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A three-dimensional quantum simulation of silicon nanowire transistors
with the effective-mass approximation
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The silicon nanowire transistofSNWT) is a promising device structure for future integrated
circuits, and simulations will be important for understanding its device physics and assessing its
ultimate performance limits. In this work, we present a three-dimens{@@alquantum mechanical
simulation approach to treat various SNWTs within the effective-mass approximation. We begin by
assuming ballistic transport, which gives the upper performance limit of the devices. The use of a
mode space approacbkither coupled or uncoupleégroduces high computational efficiency that
makes our 3D quantum simulator practical for extensive device simulation and design. Scattering in
SNWTs is then treated by a simple model that uses so-called Buttiker probes, which was previously
used in metal-oxide-semiconductor field effect transistor simulations. Using this simple approach,
the effects of scattering on both internal device characteristics and terminal currents can be
examined, which enables our simulator to be used for the exploration of realistic performance limits
of SNWTs. ©2004 American Institute of PhysidDOl: 10.1063/1.1769089

I. INTRODUCTION son equation and a 3D Schrddinger equation with open
boundary conditions. Using the finite element method

As the channel lengths of metal-oxide-semiconductofFEM), we solve the 3D Poisson equation to obtain the elec-
field effect transistorsMOSFETS scale into the nanometer trostatic potential. At the same time, we solve the 3D
regime, short channel effetsecome more and more sig- Schrodinger by a (coupled/uncoupled mode space
nificant. Consequently, effective gate control is required for aapproach™? which provides both computational efficiency
nanoscale MOSFET to achieve good device performanceand high accuracy as compared with direct real space calcu-
For this reason, silicon nanowires, which allow multigate orlations. Since th&coupled/uncoupledmode space approach
gate-all-around transistors, are being expldiédn Ref. 2,  treats guantum confinement and transport separately, the pro-
the authors reported a parallel wire channel transistor, whosgedure of the calculation is as follows.
channel can be viewed as a wire with a triangular cross sec- Step 1 Solve the 3D Poisson equation for the electro-
tion. In Refs. 3—6, wires with rectangular cross sections wergtatic potential.
used to fabricate different types of trigate/gate-all-around  Step 2 Solve a two-dimension&RD) Schrodinger equa-
field effect transistorgFETS). At the same time, cylindrical tion with a closed boundary condition at each sliceoss
Si nanowires with diameters as small as 5 nm have also beegection of the nanowire transistqisee Fig. 1 to obtain the
synthesized by the chemical vapor deposition technoﬁogy.electron subband&@long the nanowineand eigenfunctions.
These recent experiments have shed light on the potential Step 3 Solve(coupled/uncoupledone-dimensionallD)
applications of silicon nanowire transistors in future elec-transport equations by the nonequilibrium Green'’s function
tronics. (NEGP approach®*°for the electron charge density.

To deeply understand device physics of silicon nanowire  Step 4 Go back to step 1 to calculate the electrostatic
transistord SNWTS and to assess their ultimate performancepotential. If it converges, then calculate the electron current
limits, simulation work is necessary and important. In con-by the NEGF approactas in step 3and output the results.
trast to a planar MOSFET, which has a uniform charge an®dtherwise continue steps 2 and 3.
potential profile in the transverse directionormal to both Different transport modelgin step 3 are implemented
the gate and the source-to-drain direcjjoa SNWT has a into our simulator. In this paper, we will discuss both ballis-
three-dimensional3D) distribution of electron density and tic NEGF model, which gives the upper performance limit of
electrostatic potential. As a result, a 3D simulator is required/SNWTs, and a dissipative NEGF model with a simple treat-
for the simulation of SNWTSs. In this paper, we propose a 3Dment of scattering with the Bttiker prob¥ 6.17\which of-
self-consistent quantum simulation of SNWTs based on théers an efficient way to capture scattering in the quantum
effective-mass approximatiofwhose validity in the nano- mechanical framework.
scale device simulation has been established in Reflt& A rigorous treatment of scattering and a detailed calcu-
calculation involves a self-consistent solution of a 3D Poisdation of band structures are very important to understand

0021-8979/2004/96(4)/2192/12/$20.00 2192 © 2004 American Institute of Physics
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FIG. 1. The simulated SNWT structures in this wao. A schematic graph of an intrinsic SNWT with arbitrary cross sectifmsclarity, the SiQ substrate
is not shown here (b) The grid used in the simulation of SNWTg&) The cross sections of the simulated triangular wireV), rectangular wireRW), and
cylindrical wire (CW) FETs.Tg; is the silicon body thicknes§Vs; is the silicon body width, antiV. is the wire width. For the TW, the direction normal to
each gate ig111), so the channel i§101) oriented. In contrast, for the channel of the RW, b¢th1) and (100 orientations are possible. For the CW, we
assume the channel to K&00) oriented.

physics in Si nanowires in detail. However, the huge compuprism elements is constructed. When solving the Poisson
tational cost involved in such a rigorous model can prevent iequation, the 3D Laplacian is directly discretized by the
from being used for extensive device simulation and designFEM approach. The obtained linear system is solved using a
As we will show later, the use of the effective-mass approxi-preconditioned conjugate gradient method with incomplete
mation and the simple treatment of scattering with the Blt-Cholesky factorization. More details about the numerical
tiker probes greatly reduces the computational complexityechniques can be found in Ref. 9.
while still capturing the essential device physics of SNWTs  As mentioned earlier, we solve the 3D Schrodinger
(i.e., 3D electrostatics, quantum confinement, source-toequation by the mode space appro%‘clﬁwhich is based on
tunneling and scattering, efcso the method we discuss in an expansion of the active device Hamiltonian in the sub-
this paper can be used as a practical 3D quantum approatiand eigenfunction space. As a result, we need to solve a 2D
for device study and design of SNwWIThis paper is di- Schrédinger equation by the FEM at each slice of the SNWT
vided into the following sections: Sec. Il describes our meth-to obtain the subband eigenenergy levels and eigenfunctions
odology for ballistic SNWTs and provides the basic equa{modes. After that, the original 3D device Hamiltonian is
tions, Sec. Il discusses the simulation results for ballistictransformed into a 1D Hamiltonian in thedirection, which
SNWTs with arbitrary cross sectioiie.g., triangular, rectan- can be used to calculate electron density and current within
gular, and cylindricgl Sec. IV introduces the Biuttiker the NEGF formalism. In this section, we will first give an
probes for the treatment of scattering and shows relevargverview of the coupled mode spag@MS) approach for the
results, and Sec. V summarizes key findings. SNWT simulation (Sec. 1l A), which is mathematically
equivalent to a direct real space solution if adequate modes
are included(to be discussed late?*° Then we will intro-
duce the uncoupled mode spatéMS) approach'Sec. Il B)
and a fast uncoupled mode spagdJMS) approach(Sec.
Figure 1 shows a schematic structure of the Si nanowirél C), which are a simplification of the CMS approach to
transistors simulated in this work. This intrinsic device struc-provide high computational efficiency. The simulation results
ture is connected to two infinite reservoirs, the source andin Sec. ll)) illustrate that the UMS and FUMS approaches
drain (not shown, so the source/draifiS/D) extension re- show excellent agreement with the CMS approach for the
gions are terminated using open boundary conditions. ASNWT simulation.
shown in Fig. 1b), a uniform grid with a grid spacing & is
used along the channék) direction. In they-z plane [the
cross section of the SNWTa 2D finite element mesh with
triangular elements is generated by EasymesH®1which
allows us to treat nanowires with arbitrary cross sections In this part of the work, we will briefly review the CMS
[e.g., triangular, rectangular, and cylindrical, as shown inapproach and list basic equations for our particular case of
Fig. 1(c)]. By doing this, a 3D finite element mesh with interest.
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In the 3D domain, the full stationary Schrodinger equa- #2 &P %2
tion is given by DY (2 amn(X))ngpm(X) - EE Crr(¥) ¢"(X)
n n

HapW(X,y,2) = EV(X,Y,2), 1
o2 = B2 O S b0 L0 L =, ()

whereHsp is the 3D device Hamiltonian. Assuming an ellip- n

soidal parabolic energy band with a diagonal effective-mas§pere

tensor(for the case that the effective-mass tensor includes

nonzero off-diagonal elements, please refer to Ref, HZp _

is defined as i) =

p ! EM(y,z;x)€"(y, z;x)dydz (83
vz M(Y,2)

’ __ﬁ_za_z_ﬁ_zi< ! i) ;
T 2miy.9a¢ 2 ay\m(y,2) dy bri¥) =P ———&My,Zz;x)—£"y,z;X)dydz  (8b)

v,z rnx(yvz) ax

- ﬁi( ! i) +U(XY,2) @)
2 9z\ m{(y,2) 9z Y12 and

P

herem;, my, andm; are the electron effective mass in the Crr(X) = 7 )gm(y,z;x)ﬁgn(y,z;x)dydz (80
y, andz directions, respectively, arld(x,y, z) is the electron yz MY,

conduction band-edge profile in the active device. We Nt ation(7) is the basic equation for the CMS approach. In
that the effective mass varies in th@ndz directions due to ;1 simylation, since the electron wave function is mainly

the transition between the Si body and the Si@yer. (In our located in the silicon, we can negleat,, if m+n (ag
simulation, the penetration of electron wave function into the>amn) (Ref. 10 and simplify Eq.(7) as

SiO, layer is considered, which is necessary for the
effective-mass approximation to be valid for Si nanowire ﬁ_2
simulationf?) Now let us expand the 3D electron wave func- 2
tion in the subband eigenfunction space,

P K2
Bnr(X) 560 = ?En“ Crnr(X) "(X)

J
=12, Brr(X) — ¢@"(X) + EXX) 0M(X) = E¢™(X). 9
Vxy 2 =3 ¢ (12X, ® Bl 700+ EC ¢ =BT ()
n
From the derivation above, it is clear that the CMS for-
whereé" (y,z;X=Xg) is thenth eigenfunction of the follow- malism[Eqgs.(7) and(8)] is mathematically equivalent to the
ing 2D Schrodinger equation at the sli¢g=x,) of the real space calculation if all the mode@.e., m, n

SNWT, =1,... Nyz whereNy; is the number of nodes in thgz
5 5 plane are included. In practice, due to strong quantum con-
{_ ﬁ_i( 1 i) _ ﬁ_i( 1 i) finement in SNWTs usually only a few of the lowest sub-
2 9y\my(y,2) dy/ 2 dz\my(y,2) oz bands(i.e.,m, n=1,... M, M<Ny,) are occupied and need

to be included in the calculatiofwhich means that if we
+U(Xo,Y, z)]g“(y,z;xo) = EQ %) (Y, Z:%0) (4)  increase the mode numbkft, the device characteristics such
as the electron density profile and terminal currents will not
change any moipe Thus, with the firstM subbands consid-
ered(i.e., m, n=1,... M), Eq. (9) represents an equation
group that containM equations, each representing a selected
mode. We can write down thedd equations in a matrix

here EJ %) is the nth subband energy level at=x,. Ac-
cording to the property of eigenfunctiori) (y, z; x) satisfies
the following equation for any:

format
m . n . — B ] [ ar .
ot EE L ZRIAYI G ) G0 | [h M hug oy || @l
@%(x) ho1 hyp hyg 0 hay @*(x)
where d,,, is the Kronecker delta function. | ...
Inserting Egs.(2) and (3) into Eq. (1) and using the
relation described by Edq4), we obtain
oM(x) hvi hwz hwz -+ hyw oM(x)
1’ & E n n ) . T ] T )
- X ,Z;X
2”1;()/,2) ﬁXZ( - () &y )> QDl(X)
n (PZ(X)
+ 2 @ (OELYNE" (v, =EX ¢"(XE" (y,z:%). (6) I I
. - =E , (10
Now we multiply by £&™ (y,z;x) on both sides and do an oM(x)

integral within they-z plane. According to Eq5), we obtain
the following 1D coupled Schrédinger equation: where

RIGHTSE LI MN iy
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2 2

hmn: 5m,n - Eamn(x) &2 + Em b(x) Cmn(x)

—ﬁzbmn(x)ﬁix (mn=1,2,... M). (12

By using the coupled mode space approach, the size of the
device HamiltonianH has been reduced t9l-Ny X M -Ny

(N is the number of nodes in thedirection, and the mode The self-energiess; ands,, are defined 48

numberM we need is normally less than 5 for the SNWT
structures we simulatewhich is much smaller than that in
the real space representatioNy,-NyX Nyz-Nyx (Nyz is
~1000 for the device structures simulated in this work

After the device Hamiltoniai is obtained, we can cal-
culate the electron density and current using the NEGF ap-
proach. The NEGF approach, a widely used method for the
simulation of nanoscale electronic devices, has been dis-
cussed in Refs. 13 and 14. Here we list the relevant equations
for our particular case.

The retarded Green’s function of the active device is
defined a¥'

Wang, Polizzi, and Lundstrom 2195
a/3 a6 0O - .- 0
a/l6 2a/3 al6 :
0 a6 2a/3 :
S= . . ) 0 (FEM). (16)
: . 2a/3 al6
o - -+ 0 a6 a3
21|:pvcﬂ:_jkm,latm,1‘5"p,(m—1)N +1‘S ,(m-1) N+1 FEM)
(17)
22|:pv q] == jkm,Nxatm,Nx‘sp,me‘sq,me
(m=1,2,...Mandp,q=1,2,... MN,) (FEM).
(18)

By inserting Egs.(13) and (14) or (15—18) into Eg.

(12), we can evaluate the retarded Green’s func@gg) at a

given energyE. Then the spectral density functions due to

G(E)=[ES-H-34E) - 34(E) - 2p(B)] Y, (12)
where the device Hamiltoniad is defined by Eq(10), 2gis
the self-energy that accounts for the scattering inside the de-
vice (in the ballistic limit, it is equal to zemp 2, (,) is the

self-energy caused by the coupling between the device anthere T'y(E)=j[31(E)-3,"(E)]

the source/drain contacts can be obtainéd as

A(E) =G(E)T((E)G'(E), Ay(E) = GIE)TR(E)G'(E),

(19
and  T'»(E)=j[25(E)

the sourcedrain) reservoir. If we discretize the equations by —2,'(E)], which determine the electron exchange rates be-

the 1D (in the x direction) finite difference methodFDM),
the matrixSin Eq.(12) is equal to arM -Ny X M - Ny identity
matrix. The self-energies,; and3,, are defined d8

tween the active device region and the source/drain reser-
voirs at energ)E. In this coupled mode space, the diagonal
elements of the spectral function matrices represent the local

density of stategLDOS) in the device for each mode. We
define the LDOS for moden asDY' (due to the sourgeand
DJ' (due to the draipn Here D' and D' are bothNy X 1
vectors obtained as

24[p,a] =~ tm 1 exp(jKy, 13)5 (M-DN, +164 (MDN+1

(i=V-1) (FDW), (13
_ Dilp]= _Al[(m DNy +p,(m—1)Nx + p]
2o0p.a] = ~ o, €XP(1Km N ) 5 NG,
(m=1,2,...M andp,q=1,2, ... MN,) (FDM), (p=1,2,... Ny, (20)
(14)
1
where m = (ﬁZ/ZaZ)amm(X)|x_ and tmN Dg][p] = %AZ[(m_ 1)NX + p,(m— 1)NX + p]
—(ﬁ2/2a2)amm(x)|x_(N “1ja [@mn(X) is defined by Eq (8a)]
and Knj (Kny,) is determined by E= Eq0)+2t,4(1 (P=1,2, ... Ny). (21)

—cosk, 18) (E:E (Nx=Da]+ 2ty (1= cosk mn Q)

If we discretize the equations by the I the x direc-
tion) FEM, the matrixS in Eq. (12) becomes arM -Ny
X M -Ny block-diagonal matrix,

Then the 1D electron densiiyn m™) for modem can be
calculated by

+oo
-S) 0 0 ] nTD = f_m [DTf(/-’LS! E) + D?f(MD!E)]dEI (22)
0 % O : o - : .
. . wheref is the Fermi-Dirac statistics function, apd(up) is
Ss=f+ 0 © (FEM), (15) the sourcedrain Fermi level, which is determined by the
P e 0 applied bias. The electron density obtained by @) is a
o - -+ 0 S 1D distribution(along thex direction. To obtain a 3D elec-

tron density, we need to couple E@®2) with the quantum

whereS, is anNy X Ny matrix*® confinement wave function for mods,

RIGHTSE LI MN iy
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n3p(X,Y,2) = NTH(¥)|EM(y,z;%)|2. (23 GYE) O 0
. 0 G¥E) O
The total 3D electron density needs to be evaluated by sum-
ming the contributions from all the subbands in each conduc- G(E)=| o - = . (30)
tion band valley. Then this 3D electron density is fed back to : : ) 0
the Poisson solver for the self-consistent calculations. Once 0 0 GM(E)
self-consistency is achieved, the electron current is computed - -
by where G™(E) (m=1,2,... M) is the Green’s function for

lep= % f T(E)[f(us E) - f(un, E)IdE, (24)

where the transmission coefficieRtE) can be evaluated s

T(E) =t y(E)G(E)TR(E)G'(E)]. (25)

To obtain the total electron current, we also need to add up

current components in all the conduction band valleys.

B. The uncoupled mode space approach

In the simulation of SNWTs, we assume that the shape

of the Si body is uniform along the direction. As a result,
the confinement potential profilén the y-z plane varies

very slowly along the channel direction. For instance, the

modem and is obtained as
G™(E) =[ES"~ hyym—2U(E) -37(E) -35(B)]™, (3D

hereS", 3T
fined as

S"p,q] =9 (M= 1Ny + p,(Mm=1)Ny +q[]

T, andX7 are all Ny X Ny matrices and de-

conduction band edg¥(x,y,z) takes the same shape but and

different values at differert. For this reason, the eigenfunc-

tions £M(y,z;x) are approximately the same along the chan-

nel although the eigenvalu&g),(x) are different. So we as-
sume

EM(y,z;X) = EM(y,2) (26)
or

aixgm(y,z;x) =0 (m=1,2,... M), 27
which infers

_ 1
Am{X) = amm=§ ——|EM(y,2)|*dydz (283
yz My(y,2)
bn(¥) =0 andc,(x) =0 (mn=1,2,...M). (28b

Inserting Eq.(28b) into Eq. (11), we obtainh,,;=0 (m#n
and m,n=1,2,... M), which means that the coupling be-
tween the modes is negligiblall the modes are uncoupled
Thus the device Hamiltoniakl becomes a block-diagonal

matrix,
hy; O 0
0 hy O :
H= 0 : (29)
: T
| 0 -+ =+ 0 hym i

Since all the input matrices at the right hand side of @8)

(p,g=1,2, ... Ny), (32
2glp,al=2d(m= )Ny + p,(m= )Ny +q]

(P.a=1,2,... Ny, (33
31Tp,al = 24[(M= Ny + p,(m= )Ny + q]

(p,g=1,2, ... Ny), (34)
351p,al =2l (M= 1)Nx + p,(m= )Ny + q]

(P.a=1,2, ... Ny). (35)

Knowing the retarded Green'’s function, the spectral den-
sity functions due to the source/drain contacts for each mode
m can be obtained &%

AT(E) =GM™E)'T(E)G™(E),

AJ(E) = GME)'3(E)G™(E), (36)

where TT(E)=j[ST(E)-SM(E)] and TH(E)=|[Z5(E)
-37"(E)]. The LDOS for modem, D' (due to the sourge
andDJ' (due to the draip can then be evaluated by

1
Dilp]l= %AT[D, pl,

1
Dzlpl= —Alp.pl (P=1,2, ... Ny. (37)
After that, the electron charge density is computed by Egs.
(22) and (23). For the calculation of electron current, the
total transmission coefficient can be written as a summation
of the transmission coefficie™(E) for each modan,

M
T(E)= 2 T"(E), (38)
m=1
where TM(E) is obtained a¢
T™(E) =t{I'{(E)GME)S(E)G™(E)]. (39

are either diagonal or block diagonal, the retarded Green'finally, Eq. (38) is inserted into Eq(24) to compute the

function G(E) is block diagonal,
RIGHTSE LI MN iy
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As we will show in Sec. Ill, for SNWTSs, this uncoupled
mode space approach shows excellent agreement with the Y
CMS approach while maintaining higher computational effi- t

18t 2nd 34

ciency. (The validity of the UMS approach for planar

MOSFET simulation has been established by Venugepal

al.* by doing a careful study of the UMS approach vs 2D
real space approaoh.

C. A fast uncoupled mode space approach

As described earlier, for both CMS and UMS ap-
proaches, we need to solWy 2D Schrddinger equations

A ®)
[see Eq.(4)] in a self-consistent loop to obtain the electron
subbands and eigenfunctions. For the device structures simu-
lated in this work, this part of simulation usually takes more Y
than 90% of the computational complexity, which makes T_’
2 ¢ 20 &L

parallel programming necessary. To increase the efficiency of
our simulator and to make it executable on a single proces- ©
. 0 . .

sor, we mtrodyc_e aFUMS a_pproa%ﬁ,whlgh Only mvoIve_s FIG. 2. The 2D modeg$the square of the modulus of the electron wave
one 2D Schrodlnger equation prOblem 'n_ a Self'consmtenﬂmctions in the(010) valleyq in a slice of(a) triangular wire(TW), (b)
loop and still provides excellent computational accuracy asectangular wirédRW), and(c) cylindrical wire (CW) transistors. For clarity,
compared with the CMS and UMS approach@he trans-  the SiQ substrates for TW and RW FETs are not shown here.
port part of calculation in FUMS is the same as that in
UMS)) simulation and desigfﬁ (The simulation of a ballistic

Recall the assumption made in Sec. Il B that the eigenSNWT with 10 nm gate length and 3 nm Si body thickness
functions £"(y,z;x) are invariant along thex direction, normally takes<15 min per bias point on one 1.2 GHz
EM(y,z;x)=&M(y,2) [EQ.(26)]. Now we suppose that the av- ATHLON processoy.
erage wave functiong™(y,z) are the eigenfuctions of the

following 2D Schrddinger equation: [Il. RESULTS FOR BALLISTIC SILICON NANOWIRE
_h_zi 1 4 _ﬁ_zi 1 4 TRANSISTORS
2 0y m;(y,z) ay 2 9z\ mi(y,2) 9z In this section, we first verify the validity of the FUMS

approach by comparing its results with those obtained by the
+ U(y,z)]g_m(y,z) =ET, £M(y,2). (400 UMS apd CMS approaches. 'I_'hen We.a}dopt the FUMS as a

simulation tool to explore device physi¢se., both internal
characteristics and terminal currents ballistic Si nanowire
transistors with different types of cross sectigeg., trian-
gular, rectangular, and cylindrigal

Here the average conduction band e@g,z) is obtained as

_ 1 (tx
Uly.9 = f U(x,y,2)dx, (41)
X0 A. Benchmarking of the FUMS approach

As mentioned in Sec. Il, for both CMS and UMS ap-
= , T ) e proaches, we need to solve a 2D Schrddinger equation
Equp and eigenfunctiong™(y,2) of this Schrodinger equa- [shown in Eq.(4)] at eachslice of the SNWT to obtain the
tion,.we use the first—orc_ier stationery perturbation theory tQjectron subbands and the corresponding eigenfunctions
obtain the subband profile & (mode3. Figure 2 shows the electron wave functions at a
m o = — 5 slice of the SNWTs with a triangular, rectangular, or cylin-
EsudX) = |Esub+3E U(x,y,2)|EM(y,2)|*dydz drical cross section, respectively. After solving all thg 2D
vz Schrddinger equations, the electron subband levels are ob-

whereLy is the total length of the simulated SNWihclud-
ing the S/D extensions After computing the eigenvalues

— — ) tained (see Fig. 3, circles For the FUMS approach, how-
_3g U(y,2)|§M(y,2)|*dydz (42)  ever, only one 2D Schrodinger equation needs to be solved,
v and the subband profile can then be calculated by(£&2).

So far the subbandz[ (x) and the corresponding eigen- Figure 3 clearly illustrates that this approximation method
functions é™(y,z;x) have been obtained approximately by (solid lineg provides excellent agreement with the rigorous
only solving one 2D Schrodinger equation. The simulationcalculation(circles, which shows that the FUMS approach
results in Sec. Il show that this FUMS approach has greatorrectly computes the electron subbands in SNWTSs.
accuracy for the calculation of both internal characteristics  Figure 4 compares the computkg vs Vgg characteris-
(e.g., the subband profileand terminal currents. The use of tics for the simulated cylindrical SNWT by the FUMS
the FUMS approach highly improves the efficiency of our(dashed lines UMS (circley, and CMS (crossey ap-
simulator and makes it a practical model for extensive devicgroaches, respectively. It is clear that all the three approaches
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X[nm] FIG. 5. The computed LDOgn 1/(eV m)] and electron subbanddashed
o o ) lines) of a ballistic cylindrical SNWT with 10 nm gate length and 3 nm Si
FIG. 3. The electron subband profile in a cylindrical SNWT‘ with 1_0 NM hody thicknesgthe channel region is located froi=8 to X=18 nm and
gate lengthVs=0.4 andVps=0.4 V). The numbers of nodes in thedi-  the details of the device geometry are described in Fig. 3 captidas
rectionNy is equal to 128. The silicon body thickn€Bg [as shown in Fig.  —g 4 andVps=0.4 V).

1(c)] is 3 nm, and the oxide thickness is 1 nm. The source/d(&iiD)
doping concentration is:2 107° cm2 and the channel is undopéithe chan-
nel region is located fronX=8 to X=18 nm). The solid lines are for the
approximation methog@solving a 2D Schrddinger equation only onesed

in tlhg FL2JII:\)/I§ ?]pPéqach, whilet_ the Eircles 3re :O(; _th?hrigS’(/cI)gs cglgf\;astion The NEGF transport model we use in this work provides
;Spop\r’g;%hes_ chrodinger equation times adopted in the UMS an an opportunity to illustrate the local density of stateBOS)
of the simulated SNWTSs. Figure 5 shows the LDOS together
with the electron subbands for a ballistic cylindrical SNWT
are in excellent agreemeiftc0.5% erroy, thus indicating with 10 nm gate length and 3 nm Si body thickness. Strong
that the FUMS approach, which has much higher computaescillations in the LDOS plot are clearly observed, which is
tional efficiency than CMS and UMS, is an attractive simu-due to the quantum mechanical reflection. To be specific, the
lation tool for modeling Si nanowire transistors. Although States injected from the drain are reflected off the drain-to-
the sample device structure we use in Figs. 3 and 4 is §0urce barrier at the high drain bias and these reflected states
cylindrical SNWT, our conclusion is also applicable for strongly mtler'fere with the m_Jected ones. At the source _end,
. . : . the states injected at energies around the source barrier are
SNWTs with arbitrary cross sectiofiassuming the shape of .
the Si body | i | the directi In the foll also reflected and interfere. It should be noted that the occur-
. € St body IS -unl orm aong. e direction. In the follow- rence of quantum inference in ballistic SNWTs relies on the
ing parts of this work, we will use the FUMS approach to

) ) : o i quantum coherenagomplete preservation of electron phase
investigate the device physics in various SNWTs. information) inside the devices. If scatteringdephasing

mechanismis included, as we will see in Sec. IV, the quan-
tum interference and the oscillations in the LDOS are

B. Device physics and characteristics

x10° smeared out. In addition, the presence of states below the
— Fums /m.s first electron subband is also visible in the LDOS plot, which
o UMS Vps=04V /S e is caused by source-to-drain tunnelffg.
. x CMS "®1 . Figure 6 plots the 1D electron densitin m™) profile
10 8_.-——’9" 2 ' along the channel of the simulated cylindrical SNWT. It is
3,¢—"' /' 112 clearly observed that the oscillations in the LDOS of the
< | P device result in an oscillation in the 1D electron density,
] — 4 /s <~m even at the room temperature and more apparent at low tem-
210°% 7 S 108" perature(77 K). In general, such an oscillation in the elec-
/® & los tron density profile occurs in all kinds of transistors with 1D
,/’ d channels(e.g., the carbon nanotube transi%lc))rlt is inter-
b /8' 104 esting to mention that there is no evident oscillation in the
107k // _@ do2 electron density profile in a planar MOSFESee Fig. 8 on p.
‘/ p— & ) . ) ) 3736 in Ref. 1] although its LDOS also bears strong oscil-
0 005 01 015 02 025 03 035 02 lations(see Fig. 4 on p. 3735 in Ref. LIThe reason is that
VasM in a planar MOSFET there is a transverse directioormal

o _ _ to both the Si/Si@ interfaces and the channel directjpm
FIG. 4. Thelps vs Vgs curves for a cylindrical SNWT in logarithrdeft) - \ypich the electron wave function is assumed to be a plane
and linear(right) scales(Vps=0.4 V). The device structure is the same as . . .
that in Fig. 3. The crosses are for the CMS approach, the circles are for th&/ave, thus resulting in numerous transverse mOd_eS n th_e
UMS approach, and the dashed lines are for the FUMS approach. device. These transverse modes wash out the oscillations in
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FIG. 8. Thelpg vs Vgs curves for the triangular wir€TW) FET with (101)
dpriented channels, rectangular wigW) FET with (101) oriented channels
and cylindrical wire (CW) FET with (1000 oriented channels(Vpg
=0.4 V). All the SNWTs have the same silicon body thickneSs;
=3 nm), oxide thickness(T,=1 nm), gate length(L=10 nm), and gate
work function(WF=4.05 eV\j. The Si body width\/s; of the RW is 4 nm. In
the calculation of the TW and RW FETs, whose channelH0#) oriented,
the effective masses of electrons in {1€0) and(001) valleys are obtained

the LDOS and cause a smooth electron density profile. S@iom Ref. 22 asn,=0.585n,, m=0.19m, andm;,=0.318n.
the oscillation in the electron density profile is a special
property of SNWT as compared with planar MOSFETs.  sections. Two interesting phenomena are evidently visible:
Figure 7 illustrates the calculated transmission coeffi{1) the cylindrical wire(CW) and triangular wirg TW) tran-
cient[from Egs.(38) and(39)] for the simulated cylindrical sistors have higher threshold voltag¥s,; (which is defined
SNWT. When the total electron energy increases above thaslpg(Vgs=Vry) =108 A whenVpgs=0.4 V), due to stronger
source end of the first subband, the electrons start to be irguantum confinemergthe cross-section areas of the CW and
jected into the channel, so the transmission coefficient begin§W are smaller than that of the rectangular WwiRW) for
to increase from zero. As the electron energy continues to gthe same Si body thicknesand (2) the CW SNWT offers
up, the second and third subbandsodes become conduc- the best subthreshold swing and the highest on-off current
tive successively, which results the steplike shape of theatio (under the same gate overdrivézs—Vyy) due to its
transmission coefficient curve. We also observe that thgood gate control. These results clearly show that our simu-
transmission coefficient is above zero even when the totdhtor correctly treats the 3D electrostatics, quantum confine-
electron energy is below the top of barrier of the first sub-ment, and transport in SNWTs with arbitrary cross sections.
band, which is the evidence of source-to-drain tunneling.
In Fig. 8, we compare thiy g vs Vgg characteristics for  |v. TREATMENT OF SCATTERING WITH BUTTIKER
SNWTs with triangular, rectangular, and cylindrical crossPROBES

FIG. 6. The 1D electron density profile along the channel of the simulate
cylindrical SNWT(the channel region is located froX+ 8 to X=18 nm and
the details of the device geometry are described in Fig. 3 cgpfitre solid
line is for T=300 K while the dashed line is fof=77 K (Vgs=0.4 and
Vps=0.4 V).

In this section,we apply a simple quantum treatment of
scattering based on the Buttiker prob“e’ﬁ'”to our SNWT
simulation. The simulation results show that this simple
model captures the essential effects of scattering on both
internal device paramete(s.g., charge distribution and elec-
trostatic potentigland current-voltage characteristi¢A.de-
tailed treatment of scattering within the NEGF formalism is
important to deeply understand physics in Si nanowires, and
it will be discussed in future work.

Transmission
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05 25
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A. Theory
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The simple treatment of scattering with the Buttiker
probes has been adopted by Venugopal and co-wdrkiens
the simulation of nanoscale MOSFETSs. Due to the similarity
between the transport calculations of a MOSFET and a
SNWT, here we will follow the basic concepts and formal-
FIG. 7. The transmission coefficient and electron subbands in the simulatetl \, o the method described in Ref. 17 while making neces-

-0.4f

10 15
X [nm}

cylindrical SNWT(the channel region is located froX+ 8 to X=18 nm and

RIGHTS L

the details of the device geometry are described in Fig. 3 cgpthdgs
=0.4 andVps=0.4 V).

I A

sary modifications and corrections for the case of SNWT
simulation.
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FIG. 9. A generic plot of the 1D device lattigsolid line with dots, along

the X direction) for a SNWT with the Biittiker probes attached. Each probe

is treated as a virtual 1D lattiaglashed line with dots, along th¢€ direc-

Wang, Polizzi, and Lundstrom

direction for a SNWT with the Buttiker probes attached.
Each probe is treated as a virtual 1D latt{@e the x’ direc-
tion) that is coupled to a node in the device lattice. The
coupling energy,, between this virtual lattice and the node
with which it is attached to is called the Buttiker probe
strengthl,7 which is determined by the ballisticity of the de-
vice. For instance, whed, is zero, there is no coupling
between the device and the probes, so the electrons can
travel through the device ballistically. If this coupling energy
is large, it means that the electrons in the active device re-
gion can easily scatter into the probes, which implies that the

tion) that is coupled to a node in the device lattice. The coupling energySCatting in the device is strong. As we will show later, the

between this virtual lattice and the node with which it is attached tjs

and that between two adjacent device lattice nodeg.iFhe probe Fermi

levels are labeled ag;(i=2,3, ... Ny—1).

Buttiker probe strength can be analytically related to the
electron mean free path, which allows us to calibrate the
parameters in our simulation to mimic a low field mobility
that can be measured experimentéﬁyl should also be

In the ballistic regime, as we know, electrons movenoted that since we treat each probe as a reservoir, a Fermi

through the device coherently, with their energies and phaskevel (w;, i=

2,... Nx—1) needs to be assigned to the probe,

information conserved. When scattering is present, howeveand the values of these probe Fermi levels have to be ad-

electrons’ momenta and energies could be altered and

theusted to achieve current continuitye., the net current at

phase information may be lost. Based on this observatioreach probe is zejo The mathematical formalism used to
virtual probes(Bittiker probe$ are attached to the device treat this physical structure is described in the following

lattice (in the channel direction which serve as reservoi
that absorb electrons from the active device, modulate

rs paragraphs.
their As we show in Sec. Il, the retarded Green’s function for

momenta and/or energies, and then reinject them back to theodem is obtained as

device. The difference between the probes andsiie con-

G™(E) = [ES" - hy— 25(E) - XT(E) - X3(B)] ™

tacts is that the probes can only change the electron
momentum/energy and not the number of electrons withirf we discretize the matrices by the FDM methd, is a

the active device’

Figure 9 shows the 1D device lattigen the channel

Ny X Ny identity matrix and the device Hamiltonidm,,, is
expressed as

2ty +ET(0) ~tm 0 0
- 2ty +EQa) —ty
0 —tm ’ :
A= ) . 0 (FDM), (43)
—tm 2yt quut[(Nx - 2)aj —tn
0 0 —t, 2t + ETJ(Ny - D)a]

where the coupling energy between adjacent lattice ndidethe x direction is t,,= (%2/2a%)a,, and am is defined in Eq.
(283). In theballistic limit, the scattering self-energyd=0 so the total self-energy matrix is

- tem® 0 0
0 0
SM=3T+3+30= . : (FDM), (44
: 0 0
|0 0 - tmeikmea_

wherekp, 1 (kmva) is determined byE=E,(0) +2t,,(1 - cosky,,a) (E:E;'LI[(NX—1)a]+2tm(1—coskmyNXa)). After we attach
the Biittiker probes to the device latti¢Eig. 9), the device Hamiltoniai,,,, becomes
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2ty + EZ{0) —tm o - 0
—tn 2+ AZ+EN @) —t, ' :
o - o . i 0 @9
: : ~ty 2tn+ AN+ ET [(Ny - 2)a] ~tm
0 -+ 0 =t 2t + ERJ (N — 1)a]
and the total self-energy matrix turns to _
—t, gkma 0 ... ... 0
0 - A2gkmaa :
SM=30+30+ 3= : : , (46)
: 0 — AN tekmn,-12 0
0 . e 0 -t e fmna

whereky,; (i=1,2,... Ny) is determined bye=E, (i —1)a]+2t,[1-cosky;a], and Aim (i=2,3,... Nx—1) is the Buttiker
probe strength. For convenience, we prefer to keep the device Hamiltapiain its original form[Eg. (43)], so we have to
move the terms containi_n@'m in the diagonal elements &, to the total self-energy matriX™. Thus,

—t gkmaa 0 ... . 0
0 -AjEnmA-1) 0
SM=30+37+30= : - .. : , (47)
: 0 - AN (ghmn,-13. 1) 0
i 0 cee . 0 - tmeikm,NXa_
[
Inserting EQs.(43) and (47) into Eq. (31), the retarded ™. (E)= tr[l“im(E)Gm(E)F{“(E)GmT(E)]. (52)

Green's functionG™ can be evaluated. ) L )
Knowing G™, the state spectral function due to injection The net current densitat energyE) at reservoii including

from the S/D and all probes for mode is obtained a¥ contributions from all reservoirdabeled byr), modes(la-
beled bym), and valleys is
A'(E) =GMEIT(E)G™(E), (48)
q

wherei runs over all the reservoirgncluding theS/D) and 7(E) = %2 > T(E)f(w,E) - f(u, B, (53
'™ is anNy X Ny matrix defined as mor

™ p.ql == p. ol - 2™ p,ql16, 8 and the net current at reservoirs

1 ’ ’ 1
(P.g=1,2, ... Ny). (49) li =f n(E)dE. (54)

The local density of states due to injection from reservar

then obtained as As mentioned in Ref. 17, while th&/D Fermi levels are

determined by the applied voltages, the Fermi levels of the
probes have to be adjusted to ensure current continuity,

1
m =——AM i = =
Ditp] = WaA' [p.p] (1=1.2,... Nx,p=1.2... Ny, which implies that the net current at each probe must be

(50) zero,
+o0
and the 1D electron densityn m™) for mode m can be Ii:J 7(E)YdE=0 (i=2,3,... Ny - 1). (55)
calculated by -
- f““ DI (1 EYIE 51) Inserting Eq.(53) into Eg.(55), we obtain
1D — i i ’
i —0

+00
. . =D f T (E)[f(,E) = (1, E)]dE=0
wherei is the reservoir index that runs over all the probes ™ + J

and theS/D, and y; is the Fermi level for reservoir (note
that u;=us and uy, = up).

The transmission coefficient between any two reservoirs$Solving this nonlinear equation grouf®6) by Newton’s
i andr can be evaluated as method®’ the Fermi leveldy;, i=2,3,...Ny—1) of all the
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probes are evaluated. It should be mentioned that if we
implement the elastic Blttiker probes, which can only 04
change the electron momentum and not the energy, to cap-
ture elastic scattering mechanisms in SNWe&g., surface
roughness scattering and ionized impurity scatteritige net
current for each probe has to be zero at any energy, so

o o
= N

()= ST BNy B) -~ 1 D) =0

S 6 o
w N =

(i=2,3,... Ny—1). (57

It implies that the probe Fermi levels are both position and
energy dependent. In this case, the Fermi levels of probes at
each energy can be computed by solving the linear equation  -05;

Electron Energy (Subbands) [eV]
[=)

10 15 20 25
group (57). Knowing the probe Fermi levelby solving ei- X [nm]
ther EQ.(56) or Eq. (57)], the electron density and terminal
current can be calculated from Eq51) and (54). FIG. 10. The computed LDOBn 1/(eV m)] and electron subbangddashed

. . . . lines) of a dissipative cylindrical SNWT with 10 nm gate length and 3 nm
Fma"y' we list the equations that relate the Bttiker Si body thicknessgthe channel region is located frok=8 to X=18 nm and

probe Strength]&:11 to the classical low field electron mobility the details of the device geometry are described in Fig. 3 captivas
o Following the procedures in Ref. 17, for a single-mode=0.4 andVps=0.4 V). The S/D mobility is 55 cnt/(V's) and the channel
1D conductor with a uniform potential, we can obtain mobility is 200 et/ (V's).

An_2a

(58) trons and consequently destroys the quantum coherence in
tn A

the device**” Moreover, the slope of the electron subbands
é'n the S/D extension regions manifests tBD series resis-
tances at the on state, which is caused by the strong scatter-
ing [i.e., the S/D mobility is only 55 cni/(V s)] at the

where\ is the electron mean free path, which relates to th
low field electron mobility by the following equation for a
1D conductonthe \ ~ g relation for a 2D conductor is de-

scribed in Ref. 28 heavily dopedS/D regions. I_n F_ig._ll,_we compare thegg
- Vs Vgg characteristics for this dissipative cylindrical SNWT
_ ( @kB_T) [3-1/2(76)] (59  (S0lid lines with its ballistic limit (dashed lines It is evi-
vr Q357 To(7k) dently shown that scattering lowers both off and on currents.

. o ~ For the mobility values we use in the simulation, the on
wherewvr=y2kgT/7m, is the unidirectional thermal velocity cyrrent of the dissipative SNWT approached0% of the
of nondegenerate electrons. The functigyx) is the Fermi-  pgjiistic limit.
Dirac integral andz: is defined aspg=[ui~Eqx)]/ksT, The above results clearly indicate that the simple quan-
whereX; is the position of theth reservoir(probg of the  tym treatment of scattering with the Biittiker probes captures

device. It should be noted that the mean free patefined  the effects of scattering on both internal characteristics and
in Eqg. (59) is position dependent and consequently the But-

tiker probe strength&im is also position dependent. As men- £10%
tioned earlier, single-mode occupancy is assumed in oul 25
analysis. If more than one mode is occupied, the mean free - g‘:lﬁgiz“"e Vps=04V
path should be treated as an average mean free path over ¢

the modes and valleygPlease refer to Appendix B in Ref.
17 for details)

11.5

Ins [A]

B. Results

Figure 10 plots the LDOS together with the electron sub-
bands for a dissipative cylindrical SNWT with 10 nm gate

length and 3 nm Si body thickness. We assume that botf ) 105
elastic(e.g., surface roughness scattering and ionized impu- | ==

rity scattering and inelastic(e.g., electron-phonon interac- 10° o= . . . . .

tions) scattering mechanisms are present in the dejiieg, 0 005 01 015 02 0% 03 03 04

Eq. (56) is used for current continuity and the equivalent es

mobility is 55 cnf/(V s) at the S/D extension regions and FIG. 11. Thelpg vs Vgs curves for a cylindrical SNWT with 10 nm gate
200 Cn’?/(V s) in the channel. Compared with the ballistic length and 3 nm Si body thicknegthe details of the device geometry are

: Hlati : : : described in Fig. 3 captignin logarithm (left) and linear(right) scales
case(Fig. 5),_strong oscillations in the LDOS’_ which is due (Vps=0.4 V). The dashed lines are for the ballistic limit while the solid lines
to quantum interference, are washed out. It is because SCafw for the case with scatterifige., theS/D mobility is 55 cn?/(V's) and

tering inside the SNWT randomizes the phase of the electhe channel mobility is 200 ch(V s)].
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