used for umklapp,32 point defect,33 and

boundary34 scattering rate: s�1
u ¼ Bx2Te�C=T ; s�1

d ¼ Dx4;
and s�1

b ¼ t xð Þh i= F � lð Þ, respectively. The parameters to fit

extracted kph

� �� �
are B¼ 2.8� 10�19 s/K, C¼ 140 K,

D¼ 1.32� 10�45 s3, F¼ 0.4, l¼ 7.16� 10�3 m for Si and

B¼ 2.8� 10�18 s/K, C¼ 10 K, D¼ 1.32� 10�45 s3, F�
l¼ 1� 10�4 m for Bi2Te3. Calculations with these parame-

ters show a good agreement with experimental thermal con-

ductivity34,35 as shown in the inset of Fig. 3. Our fitting

parameters for Si are very close to the parameters used in

Ref. 18, where a full band dispersion was also used with a

different interatomic potential model. If we, instead, use a

Debye model, we can also fit the measured conductivity, but

this requires (as will be discussed in Sec. IV) an increase in

the parameter, B, for Umklapp scattering by a factor of 2 �
10 depending on the material. An extracted kph

� �� �
from a

Debye model, therefore, is 2�� 10� smaller than the

FIG. 1. (Color online) Phonon dispersion along the high symmetry lines and

phonon density of states for (a) Si and (b) Bi2Te3. (c) Specific heat per vol-

ume of Si (inset) and Bi2Te3. The solid and dashed lines are for the results

of calculation and experiments. FIG. 2. (Color online) (a) Illustration of bands counting method for specific

dispersion relation for Si. Dotted line is guide to eye. (b) Number of phonon

modes of Si and Bi2Te3. The dashed and dashed-dot lines are the results

obtained from the Debye model with the fitted sound velocities of

1.74� 105 cm/s and 5.32� 105 cm/s for Si and Bi2Te3, respectively.
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kph

� �� �
from full band dispersions. All this suggest that the

value of kph

� �� �
extracted from the measured data and full

band dispersion has strong physical significance.

In the Landauer picture, the low thermal conductivity of

Bi2Te3 at 300 K is attributed to two factors. First of all, it has

an effective number of conduction channels that is 10 times

smaller than Si, as shown in Fig. 3. The different number of

conducting channels are related to the different phonon dis-

persions. On top of that, Bi2Te3 has a smaller kph

� �� �
due to

umklapp scattering which is a factor of 10 stronger than for

Si. Both factors lead to 2 orders of magnitude reduction in

thermal conductivity comparing to Si. For comparison, aver-

age electron mean-free-pathsat room temperature are 18 nm

for Bi2Te3 and 13 nm for Si, which are extracted in a similar

way from the full band electronic structure.19 The number of

electron conducting modes for Si and Bi2Te3 are shown in

Fig. 7(b). In terms of electronic performance, the effective

number of conduction channels and average electron mean-

free-path for backscattering are similar for both materials,

resulting in similar power factor (S2G) value.

IV. DISCUSSION

In this section, we show that average mean-free-path

obtained by simple estimates differs by an order of magni-

tude from that extracted from full phonon dispersion. The

use of simplified dispersion model is then discussed.

The simplest conventional approach to estimate bulk

mean-free path from a classical kinetic theory is

Kh ih i ¼ 3jph=CVts; (11)

where jph, ts, and CV are measured quantities. Using

ts¼ 2:95� 105cm=s and CV ¼ 1.20� 106 J/cm3-K from Fig.

1(b) and 1(c) for Bi2Te3, estimated Kh ih i at 300 K is 1.2 nm,

an order of magnitude smaller than 14 nm extracted from

Eq. (9). This occurs because the appropriate velocity we

should use in Eq. (11) is much different from the measured

sound velocity (ts¼ 2:95� 105cm=s). Equation (A2) can be

re-arranged as

jph ¼
1

3
CVtave Kh ih i; (12)

where tave ¼
Ð

d �hxð ÞCVðxÞt xð Þ=CV

� 	
is the appropriate av-

erage velocity we should use in Eq. (12) and

Kh ih i ¼ 3=4ð Þ kh ih ið Þ is an average mean-free-path for scat-

tering which is different from kph

� �� �
as is seen in Eq. (6).

At 300 K, tave¼ 3:40� 104cm=s, a 5�� 9� smaller than

either the measured sound velocity (ts¼ 2:95� 105cm=s) or

the average sound velocity to fit to full band results

(ts¼ 1:74� 105cm=s). Therefore, prediction of the bulk

mean-free path from measured sound velocity in Eq. (11)

leads to serious errors.

Simple phonon dispersion models are often used to ana-

lyze thermoelectric devices. The simplest model is the

Debye model (the linear dispersion approximation) with

Debye temperature (HD). As mentioned in Sec. II, a Debye

temperature for thermal conductivity (HM) must be newly

defined to treat the thermal conductivity properly with the

simple Debye model. Both HD and HM are extracted to

match full band results as shown in Fig. 5(a) for Si and

Bi2Te3. It can be seen that HM is smaller than HD by

20�50% depending on materials and the two Debye temper-

atures are weakly dependent on temperature. For Bi2Te3,

Fig. 5(b) compare the full band and Debye models of

Mph xð Þ and Dph xð Þ. The Debye cutoff frequencies,

xDð¼ kBHD;max=�hÞ and xMð¼ kBHM;max=�hÞ are 3.57 THz
and 1.93 THz, respectively.

Next, the specific heat and thermal conductivity are cal-

culated as shown in Fig. 6(a) and the inset of Fig. 6(a).

Although only the Debye cutoff frequency from the phonon

density of states (xD) gives the correct specific heat, thermal

conductivities obtained from either of the two Debye fre-

quencies, xM and xD, match well the results using full

FIG. 3. (Color online) Ballistic thermal conductance per area of Si and

Bi2Te3. Insets: lattice thermal conductivity of Si and Bi2Te3. The solid line

and symbols are calculated and experimental values, respectively.

FIG. 4. (Color online) Extracted average mean-free-path of Si and Bi2Te3

by taking the ratio of experimental thermal conductivity to ballistic thermal

conductance per area.
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phonon dispersion. Use of the Debye model with the cutoff

frequency, xD, however, leads to serious errors in estimating

kph

� �� �
—by 1 order of magnitude as shown in Fig. 6(b).

The average mean-free-path obtained from Debye model

with the cutoff frequency, xM is in relatively a good agree-

ment with that obtained by full phonon dispersion because

this cutoff frequency gives the correct effective number of

conduction channels, i.e., the ballistic thermal conductance

per area. The inset of Fig. 6(b), however, shows that the

spectral mean-free-path, kph xð Þ obtained from Debye mod-

els does not capture exactly the detailed frequency depend-

ence of kph xð Þ from full phonon dispersion, regardless of

choice of cutoff frequency.

The reason that an effective mass description works well

for electrons and a Debye model does not works as well for

phonon is that the important energy for electrons is near the

bottom of the band, but for phonons it is the entire phonon

dispersion. Figure 7(a) shows the “window” function for pho-

nons, Wph, and number of phonon conducting modes for Si and

Bi2Te3. Comparing to the “window” function for electrons,

Wel, and number of electron conducting modes as shown in

Fig. 7(b), it can be easily seen that the entire frequency range

of full phonon dispersion affect thermal conductivity for Si and

Bi2Te3. However, only the electron dispersion around the band

edges is important. Note that this occurs because of difference

between full phonon spectrum and full electronic structure, not

because of difference between Fermi-Dirac and Bose-Einstein

distribution or between “window” functions, defined by Eqs.

(7e) and (7f). As shown in Fig. 7, both “window” functions,

Wph and Wel, have a width of � 5 kBTL and the function Wph

has similar energy dependence to the so-called Fermi

“window” function Wel. The integral of window functions for

electrons, Wel from�1 to 1 gives 1, while the integral of

Wph from 0 to1 is 1. This comparison explains why effective

FIG. 5. (Color online) (a) Comparison of Debye temperature for the specific

heat (HD) and Debye temperature for thermal conductivity (HM) normalized

by maximum HD. (b) Debye model vs full dispersion for Bi2Te3. Upper and

lower solid lines are full band results of number of phonon modes (Mph) and

density of states (Dph) in arbitrary units. The dashed-dot and dashed lines are

results from Debye approximation at low frequency for Mph and Dph.

FIG. 6. (Color online) (a) Specific heat calculation and (b) extracted average

mean-free-path of Bi2Te3 for Debye models and full band results. Insets of

Fig. 6(a) and Fig. 6(b) are thermal conductivity calculation and spectral

mean-free-path for backscattering, respectively. Solid lines: full band

results; Dashed and dashed dot lines: Debye approximation.
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mass approximation (EMA) works well for electron trans-

port,19 and Debye model should be used with caution.

V. SUMMARY AND CONCLUSION

In this paper, we related the Landauer approach for pho-

non transport to the more commonly used Boltzmann trans-

port equation approach. Although the Landauer approach

applies from the ballistic to diffusive limit and for 1D, 2D,

and 3D conductors, we restricted our attention in this paper

to the diffusive limit and to 3D, bulk materials. The common

expression for thermal conductance that begins with classical

kinetic theory was related to the corresponding Landauer

expression. A simple “counting bands” technique for extract-

ing the kernel of the transport integral, M(E), was illustrated.

As an example of the technique, we examined the electronic

and thermal performance of Si and Bi2Te3 using a full band

description of phonon dispersion and electronic band struc-

ture. A simple technique for extracting a physically well

defined mean-free-path for phonons was presented. This

mean-free-path agrees with a simple estimate from the meas-

ured specific heat, as long as the appropriate average velocity

obtained from the given phonon dispersion is used. Finally,

we discussed the use of simple phonon dispersion models,

such as the widely used Debye model for phonon dispersion,

which is widely used for device design. We showed that two

different Debye temperatures are needed, one to describe the

phonon density of states and specific heat and another to

describe the distribution of conducting channels, M(E), and

the thermal conductivity. The existence of two different

Debye temperatures is analogous to the two effective masses

needed to describe electron transport, the conductivity and

density-of-states effective masses. Using the conductivity

Debye temperature and the measured lattice thermal conduc-

tivity, a physically meaningful average mean-free-path can

be accurately obtained. Finally, we explained why the effec-

tive mass model works well for electrons and why the Debye

model does not work as well for phonons. Although the con-

clusion is that simplified phonon models should be used with

caution, the simple procedure for evaluating M(E) from the

full phonon dispersion provides a practical alternative.
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APPENDIX

To relate Eq. (5b), the Landauer expression for lattice

thermal conductivity, to the conventional expression from ki-

netic theory, we write the number of phonon conduction

channels per area, M0ph xð Þ, as19

M0ph xð Þ ¼ h=4ð Þ t xð ÞD0phðxÞ; (A1)

where D0phðxÞ � 1=Xð Þ
P

q d �hx� �hxq

� 	
is the phonon

density of states (DOS) per polarization per volume. Using

Eqs. (6) and (7), Eq. (5b) the phonon thermal conductivity

can be written in the conventional form36,37 as

jph ¼
1

3

ðþ1
�1

d �hxð ÞCVðxÞtph xð ÞKphðxÞ; (A2)

with CVðxÞ being the specific heat per unit volume

CVðxÞ ¼ k2
BTLDph xð Þ �hx

kBTL

� �2

� @n0

@ �hxð Þ

� �
: (A3)

Next, for both electron and phonon, the number of conduc-

tion channels is defined as19

M Eð Þ ¼ h

2L

X
k

txj jd E� Ekð Þ: (A4)

Assuming parabolic dispersion for electron

(E� e1 ¼ �h2k2=2me), corresponding expression for the num-

ber of conduction channels per spin per valley for 1D, 2D,

and 3D conductors are given as20

FIG. 7. (Color online) (a) Number of phonon conducting modes (Mph) and

Eq. (7f) at 300 K, (b) number of electron conducting modes (Mel) calculated

from full band electronic structure and Eq. (7e) at 300 K. For horizontal

axis, e¼Eel –EC for number of electron conducting modes and e¼Eel – EF

for a electron “window function” assuming EF¼EC which is a typical con-

dition for optimum performance.
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Mel Eð Þ ¼ H E� e1ð Þ ð1DÞ; (A5a)

Mel Eð Þ ¼ W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2me E� e1ð Þ

p
p�h

ð2DÞ; (A5b)

Mel Eð Þ ¼ A
me

2p�h2
E� ECð Þ ð3DÞ; (A5c)

where H is the unit step function, e1 is the bottom of the first

subband, me is the electron effective mass, EC is the conduc-

tion bandedge and W and A are the width and the area of the

2D and 3D conductors, respectively. For phonons with linear

and isotropic dispersion approximation, x ¼ tsq, Mph xð Þ
per polarization is given as

Mph xð Þ ¼ H xð Þ ð1DÞ; (A6a)

Mph xð Þ ¼ W x=ptsð Þ ð2DÞ; (A6b)

Mph xð Þ ¼ A x2=4pt2
s

� 	
ð3DÞ; (A6c)

where ts is the velocity of sound.
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